【最新】人教版七年级数学上册4.3.3 余角与补角导学案

合集下载

人教版数学七年级上册4.3.3余角与补角教案

人教版数学七年级上册4.3.3余角与补角教案
2.教学难点
-理解“互补”概念:学生可能难以理解互补的两角和为180°这一性质,需要通过直观的图形演示和实例说明。
-余角和补角的性质推导:推导同角(等角)的余角相等,互补的两角和为180°等性质,需要学生具备一定的逻辑推理能力。
-在复杂图形中识别和应用余角与补角:在实际问题中,学生可能难以在复杂的几何图形中识别出需求解的余角或补角。
还有一个值得注意的问题是,在总结回顾环节,部分学生表示对于某些知识点仍然存在疑问。我意识到,可能是在课堂中没有给予他们足够的提问机会,或者讲解得不够细致。因此,我打算在接下来的课程中,增加课堂互动环节,鼓励学生大胆提问,并及时给予解答。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了余角与补角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对余角与补角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.通过实例和练习,让学生感受余角与补角在实际生活中的应用,提高学生的数学应用能力。
二、核心素养目标
1.培养学生几何直观和空间想象能力,通过余角与补角的学习,让学生能够直观感知几何图形的特征,形成空间想象力。
2.发展学生的逻辑推理能力,通过余角和补角的性质推导和应用,提高学生分析问题和解决问题的逻辑思维能力。
3.重点难点解析:在讲授过程中,我会特别强调余角和补角的概念,以及它们的应用。对于难点部分,如互补性质的推导,我会通过画图和具体例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余角与补角相关的实际问题,如如何利用补角性质求解多边形内角和。

人教版七年级数学上册4.3.3余角与补角教学设计

人教版七年级数学上册4.3.3余角与补角教学设计
2.结合生活实际,找出自家的剪刀、直角三角板等物品,测量并计算其中角度的余角与补角。
"将课堂知识运用到生活中,你会发现数学其实无处不在。请同学们找一找家里的剪刀、直角三角板等物品,测量并计算它们的角度关系,感受余角与补角的实际应用。"
3.小组合作,共同探讨以下问题:在几何图形中,如何利用余角与补角的性质解决角度问题?
(二)过程与方法
1.培养学生的观察能力,让学生在实际情境中发现余角与补角的存在,理解其概念。
2.培养学生的逻辑思维能力,让学生通过分析、归纳、总结余角与补角的性质,形成系统的知识体系。
3.培养学生的动手操作能力,让学生在实际操作中掌握余角与补角的计算方法,提高解决问题的能力。
4.培养学生的团队协作能力,让学生在小组合作中学会倾听、交流、互助,共同完成学习任务。
(二)讲授新知
1.教师详细讲解余角与补角的定义,并通过图示和实际例子加深学生理解。
“余角指的是两个角的和等于180度的两个角,而补角指的是两个角的和等于90度的两个角。请看这个图示,角A和角B就是一对余角,因为它们的和等于180度;角C和角D就是一对补角,因为它们的和等于90度。”
2.引导学生总结余角与补角的性质,如:同角(等角)的余角相等,同角(等角)的补角相等。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生的学习积极性。
2.培养学生勇于探究、积极思考的学习态度,让学生在解决问题的过程中体验成功的喜悦。
3.培养学生的空间观念,让学生认识到几何图形在实际生活中的应用,提高学生的应用意识。
4.培养学生遵守数学规则,严谨、踏实的科学态度,为学生今后的学习打下坚实基础。
“同学们,你们发现没有,如果一个图形中有两个角是余角或补角,它们之间有一些什么共同的特点呢?”

数学人教版七年级上册4.3.3余角和补角教案

数学人教版七年级上册4.3.3余角和补角教案
进一步巩固新知,应用新知,拓展新知,培养学生应用数学能力和意识.
培养学生总结和概括的习惯和能力.
反思
师:让学生先自主完成,后交流完成情况,并展示结果.
生:组内交流,展示本组完成情况
师:鼓励学生说出自己的收获和困惑.
生:积极参与总结和概括.
生:自主完成
师:出示标准答案
生:核对答案,给自己作出评价
师:给小组全作对的学生加分
生:提出疑惑,其他师解答,或师解答
师:鼓励学生说出自己的收获和困惑。
生:积极参与总结和概括
开鲁三中教案
学科
数学
课题
4.3.3余角和补角
主备人
魏宝光
七年级数学组
授课
班级
七年级
教学
目标
1、知识与技能:在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
2、过程与方法:进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观:
师赠言:愿同学们能像互为余角互为补角一样,团结、互助、共同进步。赢得自己理想的成绩,共同打造班级体的新辉煌!
激发学生的学习兴趣。
明确本节课的学习任务
培养学生的自主学习能力,主动学习的意识,合作交流的意识,勇于质疑的精神.
培养学生独立思考的能力,合作探究的意识和分析问题,解决问题的能力,体验在交流中互相进步的快乐境自主学











今天我为大家隆重的介绍两组搭档,他们在数学中很有名气,他们团结、互助、在他们共同的努力下,解决了许多的数学问题,赢得了他们在角这个家族中很重要的地位。他们的名字就是,互为余角,和互为补角。我们想不想认识他们,了解他们?

人教版数学七年级上册4.3.3:余角、补角的概念和性质(教案)

人教版数学七年级上册4.3.3:余角、补角的概念和性质(教案)
-难点在于将理论知识应用到解决具体问题时,如何识别问题中的余角和补角关系。
-难点在于在实际问题中灵活运用余角和补角的性质,进行角度的转换和计算。
举例:对于性质的掌握,可以通过以下步骤进行教学:
a.引导学生观察图形,直观感受余角和补角的关系。
b.通过具体例题,如“如果一个角的度数是40°,那么它的余角和补角分别是多少度?”,让学生尝试自己推导出答案。
另外,在学生小组讨论环节,虽然大部分学生能够积极参与,但仍有个别学生显得比较被动。为了提高这部分学生的参与度,我打算在接下来的课程中,多设计一些互动性强的活动,鼓励他们大胆发表自己的观点。
b.提供实际操作的机会,如让学生用量角器在纸上画出特定角度,并找出其补角或余角。
c.引导学生进行小组讨论,分享解题策略,以促进学生之间的相互学习和启发。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《余角、补角的概念和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要补全角度的情况?”比如,当我们用直角尺测量一个角度时,如何快速找出另一个角度的度数。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索余角和补角的奥秘。
其次,在新课讲授环节,我发现学生在案例分析部分表现得比较积极,能够跟着我的思路走。但在重点难点解析时,尤其是从角度和推导出补角或余角的度数这一部分,学生们的掌握程度不够理想。我意识到,对于这个难点的讲解,我可能需要再细化一些,用更简单易懂的语言和示例来进行解释。
在实践活动和小组讨论环节,学生们表现出了很高的热情。通过分组讨论和实验操作,他们能够将所学的理论知识应用到实际问题中。但在讨论过程中,我也发现有些小组在问题的深入挖掘上还不够,可能需要我在今后的教学中多给予一些引导和启发。

初一余角与补角教学设计

初一余角与补角教学设计

的补角是
(180 °—∠
a)
2) 互余和互
补是两个角的
数量关系,与
它们的位置无
2、如图∠AOC=∠COB=90°,
∠DOE=90°,A、O、B 三点在
关。
一直线上
(1)写出∠COE 的余角,∠AOE
的补角
(2)写出图中相等的角
学生黑板演算, 小组长面批面 改。 (同学回答)
课后分层作业
不同层次的 学生获得不 同的发展
初一学生学习缺乏主动性,独立思维能力较差,动手操 作能力相对稍强,能在教师引导下低起点、小步距进行探究。 整体逻辑思维能力正在从经验型逐步向理论型发展,初步具 备了观察、思维以及想象的学习能力,爱发表见解,在教学
教学模式与教学策略
教学环境及资源(媒体)准备
(说明:提供为完成教学过程所需 要的资源和工具,如:用于本教学 的专题网站、参考资料、软件或引 用链接的网页地址等)
四、学习感悟 这节课学会了 我的疑惑
教学流程图
教学评价设计
结合教材知识内容和教学目标,本课的教学环节及时间 分配如下: 引入概念(3 分钟)——概念学习(10 分钟)——探究活动 一(15 分钟)——探究活动二(7 分钟)——应用拓展(8 分 钟)——总结提升(2 分钟)
过程性评价 终结性评价
教学过程中始终坚持教师的主导作用和学生的主体地位相 统一的原则,通过问题启发引导学生思考、归纳,实践操作, 自主探究;学生思考、归纳,实践操作,自主探究,小组互助 协作学习,体验数学知识的发生、发展过程,敢于面对数学活 动中的困难,建立学好数学的自信心。
教学前期分析
教材分析
课程标准、教学目标及教学重 难点
学习者 特征分析
1、教材的地位和作用 余角和补角是人教版七年级上册“图形知识初步”这一章中 非常重要的基本概念。前面学生学习了角的度量和大小的比 较,已经为学习余角和补角打下了一定的基础,通过探索余 角和补角性质的学习,为今后证明角的相等提供了一种依据 和方法。 2、教材内容 教材中本节内容是通过一副三角尺引入余角和补角的概念, 然后通过例题得到的结论推出余角和补角的性质,最终使学 生能综合运用上述性质来解决问题 1、课程标准:新人教版七年级数学上 137 页 2、教学目标: 知识与技能目标:在具体情境中了解余角与补角,懂得等角 的余角相等,等角的补角相等,并能灵活运用这些性质; 过程与方法目标:经历观察、推理、交流等活动,发展学生 的空间观念,培养学生的推理能力和有条理的表达能力; 情感态度价值观:体验数学知识的发生、发展过程,敢于面 对数学活动中的困难,建立学好数学的自信心。 3、教学重点:认识角的互余、互补关系及其性质 4、教学难点:通过简单的推理,归纳出余角、补角的性质, 并能用规范的语言描述性质

-人教版数学七年级上册 4.3.3 余角和补角 教案

-人教版数学七年级上册 4.3.3 余角和补角 教案

《余角与补角》教学设计一、学与教的基本面分析1.教材分析本节内容是人教版教材《数学七年级(上)》第四章《图形的认识》的第三节,主要内容是理解余角、补角的定义及性质.本节课是学生在学习了“角、直角、平角的定义”、“角的大小比较”等内容的基础上,对角与角之间关系的进一步深入和拓展,它为以后证明角相等提供了一种重要依据.因此本节课起着承上启下的作用.同时本节课中从“数量”关系定义余角、补角,使学生对定义认识的深度、广度得以拓展.2.学情分析学生已经学习了直角、平角,比较角的大小等有关基础知识,并能用这些知识解决简单问题.七年级学生具有初步的观察、分析、概括能力,有着一定的学习经验及活动经验,形成了较好的参与意识和合作意识.并能在教师引导下低起点、小步距进行探究.我班学生基础知识较扎实、思维较活跃,能较好地应用所学知识解决问题,但逻辑推理能力和用数学语言进行正确表达的能力还有待进一步提高.二、学与教的目标定位1.教学目标依据教材的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:①通过在生活情境中从数学角度发现问题、提出问题,让学生理解余角、补角、对顶角的概念.②通过学生经历探究活动中的动手操作,合作交流,使学生掌握同角(等角)的余角相等,同角(等角)的补角相等.③通过对余角、补角性质的探究,渗透从“特殊”到“一般”、类比的数学思想方法;会对文字、图形、符号三种语言进行相互转化.④通过关于比萨斜塔的新闻轶事引入,让学生感受数学来源于生活,生活中处处有数学,体会学习数学的价值.三、学与教的重点与难点重点:余角、补角的定义及性质难点:余角、补角性质的合情推理和数学语言的规范表达四、学与教的方法1、学法:独立思考、小组讨论、合作探究。

2、教法:直接问答、引导讲授、设问引导。

教学过程:一、引入概念首先播放一段有关著名的比萨斜塔近况的新闻视频,提出问题:从视频得知,“塔身的倾斜度由原来的5.5︒变成现在的3.99︒”,你知道其中的5.5︒和3.99︒是怎么测量的吗?注意这里的测角仪不能直接伸入塔身.(学生相互讨论,提出初步测量方案)(根据学生回答,进一步追问.)问题一:如果我们使用测角仪测量出了1∠呢?∠的大小,能否得出塔身的倾斜度2为什么?问题二:如果想得到塔身与地面所成角中最大的角3∠的度数,能行吗?为什么?二、形成概念师:在刚才的问题解决过程中,我们用到了两个角的和分别是90︒,180︒,于是定义:如果两个角的和等于90°(直角),就说这两个角互为余角.如果两个角的和等于180°(平角),就说这两个角互为补角.三、辨析概念师:请一名同学为大家朗读定义,并重读关键词.(辨析概念中的两个关键词“两个角”、“互为”)动手操作:请同学们用手中的剪刀和纸质的三角板,通过“剪——移——拼”的过程,探究直角三角形两锐角之间的关系.(通过学生动手操作,内化余角的定义,感知余角定义的实质,为学生类比理解补角定义打下基础.)对余角定义的辨析:①“两个角”,“互为”;②是从“数量”关系进行定义;③︒↔-︒.(90)x x(学生类比完成对补角定义的辨析)四、应用概念小试身手:下列各角哪些互为余角,哪些互为补角?①②③④⑤⑥⑦⑧五、探究活动一以同桌为一组,将手中的三角板△AOB,△COD的直角顶点O重合在一起.①观察猜想:如图放置,度量1∠,你发现了什么?∠与2②操作验证:请甲同学旋转△COD,乙同学观察1∠的大小变化,①中的结论还∠与2成立吗?③推理论证:请用所学知识论证你的发现.证明:1390∠+∠=︒2390∠+∠=︒19032∴∠=︒-∠=∠12∴∠=∠(等量代换)(请一名学生板书证明过程,教师批注.)师:你能用一句话归纳刚才的发现吗?余角的性质同角(或等角)的余角相等.小试身手:1.已知△ABC 中, 90ACB ∠=︒,CD AB ⊥,试找出下图中相等的锐角,并说明依据.合情推理:A ∠与1∠为同一个角2∠的余角,据余角的性质得1A ∠=∠;B ∠与2∠为同一个角1∠的余角,据余角的性质得2B ∠=∠;(教师协助、点评“小老师”的讲解)2. 已知,,DA AB CB AB ⊥⊥点O 是线段AB 上一点,DO CO ⊥,试找出图中相等的锐角,并说明依据.合情推理:12180DOC ∠+∠+∠=︒1∴∠与2∠互余,又2∠与C ∠1C ∴∠=∠(同角的余角相等)同理1∠与D ∠2D ∴∠=∠(同角的余角相等)问:刚才的寻找等角过程中,我们用到了哪些知识?通过类比,我们得到补角的性质:同角(或等角)的补角相等.七、应用拓展例1 若一个角的补角等于它的余角的4倍,求这个角的度数.解: 设这个角是x °,则它的补角是( 180-x )°,余角是(90-x )°根据题意得:(180-x )= 4 (90-x )解得: x =60答:这个角的度数是60°.例2 如图,直线AB 与CD 相交于点O , E 是AOD ∠内一点,已知OE AB ⊥,45∠=︒,则COE∠=135︒.BOD思路:∠的余角.∠是DOB∠是EODCOE∠的补角,EOD变式如图,已知直线AB、CD相交与点O,OA平分EOC∠,⊥,则FOD∠内一点,且OF AB∠=55︒.70EOC∠=︒,点F是EOD(“小老师”讲解,教师点评,并归纳)【习得】求一个角可以通过转化为求其余角、补角来完成.八、总结提升1.我学到了哪些知识?✓余角、补角的定义及性质;✓它们定义的方式分别从“数量”与“位置”关系进行;✓求解一个角常常转化成它的余角、补角来达成.2.今后我可以采取怎样的方法学习几何概念?形成概念——辨析概念——应用概念3.本节课渗透了哪些数学思想方法?从“特殊”到“一般”、类比、化归4. 作业布置:《名校课堂》相应部分(分层:A,B组)(A层全班同学完成,B层是部分同学完成)5.挑战自我:请任意作出一个三角形,在其中添加一条线段构造出互余、互补的角,并写出它们.板书设计:六、【课后反思】根据教学经历和学生反馈,本堂课教学设计操作性强,效果良好.课堂中学生通过概念辨析教学,对余角、补角的概念理解较深入,能辨别三个角和为180°与补角概念之间的区别.通过探究活动得出性质让学生对性质的掌握更为牢固,而范例及变式的训练使学生对化归的数学思想方法理解更为深入,逐步形成多种方法解决问题的习惯,并能规范解题.综合以上情况,我对本课的教学设计有如下反思:(1)突出学生动手操作,合作探究根据新课程课堂教学活动的基本理念:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能,数学思想和方法,获得广泛的数学活动经验”,因此,我在本课教学设计中突出了学生的动手操作,自主探索,鼓励学生积极参与互动交流,教学设计中对余角定义的辨析、余角性质的探索.每个活动的展开是通过一个个问题串的设置实现的,整堂课创造了一个适合学生探索的环境,通过不同的途径引导其自主探索,形成了较好的数学学习经验.(2)注重数学思想的渗透本课的设计注重渗透了从“特殊”到“一般”、类比和化归的数学思想与方法.课堂中,余角性质与补角性质之间的关系,探究余角性质由有限的度量过渡到任意时刻结论是否成立,拓展应用中角之间的转化都充分体现了这些数学思想方法的渗透.(3)遵循概念学习规律本课的设计特别强调学生对概念的学习规律,遵循“引入概念——形成概念——辨析概念——应用概念”的认知过程,利用视频中蕴藏的数学知识引入概念,形成初步感知,通过学生朗读概念、动手操作内化概念,小试身手应用概念等环节达成对概念的深入理解.(4)注重学生体验,培养良好习惯本课注重学生知识的自我建构,在探究过程中使学生经历“观察猜想——操作验证——推理论证”的数学体验过程,形成良好的学习习惯.(5)目标达成在本节课的教学中,为了达成教学目标,我注意了教学环节的设计与教学目标的达成相呼应,做到目标确定环节,在环节中实现目标。

人教版七年级上数学:4.3.3《余角和补角(1)》学案

数学:4.3.3《余角和补角(1)》学案(人教版七年级上)【学习目标】在具体的现实情境中,认识一个角的余角和补角; 【重点难点】正确求出一个角的余角和补角。

【导学指导】 一、知识链接 思考:(1) 在一副三角板中同一块三角板的两个锐角和等于多少度? (2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。

(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。

二、自主探究1.互为余角的定义: 思考:(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=2.互为补角的定义:2图 190°12图 212A O B图 412图 3 CODOEDCBA问题1:以上定义中的“互为”是什么意思?问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗? 3.新知应用:例1:若一个角的补角等于它的余角4倍,求这个角的度数。

例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上 (1)写出∠COE 的余角,∠AOE 的补角; (2)找出图中一对相等的角,并说明理由;【课堂练习】:课本141页练习1、2、3;【要点归纳】:【拓展训练】:1、一个角的余角比它的补角的31还少︒20,求这个角的度数。

2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。

【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C,D 是线段 AB 上两点,若 CB=4cm,DB=7cm,且 D 是 AC 的中点,则 AB 的长等于()A.6cmB.7cmC.10cmD.11cm2.已知∠α=35°,那么∠α的余角等于( )A.145° B.35° C.65° D.55°3.如图,直线AB和CD交于点O,OA平分∠EOC,若∠EOC=70°,则∠BOD的度数为()A.70°B.35°C.30°D.110°4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为( )A.3×10x=2×16(34﹣x) B.3×16x=2×10(34﹣x)C.2×16x=3×10(34﹣x) D.2×10x=3×16(34﹣x)5.某种商品进价为a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为()A.a元B.0.8a元C.0.92a元D.1.04a元6.有理数m,n在数轴上的位置如图所示,则化简│n│-│m-n│的结果是()A.mB.2n-mC.-mD.m-2n7.为了参加全校文艺演出,某年级组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队的人数的3倍.设从舞蹈队中抽调了x人参加合唱队,可得正确的方程是()A.3(46-x)=30+xB.46+x=3(30-x)C.46-3x=30+xD.46-x=3(30-x)8.解方程1﹣362x x-=,去分母,得()A.1﹣x﹣3=3xB.6﹣x﹣3=3xC.6﹣x+3=3xD.1﹣x+3=3x9.计算(﹣8)﹣(﹣5)的结果等于()A.-3 B.-13 C.-40 D.310.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为()A.895710⨯B.995.710⨯C.109.5710⨯D.100.95710⨯11.下列运算正确的是( ).A .-(-3)2=-9 B .-|-3|=3 C .(-2)3=-6 D .(-2)3=812.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,取A 2C 、B 2C 的中点A 3、B 3,依次取下去…利用这一图形,能直观地计算出233333++++4444n =( )A .1B .144n n -C .11-4nD .414n n+ 二、填空题13.如图,直线SN 与直线WE 相交于点O ,射线ON 表示正北方向,射线OE 表示正东方向,已知射线OB 的方向是南偏东60,射线OC 在NOE ∠内,且NOC ∠与BOS ∠互余,射线OA 平分BON ∠,图中与COA ∠互余的角是______.14.如图,已知∠A 1OA 11是一个平角,且∠A 3OA 2-∠A 2OA 1=∠A 4OA 3-∠A 3OA 2=∠A 5OA 4-∠A 4OA 3=……=∠A 11OA 10-∠A 10OA 9=3°,则 ∠A 11OA 10的度数为______.15.定义一种新运算:1123a b a b *=-,则方程:(1)(23)1x x +*-=的解是______. 16.设[)x 表示大于x 的最小整数,如[)34=,[)1.21-=-,则下列结论中正确的是_________。

最新人教版初中七年级数学上册《4.3.3 余角和补角》精品教学课件

4 3
如果两个角的和等于180°(平角),就说这两个角 互为补角 ( 简称为两个角互补 ).
如图,可以说∠3 是∠4 的补角,或∠4是∠3 的补角, 或∠3 和∠4 互补.
探究新知 图中给出的各角,哪些互为补角?
10o
30o60o8来自o100o120o
150o
170o
探究新知
素养考点 1 利用余角、补角的概念求角的度数
1
2
3
= ∠2=180°–∠1
∠3=180°–∠1
结论:同角 (等角) 的补角相等.
类似地,可以得到:同角 (等角) 的余角相等.
探究新知
素养考点 余角和补角的识别
例 如图,点A,O,B在同一直线上,射线 D OD 和射线 OE 分别平分∠AOC 和∠BOC,
C E
图中哪些角互为余角?
解:因为点A,O,B在同一直线上, 所以∠AOC和∠BOC 互为补角.
DO
A
探究新知
解:设∠AOB=x, 因为∠AOC与∠AOB互补,
M C
B
N
则∠AOC=180°–x.
DO
A
因为OM,ON分别为∠AOC,∠AOB的平分线,
所以∠AOM= 1 (180o - x), ∠AON= 1 x .
2
所以 1 (180o - x) - 1 x = 40o ,
2
2
2
解得x=50°,则180°–x =130°.
C.北偏西30° D.北偏西50°
解析:如图,因为∠2=∠1=50°. ∠3=∠4 –∠2=80°–50°=30°, 此时的航行方向为北偏东30°.
课堂检测
基础巩固题
1.一个角的余角是它的2倍,这个角的度数是( A ) A.30° B.45° C.60° D.75° 2.下列说法正确的是( D ) A.一个角的补角一定大于它本身 B.一个角的余角一定小于它本身 C.一个钝角减去一个锐角的差一定是一个锐角 D.一个角的余角一定小于其补角

人教版七年级数学上册:4.3.3余角和补角教学设计

针对以上学情分析,教师应采取有针对性的教学策略,如利用生活实例引入余角和补角的概念,激发学生兴趣;设计不同难度的问题,引导学生运用所学知识解决问题,提高学生的空间想象和逻辑思维能力;加强小组合作交流,培养学生的沟通能力和团队意识。通过因材施教,使学生在轻松愉快的氛围中掌握余角和补角的知识。
三、教学重难点和教学设想
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,培养良好的学习习惯和自主学习能力。
2.培养学生团队合作意识,让学生在合作交流中学会倾听、尊重他人意见,提高沟通能力。
3.通过解决实际问题,让学生体会数学在生活中的广泛应用,增强数学与现实生活的联系,提高数学素养。
4.培养学生勇于探索、积极思考的精神,树立正确的价值观,认识到数学学习的价值。
在课堂教学中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重培养学生的数学思维能力,提高学生的综合素质,为学生的全面发展奠定基础。
二、学情分析
针对人教版七年级数学上册4.3.3余角和补角这一章节,学生已经掌握了角的分类、角的度量等基本知识,具备了一定的角的概念和性质基础。但在理解余角和补角的抽象概念及运用方面,可能存在一定的困难。因此,在教学过程中,教师需关注以下几点:
作业要求:
1.字迹工整,卷面整洁。
2.认真思考,独立完成。
3.提交作业时,需附上作业反思和计划。
1.教师出示一块三角板,提问:“同学们,你们知道三角板上的角有什么特点吗?”
2.学生观察后回答:“三角板上有两个锐角和一个直角。”
3.教师进一步提问:“那么,如果我们把三角板上的直角去掉,剩下的两个锐角有什么关系呢?”
4.学生通过观察和思考,发现剩下的两个锐角的和等于90度,从而引出余角的概念。

人教版七年级上数学:4.3.3余角和补角(2)学案

2143西北西南东南东北北西南东数学:4.3.3《余角和补角(2)》学案(人教版七年级上)【学习目标】:1、掌握余角和补角的性质。

2、了解方位角,能确定具体物体的方位。

【重点难点】掌握余角和补角的性质;方位角的应用; 【导学指导】 一、知识链接1.70°的余角是 ,补角是 ;2.∠α(∠α <90°)的它的余角是 ,它的补角是 ; 二、自主学习 1.探究补角的性质:例3、如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么?分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800- ,∠3与∠4互补,∠4等于什么? ∠4=1800 - 。

(2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?∠2=∠4(等量减等量,差相等)上面的结论,用文字怎么叙述?补角的性质:等角的 相等。

2.探究余角的性质:如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?余角性质:等角的 相等 3.方位角:(1)认识方位:正东、正南、正西、正北、东南、 西南、西北、东北。

(2)找方位角:乙地对甲地的方位角 ; 甲地对乙地的方位角1 2 3 4南北西例4:如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线。

(师生共同完成)【课堂练习】:1、α∠和β∠都是AOB ∠的补角,则α∠ β∠;2、如果9031,9021=∠+∠︒=∠+∠,则32∠∠与的关系是 , 理由是 ;3、A 看B 的方向是北偏东21°,那么B 看A 的方向( )A 南偏东69°B 南偏西69°C 南偏东21°D 南偏西21°4、在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( ) A 100° B 70° C 180° D 140° 【要点归纳】:补角的性质:余角的性质:【拓展训练】:1. 如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,两轮船同时从O 点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A ,B 点,则此时两轮船行进路线的夹角∠AOB 的度数是( )A.165°B.155°C.115°D.105°2.锐角4720'的余角是( ) A.4240'B.4280'C.5240'D.13240'3.在海上,灯塔位于一艘船的北偏东40方向,那么这艘船位于这个灯塔的( ) A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°4.下列方程的变形中,正确的是( ) A .由3+x =5,得x =5+3B .由3x ﹣(1+x )=0,得3x ﹣1﹣x =0C .由102y =,得y =2 D .由7x =﹣4,得74x =-5.一个两位数的个位数字是x ,十位数字是y ,这个两位数可表示为( ) A.xyB.C.D.6.如果代数式4y 2-2y +5的值是7,那么代数式2y 2-y +1的值等于( ) A .2 B .3 C .-2 D .4 7.若代数式2x a y 3z c与4212b x y z -是同类项,则( ) A.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2D.a=4,b=3,c=48.下列代数式中:1x ,2x y +,213a b ,x y π-,54y x,0,整式有( ) 个 A.3个B.4个C.5个D.6个9.若一个代数式与代数式2ab 2+3ab 的和为ab 2+4ab-2,那么,这个代数式是( ) A .3ab 2+7ab-2 B .-ab 2+ab-2 C .ab 2-ab+2 D .ab 2+ab-2 10.和数轴上的点一一对应的是( ) A .整数 B .实数 C .有理数 D .无理数11.实数1 ,1- ,0 ,12- 四个数中,最大的数是( ) A.0B.1C.1-D.12-12.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作 A .7℃ B .-7℃ C .2℃ D .-12℃ 二、填空题13.若一个角是34︒,则这个角的余角是_______︒.14.如图,点P 是∠AOB 内任意一点,且∠AOB=40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为_____.15.有甲、乙两桶油,从甲桶到出14到乙桶后,乙桶比甲桶还少6升,乙桶原有油30升,设甲有油x 升,可列方程为_____.16.去括号合并:(3)3(3)a b a b --+=_________.17.计算:()()35---=______;()225323a a b b ---=______.18.若a,b 是整数,且ab =12,|a|<|b|,则a+b=________ .19.一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是____. 20.比较大小:-3__________0.(填“< ”“=”“ > ”) 三、解答题21.如图,点O 在直线AB 上,OM 平分∠AOC ,ON 平分∠BOC ,如果∠1:∠2=1:2,求∠1的度数.22.如图,在四边形ABCD 中, //AD BC ,B D ∠=∠延长BA 至点E ,连接CE ,且CE 交AD 于点F ,EAD ∠和ECD ∠的角平分线相交于点P .(1)求证:①//AB CD ;②2EAD ECD APC ∠+∠=∠; (2)若70B ∠=︒,60E ∠=︒,求APC ∠的度数;(3)若APC m ∠=︒,EFD n ∠=︒请你探究m 和n 之间的数量关系. 23.解方程(1)3x-7(x-1)=3-2(x+3) (2)12x -=413x --1 24.为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?25.先化简,再求值:已知|2a +1|+(4b -2)2=0,求3ab 2-[2221522a b ab ab ⎛⎫+-+ ⎪⎝⎭]+6a 2b 的值. 26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12.27.现从小欣作业中摘抄了下面一道题的解题过程:计算:24÷(13-18-16); 解:24÷(13-18-16)=24÷13-24÷18-24÷16=72-192-144 =-264;观察以上解答过程,请问是否正确?若不正确,请写出正确的解答.28.某粮库3天内粮食进出库的吨数如下:(“+”表示进库,“-”表示出库)(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库里还存有480吨粮食,那么3天前库里存粮多少吨? (3)如果进出的装卸费都是每吨5元,那么这3天要付多少元装卸费?【参考答案】*** 一、选择题 1.B 2.A 3.B 4.B 5.C 6.A7.C 8.B 9.A 10.B 11.B 12.B 二、填空题 13.56 14.100°15.(1﹣ SKIPIF 1 < 0 )x ﹣(30+ SKIPIF 1 < 0 x )=6 解析:(1﹣14)x ﹣(30+14x )=6 16.-10 SKIPIF 1 < 0 解析:-10b17.SKIPIF 1 < 0 解析:223a b + 18.7,8,13 19.39 20.< 三、解答题 21.30°22.(1)①见解析,②见解析;(2)65°;(3)12m n =,见解析. 23.(1)x=5;(2)x=1. 24.4425.a 2b +1;98.26.4xy ,-4.27.错误,正确的解法见解析.28.(1)库里的粮食减少了;(2)3天前库里存粮食是525吨;(3)3天要付装卸费825元.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图是某几何体的表面展开图,则该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱2.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于()A.90°B.80°C.70°D.60°3.∠A 的余角与∠A 的补角互为补角,那么 2∠A 是()A.直角B.锐角C.钝角D.以上三种都有可能4.若关于x的一元一次方程1﹣46x a+=54x a+的解是x=2,则a的值是()A.2B.﹣2C.1D.﹣15.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场6.某车间有22名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母20个或螺栓12个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.20x=12(22-x)B.12x=20(22-x)C.2×12x=20(22-x)D.20x=2×12(22-x)7.下列计算正确的是()A.3a+2a=5a2B.3a-a=3 C.2a3+3a2=5a5D.-a2b+2a2b=a2b8.下列算式中,计算结果为a3b3的是()A.ab+ab+ab B.3ab C.ab•ab•ab D.a•b39.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是()A .96B .86C .68D .5210.如果|a ﹣1|+(b+2)2=0,则a ﹣b 的值是( ) A .-1 B .1 C .-3 D .311.计算(﹣8)﹣(﹣5)的结果等于( ) A .-3 B .-13 C .-40 D .312.在下面的四个有理数中,最小的是( ) A .﹣1 B .0 C .1 D .﹣2 二、填空题13.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE//BC ,分别交AB,AC 于点D,E,若AB=4,AC=3,则△ADE 的周长是_______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级数学上册4.3.3 余角与补角导学案
学习目标:1.在具体情境中了解余角、补角的概念.
2.了解等角的余角与补角的性质,能运用这个性质解决简单的实际问题.3.学习进行简单的
推理,学习有条理的表达.
学习重点:等角的余角与补角的性质.
学习难点:推导“等角的余角与补角的性质”的过程.
使用要求:1.阅读课本P141—P142;
2.完成教材P141练习第1、2、3题;
3.限时20分钟完成本导学案(合作或独立完成均可);
4.课前在小组内交流展示.

一、自主学习:
1.① 如果∠1=35°,∠2=55°,那么∠1+∠2=_______.
如果∠A=42°,那么当∠B=_______时,∠A+∠B=90°.
② 三角尺中,有一个角是直角(90°),那么另两个角的和是________度.
③ 度量P141图4.3-13的两个角,∠3=__,∠4=__,计算:∠3+∠4=
一般地,如果两个角的和等于90°(直角),我们就说这两个角互为余角,称其中的一个角是另一
个角的余角.
2.(1)在上面的这些角中,哪两个角是互为余角的?
(2)已知∠A=72°,那么∠A的余角是______度.
(3)已知∠A的余角是∠A的两倍,你能求出∠A的度数吗?说说你的想法.

3.度量P141图4.3-14的两个角,∠1=_,∠2=__,计算:∠1+∠2=_____.
一般地,如果两个角的和等于180°(平角),我们就说这两个角互为补角,称其中一个角是另一个
角的补角.
(1)上面的∠1与∠2互为补角吗?
(2)试举出两个互为补角的例子.

(3)① 已知∠A=72°,则∠A的补角=______度.
② 如果∠=62°23′,则∠的余角=______,则∠的补角=______.
③ 已知∠A的补角是∠A的两倍,你还能求出∠A的度数吗?
① 已知一个角的补角是这个角的余角的3倍,求这个角的度数.
二、当堂检测:P141练习第1、2、3题.

三、合作探究:
1.如果∠1与∠2互余,∠1与∠3互余,那么∠2与∠3相等吗?为什么?

2.如果∠1与∠2互补,∠1与∠3互补,那么∠2与∠3相等吗?为什么?
3.如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2与∠4相等吗?

4.如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,那么∠2与∠4相等吗?
5.余角的性质:
补角的性质:
四、学习小结:

相关文档
最新文档