动态无功补偿基础知识

合集下载

动态无功补偿

动态无功补偿

动态无功补偿什么是动态无功补偿?动态无功补偿(DynaMIC Var Compensation, DVR)是一种用来提高电力系统功率因数和调节电压的技术。

在电力系统中,负载的变化会导致功率因数的波动以及电压的不稳定。

为了稳定系统运行,减少电力损耗并提高电力质量,需要进行无功补偿。

而传统的静态无功补偿装置只能提供固定补偿容量,无法适应系统负载变化。

而动态无功补偿则通过实时监测负载的无功功率需求,并根据需求进行快速响应,实现动态调节补偿容量。

动态无功补偿的原理动态无功补偿系统主要由控制器和电容器组成。

控制器通过监测电力系统的无功功率需求,根据需求调节电容器的并联或串联方式,从而改变电流和电压的相位差,实现无功功率的调节。

动态无功补偿系统还可以通过控制器调整电容器的容量来更精确地进行无功功率的补偿。

动态无功补偿的优势1.高效快速:动态无功补偿系统能够根据负载的实时变化快速响应,实现无功补偿容量的动态调节。

相比传统的静态无功补偿系统,具有更高的调节灵活性和补偿效果。

2.节能减排:动态无功补偿系统能够减少电力系统的无功损耗,提高电力系统的功率因数,从而节约能源。

同时,通过改善电力系统的电压稳定性,还可以减少电力系统的电压损耗,并提高电力质量。

3.提高系统稳定性:动态无功补偿系统通过调节电压来改善电力系统的电压稳定性,提高系统的稳定性和可靠性。

特别是对于大型工业和商业土地,可以有效地处理电力系统的瞬态响应和电力质量问题。

4.简化维护:动态无功补偿系统一般由智能化控制器控制,系统运行稳定可靠。

与传统的静态无功补偿系统相比,动态无功补偿系统的电容器的使用寿命更长,维护成本更低。

动态无功补偿的应用领域动态无功补偿系统广泛应用于以下领域:1.工业领域:大型工业企业往往需要处理大量的无功功率变化。

动态无功补偿系统可以根据实际负载变化快速响应,并实现无功功率的动态调整,从而提高电力系统的功率因数和稳定性。

2.商业领域:商业土地的用电负载通常具有高度的波动性。

SVG动态无功补偿培训教程

SVG动态无功补偿培训教程

SVG动态无功补偿培训教程SVG(Static Var Generator)是一种用于无功补偿的静态设备,能够实时调节无功功率并保持系统功率因数在设定值范围内。

这种设备在电力系统中广泛应用,用于提高电网的稳定性和电能质量。

因此,学习SVG动态无功补偿的培训教程对于电力工程师和相关领域的从业人员来说是非常重要的。

一、SVG动态无功补偿的原理与作用SVG动态无功补偿的原理是通过控制其电流输出来改变电网的无功功率,进而调节系统的功率因数。

SVG通过控制其电压和电流的相位差来实现无功补偿。

当电网需要补偿无功功率时,SVG能够主动增加无功功率;当电网需要吸收无功功率时,SVG能够主动减少无功功率。

通过实时调节无功功率,SVG可以保持电网的功率因数在设定值范围内并提高电能质量。

二、SVG动态无功补偿的优点1.快速响应:SVG能够在毫秒级别实现无功功率的调节,相比传统的无功补偿设备(如电抗器和电容器),响应速度更快,能够更好地应对电网负荷的变化。

2.精准补偿:SVG能够精确控制无功功率的调节量,使系统维持在设定的功率因数范围内。

无论是低负载还是高负载时,都能够有效地补偿无功功率。

3.减少损耗:SVG通过保持系统功率因数在最佳范围内,减少了输电线路和电气设备的损耗,提高了电能的利用效率。

4.提高电能质量:SVG能够消除电网的谐波和提供电压稳定性,改善电网的电能质量,减少电能质量问题对终端设备的影响。

三、SVG动态无功补偿的应用1.电厂:SVG能够调节并补偿电厂的无功功率,提高电站的稳定性和可靠性。

2.变电站:SVG能够控制变电站的无功功率,改善电网的功率因数,减少无功功率引起的负荷损耗。

3.工业设备:SVG能够提供稳定的无功功率补偿,改善电能质量,降低电机的运行成本。

4.输电线路:SVG能够减少输电线路的无功功率损耗,降低能耗并提高输电效率。

四、SVG动态无功补偿的调试和维护为了确保SVG动态无功补偿系统的正常运行,需要进行调试和维护。

无功补偿技术培训-动态补偿

无功补偿技术培训-动态补偿

3.3 动态无功功率补偿的原理
系统、负载和补偿器 的单相等效电路图:
U0
反映系统电压与无功功率动态补偿关系的特
性曲线如图:
完全补
U

C
U0
B
A
Z=R+jX
QL
Qr
系统电压U Q
Qr
QL





QA
Q
投入补偿器之后,系统供给的无功功率
为负载和补偿无功功率之和,即:
Q QL Qr
系统的特性曲线可以近似用下式表示:
IC
0
IL
I
QC
QL
Q
Us为等效前连接点处未接 补偿器时的电压。
Uref为电压值等于系统的正常工作电压,补偿 器未接且负载 无功功率不变时的供电电压。
★无功补偿器所吸收的无功功率:
Qr
U sUref Xs
★一台可吸收无功功率Qr的补偿器,可以补偿的系统电压变化为:
U s
X sQr U ref
3.3 动态无功功率补偿的原理
3.2 动态无功功率补偿的主要功能
1、改善功率因数 可以对动态无功负荷的功率因数进行校正。不但能把平均功率因数补偿
到所需的值,而且使动态功率因数保持在一定的范围内。
2、改善电压调整 能通过发出和吸收无功功率来提高电压和降低电压,防止过电压和欠
电压。
3、减少电压波动 由于反应迅速,所以能补偿快速变化的电压波动,减少电压闪烁,如
与理想补偿器相比,所 需吸收的无功功率减小
连接点电压并不像理想补偿时那 样保持原正常值不变,而是变化了
U
U s
Xr Xs Xr
3.3 动态无功功率补偿的原理

动态无功补偿装置及其于电网意义基础知识讲解

动态无功补偿装置及其于电网意义基础知识讲解

课前引导
风场与光伏电站无功补偿的必要性
适合开发风电、光伏的地区一般都处于电网末端,此处电网架构比较薄 弱,风电的并入会对电网产生重要影响 ,其中最突出的问题就是风电场的并 网引起系统无功的变化,进而影响系统电压,甚至可能导致电压崩溃。因此, 需要对风电场、光伏电站进行无功补偿以改善无功状况,从而达到改善系统和 风电场、光伏电站的电压水平的目的。
电能转换 (负载)
无功功率补偿的概念与意义
功率因数:有功功率出力在设备容量中所占的比重。
0 cos 1.0
功率三角形
S Q
S2 Q2 P2 P S cos
Q S sin
P
P S 或 cos
1.0
节电:
Q0
无功功率补偿的概念与意义
➢自然功率因数
负荷自然功率因数:无功补偿前负荷的功率因数
波形和相量图
Us
滞后的电流
IL
Us
UI
IL UI jxIL
(c) UI < Us
UI Us
IL 超前的电流
IL Us jxIL UI
(b) UI > Us
UI
没有电流
Us
Us
UI
(a) UI = Us
说明
UI = Us,IL = 0,SVG不吸发无 功。
UI > Us,IL为超前的电流,其 幅值可以通过调节UI来连续控 制,从而连续调节SVG发出的无 功。
SVG与SVC的对比
与相控电抗器TCR和磁阀控制电抗器MCR相比,SVG的具有明显性能优势: SVG能耗小,相同调节范围下,SVG的损耗只有MCR的1/4,TCR的1/2,
运行费用低,更节能环保; SVG是电流源型装置,主动式跟踪补偿系统所需无功;从机理上避免了大

动态无功功率补偿基础知识

动态无功功率补偿基础知识
动态无功功率补偿基础知 识
什么叫无功?
➢电源能量与感性负载线圈中磁场能量或容性负载
电容中的电场能量之间进行着可逆的能量交换而 占有的电网容量叫无功,无功功率 Q表达式如下:
QUsIin
式中无功量 的单位为Var(乏),线电压的单位 为V(伏),视Q 在电流I单位为A(安)。
无功及分类
➢1、感性无功:电流矢量滞后电压矢量90度,
抵消负载产生的谐波无功功率其谐波次数N=PK±1,P为整
流相数,K=1、2、3、……。
各类多相整流器产生的谐波次数
由右表可见,增加变流器 的相数可有效地消除低次 谐波,整流相数越多,所 产生的谐波分量越少。目 前在轧钢机和电冶金、电 解整流电源工程中多数采 用12相、24相整流技术, 对特大容量的也采用36相、 48相整流。
➢无功功率有那些危害:
—无功功率不做功,但占用电网容量和导线截 面积,造成线路压降增大,使供配电设备过载, 谐波无功使电网受到污染,甚至会引起电网振荡 颠覆。
什么是动态无功补偿?
➢动态无功补偿
根据电网中动态变化的无功量实时快速地 进行补偿。
➢为什么要进行无功功率补偿
—是为了减小供配电线路中往复交换的无 功功率,提高供配电线路的利用率。
➢本装置的投切时间为10ms,系统动态响应
30ms。滤波器投入电网和退出电网均在电流过 零点,入网电流为正弦,确保二进制编码码投切 方式对电网不产生冲击电流,保证晶闸管安全工 作,延长补偿电容器运行寿命。
TFC系列动补治理谐波的指标
➢治理五次谐波量50%以上; ➢非标准设计,可以对各次谐波进行治理,达
到国家标准。
➢适用场合
—适用于如:冶金、化工、船舶,造纸等工矿企业, 及居民生活小区,商业区域。

无功补偿技术培训-动态补偿

无功补偿技术培训-动态补偿
故该补偿器可以补偿的电压升高为
故该补偿器可以补偿的电压下降为
3.3 动态无功功率补偿的原理
★例: 吸收50Mvar容性无功功率时补偿器电压下降0.05pu ,则:
当电源电压下降5%时补偿器所吸收的容性无功功率为: 当电源电压上升5%时补偿器所吸收的感性无功功率为:
3.3 动态无功功率补偿的原理
可见 ,所需容量分别比理想补偿器所需容量减小了一 半 。但是连接点电压也不能像理想补偿那样保持恒定 。 当系统电压下降5%时 ,连接点电压下降2.5%; 而当系 统电压上升1%时 ,连接点电压上升0.5%。
3.2 动态无功功率补偿的主要功能
1 、改善功率因数 可以对动态无功负荷的功率因数进行校正 。不但能把平均功率因数补
偿到所需的值 , 而且使动态功率因数保持在一定的范围内。
2 、改善电压调整 能通过发出和吸收无功功率来提高电压和降低电压 , 防止过电压和欠
电压。
3 、减少电压波动 由于反应迅速 , 所以能补偿快速变化的电压波动 , 减少电压闪烁 ,
工作原理: ※在过励磁运行时 , 向系统供给无功功率而起无功电源作用 , 能提高
系统电压; ※在欠励磁运行时 , 它从系统吸收无功功率而起无功负荷作用 , 可降低系
统电压。
优点 :能根据电压平滑地调节输入或输出的无功功率。
缺点 :有功损耗大 、运行维护复杂 、响应速度慢 , 小容量的调相机每kVA容 量的投资费用比较大 ,近来已逐渐退出电网运行。
的电压— 电流特性 系统无功负载正常时的工作点(A) :
系统无功负载正常时的特性与补
偿器特性都交与纵轴上电压为Uref的
点统。无功需负补载偿增器大提时供:无 功 功 率 。
假设没有补偿器而无功负载增大至 特性l 2 , 则系统工作点变为纵轴与l 2 的 交点B; 采用理想补偿器C点; 实际 补 偿器D点。

SVG动态无功补偿培训资料

SVG动态无功补偿培训资料

九.日常维护
• 经常检查室内温度, 通风情况, 注意室内温度不 应超过40度。
• 保持室内清洁卫生。 • 经常检查RSVG是否有异常响声, 振动及异味。 • 经常检查所有电力电缆、控制电缆有无损伤, 电
力电缆冷压端子是否松动, 高压绝缘热缩管是否 松动。 • 建议RSVG投入运行第一个月内, 将变压器所有进 出线电缆、功率单元进出线电缆紧固一遍, 以后 每半年紧固一遍, 并用吸尘器清楚柜内灰尘。
十.SVG定期保养
十一.事故解决案例
SVG无功补偿培训结束
无功补偿即SVG
• 控制柜屏面说明
• 装置提供了液晶操作面板、控制按 钮和远程后台三种方式对装置进行 操作。液晶操作面板和控制按钮布 置在控制柜上,远程后台一般安放 在离装置有一定距离的远程监控室。 控制柜上的控制按钮任何时候均有 效,液晶面板和远程后台的控制指 令任何时候只有一个有效,通过控 制柜液晶面板的“本地/远程”命令 选择。
• 模块的外部接口只有 2 个电压输出端子 和 4个光纤端子。
启动柜
• 启动柜由启动开关、充电电阻 等几个部分组成。
• SVG 装置的启动方式设计为自 励启动。在主开关合闸后, 系 统电压通过充电电阻对功率单 元的直流电容进行充电, 当充 电电压达到额定值的 80%后, 控制系统闭合启动开关, 将充 电电阻旁路。
• 引起一些保护设备误动作, 如继电保护, 熔断器等。 • 导致电器测量仪表计量不准确。 • 通过电磁感应和传导耦合等方式对邻近电子设备和通信系统产生干扰
, 降低信号的传输质量, 破坏信号的正常传递, 甚至损坏通信设备。 • 大大增加了系统谐振的可能。谐波容易使电网与补偿电容之间发生并
联或串联谐振, 使谐波电流放大几倍甚至数十倍, 造成过电流, 引起 电容器、与之相连的电抗器和电阻器的损坏。

SVG动态无功补偿培训

SVG动态无功补偿培训

连接电抗器
• 装置的输出通过连接 电抗器并联到系统侧。
冷却系统
• 冷却系统分为风冷和水冷两种方式。风冷 系统由散热风机和控制电路组成。
七.装置的控制面板
• 装置的运行状态 • SVG 装置带电时,运行在五种工作状态:待机、充电、运行、跳闸、放电。各状态 • 说明和转换关系如下。 • 1) 待机状态 • 装置上电后立即进入待机状态,然后进行自检。若无任何故障且状态正常,则点亮 • 就绪灯。若在就绪情况下收到用户启机命令,则闭合主断路器。主断路器闭合后即转入 • 充电状态。 • 2) 充电状态 • 表示装置的直流电容正在充电,由于装置为自励启动,主断路器闭合即表示装置已 • 经进入了充电状态。若在主断路器闭合后直流电压充电到超过直流设定值,则自动闭合 • 启动开关以短路充电电阻,启动开关闭合后延时 10s 自动转入并网运行状态。 • 3) 运行状态 • 表示装置处于并网运行的工作状态,可以在各种控制方式下输出电流,达到补偿无 • 功、负序或谐波的效果。若在此过程中出现报警,报警指示灯亮,不影响装置正常运行; • 若在此过程中出现过流、同步丢失等可恢复故障,装置将闭锁,待手动或自动复位消除 • 故障后,装置将重新解锁运行;若在此过程中出现严重故障或收到停机命令,装置将发 • 跳闸命令,并转到跳闸状态。 • 4) 跳闸状态 • 表示装置正在执行跳闸指令。一进入跳闸状态,装置就立刻发跳闸命令。检测到主 • 断路器断开后进入放电状态。 • 5) 放电状态 • 表示装置正在放电。主断路器断开后,直流电容将缓慢下降直至为 0。该状态时持 • 续 10s 后装置自动转入待机状态。注意,功率单元完全放电需要时间,停机后要等待 15 • 分钟后再对功率柜进行操作。
一.什么是无功补偿?
• 电网中的电力负荷如电动机、变压器等, 大部分属于感性负荷,在运行过程中需向 这些设备提供相应的无功功率。在电网中 安装并联电容器等无功补偿设备以后,可 以提供感性负载所消耗的无功功率,减少 了电网电源向感性负荷提供、由线路输送 的无功功率,由于减少了无功功率在电网 中的流动,因此可以降低线路和变压器因 输送无功功率造成的电能损耗,这就是无 功补偿。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态无功功率补偿基础知识一、什么叫无功电源能量与感性负载线圈中磁场能量或容性负载电容中的电场能量之间进行着可逆的能量交换而占有的电网容量叫无功,无功功率 表达式如下:式中无功量 的单位为Var (乏),线电压的单位为V (伏),视在电流I 单位为A (安)。

二、无功及分类1、感性无功:电流矢量滞后电压矢量90度,如:电动机、变压器线圈、晶闸管变流设备等;2、容性无功:电流矢量超前电压矢量90度,如:电容器、电缆输配电线路、电力电子超前控制设备等;3、基波无功:与电源频率相等的无功;4、谐波无功:与电源频率不相等的无功。

三、什么是无功补偿1、无功补偿:指根据电网中的无功类型,人为地补偿容性无功或感性无功来抵消线路中的无功功率。

2、无功功率有那些危害:——无功功率不做功,但占用电网容量和导线截面积,造成线路压降增大,使供配电设备过载,谐波无功使电网受到污染,甚至会引起电网振荡颠覆。

四、什么是动态无功补偿1、动态无功补偿根据电网中动态变化的无功量实时快速地进行补偿。

2、为什么要进行无功功率补偿ϕsin UI Q =QQ——是为了减小供配电线路中往复交换的无功功率,提高供配电线路的利用率。

五、进行就地动补的意义是什么——是能将用电设备至发电厂全程供配电设备、线路、都得到补偿,降损节能效果显著,特别是低压线路及变压器的损耗大幅度降低,企业和用户直接受益。

六、就地动补的有功节能是什么——减小供配电设备线路损耗,变压器损耗等一切无功电流引起的发热功率。

这部分损耗功率Ps可由下式表达:Ps=i2rΣ式中i为视在电流,rΣ为供配电设备线路电阻和。

七、使用就地动补后线路损耗的节能比——补偿后视在电流的平方与补偿前视在电流的平方之比。

即:I22rΣ:I12rΣ式中 I1为补偿前视在电流,I2为补偿后视在电流,rΣ为供配电设备线路电阻之和八、动补与静补的主要区别及优点——静补投切速度慢,不适合负载变化频繁的场合,容易产生欠补或者过补偿,造成电网电压波动,损坏用电设备;并且有触点投切设备寿命短,噪声大,维护量大,影响电容器使用寿命。

——动补可对任何负载情况进行实时快速补偿,并有稳定电网电压功能,提高电网质量,无触点零电流投切技术增加了电容器使用寿命,同时具备治理谐波的功能。

九、什么是谐波1、谐波——指电网中非基波(50Hz中国)的其他频率的电流或电压,如高次谐波,谐波亦属于无功类别。

2、谐波的危害——谐波是供配电系统中的公害,可造成供配电线路,用电设备发热,产生趋肤效应,使电气设备、电动机产生机械振荡。

干扰无线电设备不能正常运行。

电网中谐波量过大,可引起电网振荡,造成电网颠覆的严重事故。

十、高次谐波1、三相六脉波整流电路有哪些高次谐波——三相整流设备含有5、7、11、13等次(6n ±1)的高次谐波,含量为基波的1/5,1/7,1/11,1/13…1/(6n ±1)高次谐波含量为:即2、六相十二脉波整流电路有哪些高次谐波——六相十二脉波整流电路含有:11、13、23、25…(12n ±1)次高次谐波,高次谐波电流含量是:即十一、TFC 系列动补的主要特点1、用于低压电网,靠近负载,采用TFC (晶闸管开关滤波器)动态无功功率补偿技术,晶闸管以10ms 速度直接将滤波器投入电网,实现了低成本、高效益。

2、采用计算机数字化控制技术,对三相对称或非对称供配电线路中的无功功率进行实时、动态跟踪补偿,使功率因数始终保持在以上。

在电网电压高低不同时采用不同的补偿算法以确保不发生欠补偿和过补偿。

过补偿会引起电网电压升高。

3、本技术可以抵销三相非对称负载引起的零序电流和负序电流,补偿后,三相非对称负载和本装置对电网等效于三相对称负载。

4、本装置的微机故障自诊断系统可以对多种故障进行处理,如过电流、过电压、电源缺相和相序错等,容错运行技术的应用,提高了补偿装置在无人值守下的运行可靠性。

5、本装置的投切时间为10ms ,系统动态响应30ms 。

滤波器投入电网和退出电网均在电流过零点,入网电流为正弦,确保二进制编码码投切方式对电网不产生冲击电流,⋅⋅⋅++271251)()(∑⎪⎭⎫⎝⎛±n n 12161⋅⋅⋅++21312111)()(∑⎪⎭⎫ ⎝⎛±n n 121121保证晶闸管安全工作,延长补偿电容器运行寿命。

十二、TFC 系列动补治理谐波的指标1、治理五次谐波量50%以上;2、非标准设计,可以对各次谐波进行治理,达到国家标准。

3、适用场合——适用于如:冶金、化工、船舶,造纸等工矿企业,及居民生活小区,商业区域。

十三、TFC 系列动补补偿量计算公式——补偿前和补偿后负载容量不变的情况下:变压器容量为S ,补偿前功率因数为cos φ1,补偿后功率因数要求提高到cos φ2,那么补偿容量为——补偿前和补偿后满负载容量的情况下:变压器容量为S ,补偿前功率因数为cos φ1,补偿后功率因数要求提高到cos φ2那么补偿容量为十四、计算方法1、无功功率的计算方法式中 为视在功率, 为功率因数角。

2、线路损耗的计算公式 P S =I 2r Σ 式中I 为视在电流 r Σ为供配电设备线路内阻和。

3、变压器的损耗的计算公式 P B = r B I 2式中I 为视在电流, r B 为变压器内阻。

4、谐振频率的计算公式⎪⎪⎭⎫ ⎝⎛---⨯=1cos 11cos 1cos 22121ϕϕϕS Q ()21sin sin ϕϕ-⨯=S Q )sin(cos 1ϕ-⨯=S Q )1(cos ϕ-3LCf π21=5、变压器阻抗的计算公式式中n 为谐波次数,ω0为电网角频率,L B 为变压器漏感,U 2为变压器二次线电压,U K 为变压器阻抗压降比,S 为变压器容量。

6、滤波器阻抗的计算公式式中n 为谐波次数,δ为感性无功于容性无功容量之比,ω0为电网角频率。

十五、计算补偿电容的容量 1、如何计算安装TP-TFC 动补装置后的增容容量2、如何计算安装TP-TFC 动补装置后的节电量 例:某配电的一台1000KVA/400V 的变压器,当前变压器满负荷运行时的功率因数 cos =,现在需要安装TP-TFC 动补装置,要求将功率因数提高到那么补偿装 置的容量值多大在负荷不变的前提下安装TP-TFC ,动补装置后的增容量为多 少若电网传输及负载压降按5%计算,其每小时的节电量为多少解:补偿装置容量= 安装TP-TFC 动补装置前的视在电流=安装TP-TFC 动补装置前的有功电流= 安装TP-TFC 动补装置后视在电流降低=安装TP-TFC 动补装置后的增容量=增容比=每小时的节电量 (度)十六、动态无功功率补偿装置的功能S U nU L n Z k B B 1003220==ωCn n Z 0231ωδ-=var)(3501000)]95.0sin(cos )75.0[sin(cos 11K =⨯---)(144334.01000A =⨯)(108275.01443A =⨯)(30495.0/10821443A =-)(2114.03304KVA =⨯⨯%21%1001000/211=⨯11100013%5400304=⨯⨯⨯⨯1、补偿负载产生的基波无功功率2、抑制和滤除负载产生的谐波无功功率3、稳定电源电压4、解决三相不平衡负载的平衡化问题详解:1、补偿负载产生的基波无功功率①、感应异步交流电动机的功率因数:cos=~②、在中、轻载运行时,cos=~③、在起、制动过程中,cos=~ 例:北京造纸厂打浆机的电动机功率为180KW ,软起动时,电动机的电流达到1500A ,而采用动态无功功率补偿装置后,电动机的起动电流为400A ,并且网压跌落由 ΔU=60V 下降为 Δ U=3V④、变流装置(SCR )的功率因数:cos Φ≈cos α α为整流角⑤、当αmax=300时,功率因数:cos Φ ≈cos α= Q=50% S ⑥、当α=600时,功率因数:cos Φ≈ cos α= Q=87% S ⑦、当起动或低速咬钢时,α≈800,功率因数:cos Φ≈ cos α=;Q=98% S例:在轧钢车间使用变流装置,采用动态无功功率补偿装置()后,在整个轧钢过程中,功率因数始终保持在以上。

2、抑制和滤除负载产生的谐波无功功率①、谐波无功功率主要由非线性负载产生A 、变流装置(SCR )产生谐波无功,理论证明:三相全控桥整流逆变装置,六只晶闸管对称触发时产生6N ±1次谐波,幅值为B 、十二相变流装置产生12N ±1次谐波,幅值为变流器采用多重化技术。

变流器是电力系统的主要谐波源。

采用多重化、多电平控制是减小变流器谐波的有效方法。

众所周知,对三相桥式整流电路理论上所产生161 N的特征谐波次数为N=6K±1,K=1、2、3、……。

存在5、7、11、13……次谐波,若采用12相、24相、36相等多相整流的多重化结构。

将整流变压器二次侧绕阻构成星、角接线,使相位差30°、15°……,可使高次谐波含量大大减小。

C、谐波次数N=PK±1,P为整流相数,K=1、2、3、……。

附:各类多相整流器产生的谐波次数34C、理论证明:三相负载电流Ia、Ib、Ic中如果没有无功电流,并且零序电流为零,负序电流必然为零,即三相电流对称。

那么三相不平衡负载的平衡化问题就转为各相无功电流的补偿问题。

D、无功功率补偿装置具由从变压器输出由功电流小的相抽取一定的由功电流,送到有功电流大的相上去的作用,使变压器输出个各相对负载只输送有功电流,其幅值为原负载总有功电流的三分之一。

E、例如;玻璃行业、晶体制造、三相供电单相使用等都是三相不平衡负载,都可以选取无功功率补偿装置解决平衡化问题。

(举例,成都二零八厂负载严重非对称)十七、动态无功功率补偿的意义1、降低供配电系统的损耗2、提高供配电系统的利用率(增容)3、稳定供配电系统的网压4、动态无功功率补偿可以降低谐波电流对供电系统的破坏作用详解:1、降低供配电系统的损耗——供配电系统的损耗于供配电系统通过的总电流的平方成正比,系统总电流下降到,损耗将下降50%。

例:一台315KVA 的供电变压器,高峰负荷时,电流达到额定值,功率因数cos1=,如果通过无功功率补偿将功率因数提高到cos2=问:A 、改善功率因数以后,电能损耗下降的百分数为多少B 、挖掘除变压器容量潜力S 为多少 C 、变压器及 线路每年减少损失为多少 解:A 、将功率因数cos1提高到cos2,那么最大电流将由 I 1下降到I 2,因为负 荷有功功率不变;损耗于电流平方成正比,故其下降值为: 即I2=I1×B 、因为负荷有功功率不变∴ S1 · cos1 =S2·cos2即S2=S1△S=S1-S2= 315=78(KVA )C 、变压器额定输出时,自身损耗在3%~5%左右,那么变压器每年减少损耗21cos cos ϕϕ%35.43%100212221=⨯-I I I ⨯⎪⎭⎫ ⎝⎛-=⨯⎪⎪⎭⎫ ⎝⎛-93.07.01cos cos 1121S ϕϕ为;365×24×315×4%×%=47848()根据华北电管局统计资料,线损耗一般为5%,那么线路每年减少损耗为:365×24×315×%×%=41867()注:动态无功功率补偿装置的有功节能只是降低了补偿点至发电机之间的供配电的损耗。

相关文档
最新文档