《433余角和补角》导学
人教版七年级上册433余角和补角教案

4.3.3余角和补角【出示目标】1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等;同角或等角的补角相等.3.理解方位角的概念,会用角描述方向,解决实际问题.【预习导学】自学指导看书学习第137、138页的内容,知道什么是补角和余角,以及它们的性质.知识探究1.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中每一个角都是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角.3.性质:等角的余角相等,等角的补角相等.【自学反馈】1.判断题:(1)90度的角叫余角,180度的角叫补角.(×)(2)若∠1+∠2+∠3=90°则∠1,∠2,∠3互为余角.(×)(3)如果一个角有补角,那么这个角一定是钝角.(×)(4)互补的两个角不可能相等.(×)(5)钝角没有余角,但一定有补角.(√)(6)互余的两个角一定都是锐角,两个锐角一定互余.(×)(7)如果∠A=25°,∠B=75°,那么∠A与∠B互为余角.(×)(8)如果∠A=x°,∠B=(90-x)°,那么∠A与∠B互余.(√)2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:45°.【出示目标】活动1:小组讨论1.如图,点A、O、B在同一直线上,OD平分∠AOB,∠COE =90°.回答下列问题:(1)写出图中所有的直角∠AOD,∠BOD,∠EOC;(2)写出图中与∠AOE相等的角∠3;(3)写出图中∠AOE所有的余角∠2,∠4;(4)写出图中∠COD的补角∠EOB;(5)写出图中∠DOE的补角∠AOC.2.如图,点O在直线AB上,OD平分∠COA,OE平分∠COB.①∠COB+∠AOC=180°,∠EOD=90°.②图中互余的角有 4 对,互补的角有 5 对.活动2:活学活用1.请认真观察下图,回答下列问题:(1)图中有几对互余的角?(2)图中哪几对角是相等的角(直角除外)?为什么?解:(1)6;(2)∠C=∠B,∠COD=∠BOE=∠A.2.用方位角描述下列方向.【课堂小结】1.余角、补角的概念:(1)和为90°的两个角互为余角;(2)和为180°的两个角互为补角.2.余角、补角的性质:(1)等角的余角相等;(2)等角的补角相等.【随堂训练】教学至此,敬请使用学案随堂训练部分.。
《余角和补角》 导学案

《余角和补角》导学案一、学习目标1、理解余角和补角的概念。
2、掌握余角和补角的性质,并能运用其解决简单的几何问题。
3、培养观察、分析和推理能力,体会数学在实际生活中的应用。
二、学习重点1、余角和补角的概念。
2、余角和补角的性质。
三、学习难点余角和补角性质的应用。
四、知识回顾1、角的度量单位:度、分、秒。
2、直角的度数为 90°。
五、新课导入在生活中,我们常常会遇到一些与角的数量关系有关的问题。
比如,在一幅三角板中,有两个角的度数之和等于 90°,而在一些图形中,两个角的度数之和等于180°。
那么,这些角之间有着怎样的特殊关系呢?今天我们就来学习余角和补角。
六、余角的概念如果两个角的和等于 90°(直角),就说这两个角互为余角,简称互余。
其中一个角是另一个角的余角。
例如,若∠1 +∠2 = 90°,则∠1 与∠2 互为余角,∠1 是∠2 的余角,∠2 也是∠1 的余角。
练习 1:已知∠A = 20°,则∠A 的余角为多少度?解:因为互为余角的两个角的和为 90°,所以∠A 的余角= 90° 20°= 70°七、补角的概念如果两个角的和等于 180°(平角),就说这两个角互为补角,简称互补。
其中一个角是另一个角的补角。
例如,若∠3 +∠4 = 180°,则∠3 与∠4 互为补角,∠3 是∠4 的补角,∠4 也是∠3 的补角。
练习 2:已知∠B = 110°,则∠B 的补角为多少度?解:因为互为补角的两个角的和为 180°,所以∠B 的补角= 180°110°= 70°八、余角和补角的性质1、同角(或等角)的余角相等。
2、同角(或等角)的补角相等。
证明性质 1:已知∠1 +∠2 = 90°,∠1 +∠3 = 90°则∠2 = 90°∠1,∠3 = 90°∠1所以∠2 =∠3证明性质 2:已知∠4 +∠5 = 180°,∠4 +∠6 = 180°则∠5 = 180°∠4,∠6 = 180°∠4所以∠5 =∠6练习 3:已知∠7 与∠8 互余,∠8 与∠9 互余,求证∠7 =∠9证明:因为∠7 与∠8 互余,所以∠7 +∠8 = 90°因为∠8 与∠9 互余,所以∠8 +∠9 = 90°所以∠7 = 90°∠8,∠9 = 90°∠8所以∠7 =∠9练习 4:已知∠10 与∠11 互补,∠11 与∠12 互补,求证∠10 =∠12证明:因为∠10 与∠11 互补,所以∠10 +∠11 = 180°因为∠11 与∠12 互补,所以∠11 +∠12 = 180°所以∠10 = 180°∠11,∠12 = 180°∠11所以∠10 =∠12九、余角和补角的应用1、在几何图形中,通过寻找余角和补角来求解角的度数。
4.3.3余角和补角导学案

80︒65︒46︒44︒25︒10︒170︒120︒100︒150︒80︒10︒30︒60︒21434.3.3余角和补角七年级一班二班 学习目标1、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
认识理解方位角,能确定具体物体的方位。
2、进一步提高抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
学习重点:认识角的互余、互补关系及其性质。
认识方位角,找准方位。
学习难点:归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
探 究 案探究一:余角和补角1、结合教材理解互为余角的定义:如果两个角的和是 ( ),那么这两个角叫做互为余角,其中一个角是另一个角的余角。
几何语言表示为:如果∠1+∠2= ,那么∠1与∠2互为余角,即:∠1是∠2的余角或∠2是∠1的余角。
2、理解应用⑴:图中给出的各角,哪些互为余角?3、结合教材理解互为补角的定义:如果两个角的和是 ( ),那么这两个角叫做互为补角,其中一个角是另一个角的补角。
几何语言表示为:如果∠3+∠4= °,那么∠3与∠4互为补角,即:∠3是∠4的补角或∠4是∠3的补角 4、理解应用⑵:(1)图中给出的各角,哪些互为补角?(2)填下列表:2143西北西南东南东北北西南东东结论:同一个锐角的补角比它的余角大 (3)填空:①70°的余角是 ,补角是 。
②∠α(∠α <90°)的余角是 ,它的补角是 。
如何判断两个角是互余还是互补呢?5、探究补角(余角)的性质:如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?归纳结论:答:∠2 与∠4相等。
∵∠1与∠2互余,∠3与∠4互余 ( )∴ ∠2 = 90°─∠1,∠4 = 90°─∠3 ( )∵ ∠1=∠3 ( )∴ ∠2 =∠4 ( ) 补角性质: 根据补角的性质你能否归纳出余角的性质?例1:若一个角的补角等于它的余角4倍,求这个角的度数。
七年级(人教版)集体备课导学案:4.3.3 余角与补角 (2)

精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
第 2学时内容:正数和负数(2)学习目标:1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一、.学前准备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)2009年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2009年商品进出口总额的增长率.解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.(2)六个国家2009年商品进出口总额的增长率:美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.三、巩固练习从0表示一个也没有,是正数和负数的分界的角度引导学生理解.在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考问题:1.直径为30.032mm和直径为29.97的零件是否合格?2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.五、小结1、本节课你有那些收获?2、还有没解决的问题吗?六、应用与拓展选做题1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。
《4.3.3 余角和补角》教案、同步练习、导学案(3篇)

《4.3.3 余角和补角》教案【教学目标】1.在具体情境中认识余角和补角,掌握余角和补角的性质;(重点)2.能利用余角和补角的性质进行计算和简单的推理.(重点)【教学过程】一、情境导入让学生观察意大利著名建筑比萨斜塔.比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工.设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜.二、合作探究探究点一:余角和补角及其性质【类型一】余角和补角的概念如果α与β互为余角,则( )A.α+β=180° B.α-β=180°C.α-β=90° D.α+β=90°解析:如果α与β互为余角,则α+β=90°.故选D.方法总结:正确记忆互为余角的定义是解决问题的关键.【类型二】利用余角和补角计算求值已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B 的度数.解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值.解:∵∠A与∠B互余,∴∠A+∠B=90°,又∵∠A的度数比∠B度数的3倍还多30°,∴∠A=3∠B+30°,∴3∠B+30°+∠B=90°,解得∠B=15°.故∠B的度数为15°.方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.【类型三】余角、补角和角平分线的综合计算如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.解析:根据补角的性质,可得∠AOB+∠COM=180°,根据角的和差,可得∠AOB+∠BOM=90°,根据角平分线的性质,可得∠BOM=12∠AOB,根据解方程,可得∠AOB的度数,根据角的和差,可得答案.解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.由角的和差,得∠AOB+∠BOM+∠COB=180°,∠AOB+∠BOM=90°.由OM是∠AOB的平分线,得∠BOM=12∠AOB,即∠AOB+12∠AOB=90°.解得∠AOB=60°.由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.由ON平分∠AOC得∠AON=12∠AOC=12×150°=75°.由角的和差,得∠BON=∠AON-∠AOB=75°-60°=15°.方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.探究点二:方位角【类型一】利用方位角确定方向M地是海上观测站,从M地发现两艘船A、B的方位如图所示,下列说法中正确的是( )A.船A在M的南偏东30°方向B.船A在M的南偏西30°方向C.船B在M的北偏东40°方向D.船B在M的北偏东50°方向解析:船A在M的南偏西90°-30°=60°方向,故A、B选项错误;船B 在M的北偏东90°-50°=40°方向,故C正确,D错误.故选C.方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.【类型二】方位角的有关计算如图所示,甲、乙、丙三艘轮船从港口O出发,当分别行驶到A、B、C 处时,经测量得甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向.(1)求∠BOC的度数;(2)求∠AOB的度数.解析:(1)根据方向角的表示方法,可得∠EOB,∠EOC的度数,根据角的和差,可得答案;(2)根据方向角的表示方法,可得∠EOB,∠EOA的度数,根据角的和差,可得答案.解:如图,(1)由乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向,得∠EOB=76°,∠EOC=45°.由角的和差,得∠BOC=∠EOB+∠EOC =76°+45°=121°;(2)由甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,得∠EOB=76°,∠EOA=44°.由角的和差,得∠AOB=∠EOB-∠EOA=76°-44°=32°.方法总结:解决本题主要是理解方向角的表示方法,结合图形找到相应的角,然后进行计算.三、板书设计1.互余、互补(1)和为90°的两个角互余;(2)和为180°的两个角互补.2.方位角【教学反思】通过比萨斜塔这一学生熟知的著名建筑激发学生的学习兴趣,再运用现代化的教学手段,把图形的“静”变成“动”,在动态课件演示中引出概念,增强了趣味性,并且可以充分调动学生的学习兴趣,一下子把学生吸引到课堂上来.这样也把书本上原本呆板的概念激活了,使数学知识充满新鲜感,实现了书本知识和学生发现的一种沟通,增强学生对几何图形的敏感性.《4.3.3 余角和补角》同步练习能力提升1.如图,A,O,B三点在一条直线上,已知∠AOD=25°,∠COD=90°,则∠BOC的度数为()A.25°B.85°C.115°D.155°2.如果∠AOB+∠BOC=90°,∠BOC+∠COD=90°,那么∠AOB与∠COD的关系是()A.互余B.互补C.相等D.不能确定3.如图,点O在直线AB上,∠COB=∠DOE=90°,则图中相等的角的对数是()A.3B.4C.5D.74.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是 ()A.右转80°B.左转80°C.右转100°D.左转100°5.在直线AB上任取一点O,过点O作射线OC,OD,使∠COD=90°,当∠AOC=30°时,∠BOD的大小是()A.60°B.120°C.60°或90°D.60°或120°6.如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2= .7.如图,射线OP表示的方向是.8.如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,∠1与∠2的和总是保持不变,则∠1与∠2的和是度.9.学校、电影院、公园在平面图上的标点分别为A,B,C,如果电影院在学校的正东方向上,公园在学校的南偏西25°的方向上,那么平面图上的∠CAB= 度.10.互余的两个角的度数之比为3∶7,则这两个角的度数分别是多少?11.如图,一只蚂蚁从点O出发,沿北偏东45°的方向爬行2.5 cm,碰到障碍物(记作B)后折向北偏西60°的方向爬行3 cm(此时位置记作点C).(1)画出蚂蚁的爬行路线;(2)求出∠OBC的度数.注:如图,,∠1=∠2★12.如图所示,已知O是直线AB上一点,∠AOE=∠FOD=90°,OB平分∠COD,图中与∠DOE互余的角有哪些?与∠DOE互补的角有哪些?并说明理由.创新应用★13.按如图所示的方法折纸,然后回答问题:(1)∠2是多少度的角?为什么?(2)∠1与∠3有何关系?(3)∠1与∠AEC,∠3和∠BEF分别有何关系?★14.根据互余和互补的定义知,20°角的补角为160°,余角为70°,160°-70°=90°;25°角的补角为155°,余角为65°,155°-65°=90°;50°角的补角为130°,余角为40°,130°-40°=90°;75°角的补角为105°,余角为15°,105°-15°=90°……观察以上几组数据,你能得到什么结论?写出你的结论.参考答案能力提升1.C因为∠AOC=∠COD-∠AOD=90°-25°=65°,所以∠BOC=180°-∠AOC=180°-65°=115°.2.C3.C因为∠COB=90°,所以∠AOC=180°-∠BOC=180°-90°=90°,所以∠AOC=∠BOC=∠DOE;因为∠BOD+∠COD=∠EOC+∠COD=90°,所以∠EOC=∠BOD;因为∠AOE+∠EOC=∠COD+∠EOC=90°,所以∠AOE=∠COD,共5对.4.A如图,∠ECF=20°,∠FCD=60°,要从BC方向转向CD方向,需转过的角为∠ECD=∠ECF+∠FCD=20°+60°=80°,即右转80°.5.D根据题意画图为如图①和图②,在图①中∠BOD的度数是60°,在图②中∠BOD的度数是120°,所以∠BOD的度数是60°或120°.6.40°7.南偏西62°8.90由图形知∠1,∠2与直角三角板的直角形成一个平角,所以无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,形成的始终是一个平角.所以∠1与∠2的和是90度.9.11510.解:设这两个角的度数分别为3x°,7x°,由题意,得3x°+7x°=90°,解得x°=9°,3x°=27°,7x°=63°.答:这两个角的度数分别是27°,63°.11.解:(1)如图.(2)∠OBC=90°-60°+90°-45°=75°.12.解:与∠DOE互余的角有∠EOF,∠BOD,∠BOC;与∠DOE互补的角有∠BOF,∠COE.理由:∠DOE+∠EOF=90°,∠DOE+∠BOD=∠BOE=180°-∠AOE=90°,∠DOE+∠BOC=∠DOE+∠BOD=90°,∠DOE+∠BOF=∠AOF+∠BOF=180°,∠DOE+∠COE=∠DOE+∠BOF=180°.创新应用13.解:(1)∠2=90°.因为折叠,则∠1与∠3的和与∠2相等,而这三个角加起来,正好是平角∠BEC,所以∠2=×180°=90°.(2)因为∠1与∠3组成的大角和∠2相等,且三个角加起来恰好是一个平角,所以∠1+∠3=90°.所以∠1与∠3互余.(3)因为∠1与∠AEC的和为180°,∠3与∠BEF的和为180°,所以∠1与∠AEC互补,∠3与∠BEF互补.14.解:设一个角的度数为x°,则补角为(180-x)°,它的余角为(90-x)°.因为180-x-(90-x)=90,所以一个角的补角比它的余角大90°.第四章几何图形初步4.2 直线、射线、线段《第1课时直线、射线、线段》导学案【学习目标】:1. 了解余角、补角的概念,掌握余角和补角的性质,并能利用余角、补角的知识解决相关问题.2. 了解方位角的概念,并能用方位角知识解决一些简单的实际问题.【重点】:了解余角、补角的概念及性质,了解方位角的概念和表达方式.【难点】:运用余角、补角和方位角的相关知识解题.【自主学习】一、知识链接如图①,在长方形中,∠1+∠2= °,∠3+∠4= °.二、新知预习1. 如果两个角的和等于90°(直角),就说这两个角互为______ (简称为两个角______ ).如图①,可以说∠1是∠2的余角,或∠2是∠1的余角,或∠1和∠2互余.2. 如果两个角的和等于180°(平角),就说这两个角互为______ (简称为两个角______).如图①,可以说∠3是∠4的补角,或∠4是∠3的补角,或∠3和∠4互补.三、自学自测1. 图中给出的各角,哪些互为余角?2. 图中给出的各角,哪些互为补角?四、我的疑惑_________________________________________________________________ _____________________________________________________________________ 【课堂探究】一、要点探究探究点1:有关余角和补角的计算例1 若一个角的补角等于它的余角的 4 倍,求这个角的度数.方法总结:余补角问题中,若角之间有比较明显的倍分关系,可尝试将较小的角设为未知数,列方程解答.例2 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.观察与思考:∠α∠α的余角∠α的补角5°32°45°77°62°23′x°(0<x<90)观察可得结论:锐角的补角比它的余角大_____.针对训练1.如果∠a=36°,那么∠a的余角等于()A.54° B.64° C.144° D.134°2.如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为_____.第2题图变式题图【变式题】一副三角板按如图方式摆放,且∠1的度数比∠2的度数大44°,则∠1=______.3.已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.探究点2:余角和补角的性质思考:∠1 与∠2,∠3都互为补角,∠2 与∠3 的大小有什么关系?例3 如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是_______________,∠COD的余角是_________________;(2 )OE是∠BOC的平分线吗?请说明理由.针对训练如图,已知∠AOB=90°,∠AOC=∠BOD,则与∠AOC互余的角有__________.探究点3:方位角八大方位正东:正南:正西:正北:西北方向:西南方向:东北方向:东南方向:例4 如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上. 同时,在它北偏东40°,南偏西10°,西北 (即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D. 仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D方向的射线.针对训练1. 如图,说出下列方位(1) 射线 OA 表示的方向为 .(2) 射线 OB 表示的方向为 .(3) 射线 OC 表示的方向为 . .(4) 射线 OD 表示的方向为 .2.费俊龙、聂海胜乘坐“神舟”六号遨游太空时,我国当时派出远望一号~四号船队,跟踪检测. 其中远望一、二号停在太平洋洋面上,某一时刻,分别测得神舟六号在北偏东60°和北偏东30°的方向,你能在下图中画出当时神舟六号所处的位置吗?二、课堂小结【当堂检测】1.一个角的余角是它的2倍,这个角的度数是()A.30°B.45°C.60°D.75°2.下列说法正确的是()A.一个角的补角一定大于它本身B.一个角的余角一定小于它本身C.一个钝角减去一个锐角的差一定是一个锐角D.一个角的余角一定小于其补角3.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是_______.4.∠1与∠2 互余,∠1 = (6x + 8)°,∠2 = (4x-8)°,则∠1= ,∠2= .5. 请认真观察下图,回答下列问题:(1)图中有哪几对互余的角?(2) 图中哪几对角是相等的角(直角除外)?为什么?6 垃圾打捞船A和B都停驻在湖边观测湖面,从A船发现它的北偏东60°方向有白色漂浮物,同时,从B船也发现该白色漂浮物在它的北偏西30°方向.(1) 试在图中确定白色漂浮物C的位置;(2) 点C在点A的北偏东60°的方向上,那么点A在点C的________方向上.A. 南偏东30°B. 南偏西30°C. 南偏东60°D. 南偏西60°。
4.3.3 余角和补角(1)导学案

(1)找一副三角板中互余的两个角.
(2)说出一个锐角,同伴尝试回答这个角的余角和补角.
思考:(1)是不是所有的角都有余角和补角?
(2)如何求∠α的余角和补角?
结论:(1)钝角没有_____,只有______.
(2)∠α的余角为___________;∠α的补角为________________.
[活动五]归纳小结,深化新知
本节课你学习了哪些知识?
在探索知识的过程中,你用了哪些方法?对你今后的学习有什么帮助?
[活动六]分层作业,课堂检测
1.教科书第139页练习第3、4题,教科书第140页习题4.3第13题.
2.思维拓广:一个角的补角比它的余角的2倍还大25°,求这个角.
思考:通过练习,你能发现同一个角的余角之间有什么关系?补角之间呢?两个相等的角的余角或补角之间又有什么关系呢?
性质:同角(等角)的_____相等.
同角(等角)的_____相等.
[活动三]应用新知,形成技能
例点A、O、B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠COB,图中哪些角互为余角?
[活动二]探索归纳,学习新知
定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.
类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.
想一想:
如图,若∠1+∠2=90°,则∠1与∠2互为_____;∠1的余角是______;∠2是______的余角;
课题:4.3.3余角和补角(1)
姓名:班级:授课时间:
课型
新授课
备课教师
刘会英
审核
学
习
《余角和补角》导学案

课题:4.3.3余角和补角编号:第44号主备人:复备人:审核人:科研处审核:1.知道余角和补角的定义,能求一个角的余角和补角.2.明白“同角(等角)的余角相等,同角(等角)的补角相等”,并能应用余角、补角的性质进行简单的计算和说理.3.知道方位角的定义,会画方位角,能用方位角描述物体相对于某点的方向.4.重点:余角和补角的定义及性质,方位角的画法.【问题探究】阅读教材P137~138,回答下列问题.探究一:1.如果两个角的和等于就说这两个角互为余角,即其中一个角是另一个角的余角.2.如果两个角的和等于 ,就说这两个角互为补角,即其中一个角是另一个角的补角.【讨论】1.画出一个锐角的余角和补角,互补、互余的两角是否一定有公共顶点或公共边呢?2.如果∠1+∠2=90°,能否说∠1是余角,∠2是余角呢?为什么?∠1+∠2=180呢?【预习自测】已知∠α=35°,则∠α的余角是()A.35°B.55°C.65°D.145°探究二:1.(1)如果∠1与∠α互余,∠2与∠α互余,那么∠1与∠2相等吗?为什么?(2)如果∠1与∠α互余,∠2与∠β互余,∠α=∠β,那么∠1与∠2相等吗?为什么?2.(1)如果∠1与∠β互补,∠2与∠β互补,那么∠1与∠2相等吗?为什么?(2)如果∠1与∠α互补,∠2与∠β互补,∠α=∠β,那么∠1与∠2相等吗?为什么?【预习自测】如图,直线CD过点O,且OC平分∠AOB,说出∠AOD与∠BOD的大小关系和理由?【归纳】( )的余角相等, ( )的补角相等.探究三:请画出表示下列方向的射线.①南偏东25°;②北偏西60°;③西南方向(即南偏西45°).【归纳】1.方位角通常是以南、北方向为角的,另一边为角的.2.东北方向,即45°;东南方向,即45°;西北方向,即45°;西南方向,即45°.【预习自测】如图,点A位于点O的(B)A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°互动探究1:25°的余角和补角分别是多少度?一个角的补角比它的余角大多少度?[变式训练]一个角的余角比它的补角的还多1°,求这个角.(方法指导:在解决几何问题时,常设未知数列方程求解,即将几何问题转化为代数问题.)互动探究2:如图,A、O、D三点在同一条直线上,∠AOB=∠COD,问其中哪几对角互为补角?[变式训练]OE平分∠AOC,OD平分∠COB,则∠EOD= ,∠2的余角为,∠2的补角为.互动探究3:如图,点O是直线AB上一点,OC平分∠AOB,∠DOE=90°,∠AOD和∠COE相等吗?为什么?[变式训练]除直角外,上题中还有哪些相等的角?请说明理由.【方法归纳交流】要说明两个角相等,只要说明这两个角是的余角(或补角)即可.互动探究4:在一幅学校的地图上,有教学楼、食堂、图书馆三地,但被墨迹污染,图书馆的具体位置看不清,只知道图书馆在教学楼的东北方向,在食堂的南偏西60°方向,你能确定图书馆的位置吗?。
人教版数学七年级上册导学案:4.3.3余角和补角

§4.3.3余角和补角第一课时学案一、课标对本课时的具体要求:理解余角、补角的概念,探索并掌握同角(等角)的余角相等,同角(等角)的补角相等的性质。
二、本课时的知识网络三、本课时的重点、难点【重点】认识角的互余、互补关系及其性质,【难点】通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
四、学习目标1、在具体的现实情境中,认识一个角的余角和补角,2、掌握余角和补角的性质。
五、学习过程(一)多媒体出示活动指导,在明确的活动要求和问题引领下引导学生积极参与探讨和自主学习。
(5分钟)(学生根据要求,自读课本,完成学案所给的问题,在明确的引领下引导学生积极参与探讨和学习)(二)展示交流 探究新知(10分钟) 探究活动1:如图,是一个放在直线上的直角三角板,它的两个锐角∠CAB 与∠CBA 之间有什么关系? ∠ABC 与∠CBD 有什么关系?答:两个锐角∠CAB 与∠CBA 的和等于 ,∠ABC 与∠CBD 的和等于 . 2.互为余角的定义:就说这两个角互为余角。
如图,若∠1=230,∠2=670,∠1与∠2互为 ;若∠AOB=900,∠3与∠4互为 。
3.互为补角的定义:如果两个角的和是180°(平角),那么这两个角叫做 ,其中一个角是另一个角的。
如图,若∠5=230,∠6=1570,∠5与∠6互为 ;若∠AOB=1800,∠7与∠8互为 。
练习:填下列表:【设计意图】根据学生的情况,我主要采取自主探究、小组交流的方式学习余角和补角的概念,引导学生通过直观计算,总结规律,从而化抽象的概念12 34A O B2143为简明的关系,帮助学生正确理解并掌握。
(三)探讨释疑,突破难点(10分钟)探究活动3:如图:已知∠AOC,利用三角板分别画它的余角和补角.(只要满足条件的角都可以) 问:从中发现了什么?结论: 。
结论: 。
再问:如果两个角相等,那么它们的余角和补角有什么关系?如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?结论: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:4.24.3.3余角和补角(第1课时)编号:第 44号
主备人:石小丹复备人:审核人:科研处审核:学习目标:
1.理解互为余角、互为补角的定义.
2.掌握有关补角和余角的性质.
3.应用以上知识点解决有关计算和简单推理问题.
4.重点:互为余角、互为补角的概念及有关余角、补角的性质.
【问题探究】阅读教材P137~138,回答下列问题.
探究一:
1.如果两个角的和等于,就说这两个角互为余角, 即其中一个角是另一个角的余角.
2.如果两个角的和等于,就说这两个角互为补角,即
其中一个角是另一个角的补角.
【讨论】
1、.如果∠1+∠2=90°,能否说∠1是余角,∠2是余角呢?为什么?∠1+∠2=180呢?
2、互补、互余的两角是否一定有公共顶点或公共边呢?
【预习自测】
1、若∠1与∠2互补,则∠1+∠2,若∠1与∠2
互余,则∠1+∠2。
2、30°角的余角为,补角为,70°39′
的余角为,补角为。
3、如图:O是直线AB上一点,OC是∠AOB的平分线,
①AOD的的补角是
②∠AOD的的余角是
③∠AOD的的补角是
探究二
1.(1)如果∠1与∠α互余,∠2与∠α互余,那么∠1与∠2相等吗?为什么?
(2)如果∠1与∠α互余,∠2与∠β互余,∠α=∠β,那么∠1与∠2相等吗?为什么?
2.(1)如果∠1与∠β互补,∠2与∠β互补,那么∠1与∠2相等吗?为什么?
(2)如果∠1与∠α互补,∠2与∠β互补,∠α=∠β,那么∠1与∠2相等吗?为什么?
互动探究1:一个角的余角比它的补角的还多1°,求这个角.
互动探究2:如图,A、O、D三点在同一条直线上,∠AOB=∠COD,问其中哪几对角互为补角?。