试验最优化--正交试验设计共54页
合集下载
试验优化设计(正交试验)2013(1)

5
6 7 8
2
2 2 2
1
1 2 2
2
2 1 1
试验优化设计讲义
1
2 1 2
2
1 2 1
1
2 2 1
2
1 1 2
20
第一章 正交试验设计
1.3正交表及其性质
正交表的基本性质: 1 正交性 (1)任一列中,各水平都出现,且出现的次数相等
例如L8(27)中不同数字只有1和2,它们各出现4次。
(2)任两列之间各种不同水平的所有可能组合都出现, 且出现的次数相等
试验优化设计(1) ——正交试验
丁海涛 汽车仿真与控制国家重点实验室 2012年5月
导化设计讲义
2
导论
汽车底盘匹配与优化
性能指标:要求汽车的操纵性能达到最优
1)不足转向度 2)车身侧倾率 3)侧向加速度响应时间 4)横摆响应阻尼
试验优化设计讲义
3
导论
汽车底盘匹配与优化
试验优化设计讲义
27
第一章 正交试验设计
1.5正交试验设计的基本方法
试验方案设计
试验目的与要求 试验指标 选因素、定水平 因素、水平确定 选择合适正交表 表头设计 列试验方案
试验优化设计讲义
试验结果分析
进行试验,记录试验结果 试验结果极差分析 计 算 yjm 值 优水平 优组合 计 算 yjm 值 计 算 极 差 R 因素主次顺序 结 论
试验优化设计讲义
23
第一章 正交试验设计
1.3正交表及其性质
正交表的三个基本性质中,正交性是
核心,是基础,代表性和综合可比性是正
交性的必然结果。
试验优化设计讲义
正交试验设计精品文档66页

(1) 900 (1) 10 (1) 70
160
(1) 900 (2) 11 (2) 80
215
(1) 900 (3) 12 (3) 90
180
(2)1100 (1) 10 (2) 80
168
(2)1100 (2) 11 (3) 90
236
(2)1100 (3) 12 (1) 70
190
(3)1300 (1) 10 (3) 90
二、无交互作用的正交设计与数据分析
试验设计一般有四个步骤: 1. 试验设计 2. 进行试验获得试验结果 3. 数据分析 4. 验证试验
例1 磁鼓电机是彩色录像机磁鼓组件的关 键部件之一,按质量要求其输出力矩应大于 210g.cm。某生产厂过去这项指标的合格率较 低,从而希望通过试验找出好的条件,以提高 磁鼓电机的输出力矩。
157
(3)1300 (2) 11 (1) 70
பைடு நூலகம்
205
(3)1300 (3) 12 (2) 80
140
9个试验点的分布
3 5
C3
2
C2
4
1
C1 A1
A2
7 9
6
8
B3
B2
A3 B1
(二)做试验,并记录试验结果
在进行试验时,要注意几点: 1. 除了所考察的因子外的其它条件,尽可
能保持相同 2. 试验次序最好要随机化 3. 必要时可以设置区组因子
譬如:考察两个因子,先固定A在A1,发 现B3好,再固定B3,发现A1好,但是实际上好 的条件是A2B2。
B1
B2
B3
A1 50 56 62
A2 56 70 60
A3 54 60 58
正交试验设计

案仅包括9个水平组合,而全方面试验方案 包括27个水平。
4
上一张 下一张 主 页 退 出
表5-1
5
上一张 下一张 主 页 退 出
注:任意两列旳交互作用列为另外两 列
附:正交表L9(34)
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1ห้องสมุดไป่ตู้
3
2
8
3
2
1
3
9
3
3
2
1
6
3
上一张 下一张 主 页 退 出
1.2 正交设计旳基本特点
❖ 用部分试验来替代全方面试验,经过对部分 试验成果旳分析,了解全方面试验旳情况。
❖ 当交互作用存在时,有可能出现交互作用旳 混杂。即忽视了部分交互作用来降低试验次 数。
如对于上述3原因3水平试验,若不考虑交
互作用,可利用正交表L9(34)安排,试验方
代表正交表;
❖ L右下角旳数字“8”表达有8行,用这张正交 表安排试验包括8个处理(水平组合);
❖ 括号内旳底数“2” 表达原因旳水平数,括 号内2旳指数“7”表达有7列,
❖ 用这张正交表最多能够安排7个2水平原因。 8
上一张 下一张 主 页 退 出
表5-2
9
上一张 下一张 主 页 退 出
L8(27)二列间交互作用列表
第五章 正交试验设计
4
上一张 下一张 主 页 退 出
表5-1
5
上一张 下一张 主 页 退 出
注:任意两列旳交互作用列为另外两 列
附:正交表L9(34)
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1ห้องสมุดไป่ตู้
3
2
8
3
2
1
3
9
3
3
2
1
6
3
上一张 下一张 主 页 退 出
1.2 正交设计旳基本特点
❖ 用部分试验来替代全方面试验,经过对部分 试验成果旳分析,了解全方面试验旳情况。
❖ 当交互作用存在时,有可能出现交互作用旳 混杂。即忽视了部分交互作用来降低试验次 数。
如对于上述3原因3水平试验,若不考虑交
互作用,可利用正交表L9(34)安排,试验方
代表正交表;
❖ L右下角旳数字“8”表达有8行,用这张正交 表安排试验包括8个处理(水平组合);
❖ 括号内旳底数“2” 表达原因旳水平数,括 号内2旳指数“7”表达有7列,
❖ 用这张正交表最多能够安排7个2水平原因。 8
上一张 下一张 主 页 退 出
表5-2
9
上一张 下一张 主 页 退 出
L8(27)二列间交互作用列表
第五章 正交试验设计
正交试验设计原理与实例精品PPT课件

19世纪20年代,英国统计学家R. A. Fisher首先后马铃薯肥料试验当中,运用 排列均衡的拉丁方,解决了试验时的不均 匀试验条件,获得成功,并创立了“试验 设计”这一新兴学科。“均衡分布”思想 在20世纪50年代应用于工业领域, 60年 代应用于农业领域,使正交试验在科研生 产实际中得到推广。
1 正交试验设计的意义 正交试验属于试验设计方法的一种。简单
地讲,试验设计是研究如何科学安排试验,以 较少的人力物力消耗而取得较多较全面的信息。
试验安排得好,事半功倍;反之则事倍功半, 甚至达不到预期目的。因此,如何进行试验设 计是一个至关重要的问题。
正交试验设计是试验优化的常用技术。 所谓试验优化,是指在最优化思想的指导 下,进行最优设计的一种优化方法。它从 不同的优良性出发,合理设计试验方案, 有效控制试验干扰,科学处理试验数据, 全面进行优化分析,直接实现优化目标, 已成为现代优化技术的一个重要方面。
正交试验设计
在试验研究中,对于单因素或两因素试验,因 其因素少 ,试验的设计 、实施与分析都比较简单 。 但在实际工作中 ,常常需要同时考察 3个或3个以上 的试验因素 ,若进行全面试验 ,则试验的规模将很 大 ,往往因试验条件的限制而难于实施 。正 交设 计就是安排多因素试验 、寻求最优水平组合 的一种 高效率试验设计方法。
2、正交表
2.1 正交表 -正交拉丁方的自然推广
由于正交设计安排试验和分析试验结果都要 用 正交 表,因此,我们先对正交表作一介绍。
安排的4因素3水平的试验,编上试验号,列成另外一 种形式,见正交表L9(34)(表11-6) 。可以由此得到系列 正交表(orthogonal table)。
常用的正交表已由数学工作者制定出来,供进行 正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、 L16(215)等;3水平正交表有L9(34)、L27(213)……等(详 见附表17及有关参考书)。
《正交试验设计》PPT幻灯片PPT

或实体
➢ 在试验性研究中,感兴趣的变量是明确规定的, 因此,研究中的一个或多个因素可以被控制,使 得数据可以按照因素如何影响变量来获取
➢ 对完全随机化设计的数据采用单因素方差分析
4
完全随机化设计-例题分析
【例】一家种业开发股份公司研究出三个新的小 麦品种:品种1、品种2、品种3。为研究不同品 种对产量的影响,需要选择一些地块,在每个地 块种上不同的品种,然后获得产量数据进行分析 。这一过程就是试验设计的过程
得3个产量的数据,也就是对应于每个处理的样本 容量为1;为获得每个品种的更多数据,必须重复 基本试验步骤。假定不是抽取3个地块,而是12个 地块,然后将每个品种之一随机地指派给其中的4 个地块,这就相当于重复做了4次试验。
6
完全随机化设计-例题分析
试验数据:
7
完全随机化设计-例题分析
方差分析:
➢ 二水平正交表: L4(23) , L8(27) L16(215) ,L32(231)…
➢ 三水平正交表: L9(34) , L27(313)… ➢ 四水平正交表: L16(45), L64(421)… ➢ 五水平正交表: L25(56)…
这类正交表的一般代号:Ln(m k ),且满足:
n mk , m 2,3,4, k n1
12
11 12 13 21 22 23 31 32 33
34
11 22 33 23 31 12 32 13 21
➢ L:正交表记号
➢ 9:该表有9行,可以做九个不同条件的试验
➢ 4:该表有4列,最多只能考虑四个因子
➢ 3:这张表的主体中仅有三个不同的数字,每个因子取三个水平
➢
一个正交表中也可以各列的水平一种设计方法,并进 一步分析对所研究对象的指标的影响程度
➢ 在试验性研究中,感兴趣的变量是明确规定的, 因此,研究中的一个或多个因素可以被控制,使 得数据可以按照因素如何影响变量来获取
➢ 对完全随机化设计的数据采用单因素方差分析
4
完全随机化设计-例题分析
【例】一家种业开发股份公司研究出三个新的小 麦品种:品种1、品种2、品种3。为研究不同品 种对产量的影响,需要选择一些地块,在每个地 块种上不同的品种,然后获得产量数据进行分析 。这一过程就是试验设计的过程
得3个产量的数据,也就是对应于每个处理的样本 容量为1;为获得每个品种的更多数据,必须重复 基本试验步骤。假定不是抽取3个地块,而是12个 地块,然后将每个品种之一随机地指派给其中的4 个地块,这就相当于重复做了4次试验。
6
完全随机化设计-例题分析
试验数据:
7
完全随机化设计-例题分析
方差分析:
➢ 二水平正交表: L4(23) , L8(27) L16(215) ,L32(231)…
➢ 三水平正交表: L9(34) , L27(313)… ➢ 四水平正交表: L16(45), L64(421)… ➢ 五水平正交表: L25(56)…
这类正交表的一般代号:Ln(m k ),且满足:
n mk , m 2,3,4, k n1
12
11 12 13 21 22 23 31 32 33
34
11 22 33 23 31 12 32 13 21
➢ L:正交表记号
➢ 9:该表有9行,可以做九个不同条件的试验
➢ 4:该表有4列,最多只能考虑四个因子
➢ 3:这张表的主体中仅有三个不同的数字,每个因子取三个水平
➢
一个正交表中也可以各列的水平一种设计方法,并进 一步分析对所研究对象的指标的影响程度
正交实验设计PPT

(4) 确定优方案 优方案是指在所做的试验范围内,各因素较优的水平组合。 本例中得到的优方案,并不包含在正交表中已做过的 9 个试 验方案中,这正体现了正交试验设计的优越性。
(5) 进行验证试验,做进一步的分析。
(二)多指标正交试验设计及其结 果的直观分析
第1种:指标拆开单个处理综合分析法
第一步:将各个指标值(实验结果)填入表内。将多个 指标拆开,按各个单指标正交实验分别计算各因素不同
4
L8(41×24) L18(61×36) L9(34)
L9(34), L16(45)
5
L8(41×24)
L18(61×36) L16(44×23)
L8(27)
6
L18(61×36)
L18(61×36) L16(42×23)
L8(27)
7
L18(61×36)
L18(61×36) L16(44×23)
1
1 (130) 1
1(3)
1(甲)
0.56
2
1 (130) 2
2(2)
2(乙)
0.74
3
1 (130) 3
3(4)
3(丙)
0.57
4
2 (120) 1
2(2)
3(丙)
0.87
5
2 (120) 2
3(4)
1(甲)
0.85
6
2 (120) 3
1(3)
2(乙)
0.82
7
3 (110) 1
3(4)
2(乙)
L8(27)
L16(45)
L18(61×36) L16(44×23) L18(61×36) L16(44×23)
L8(41×24)的设计由L8(27)的改造而成
(5) 进行验证试验,做进一步的分析。
(二)多指标正交试验设计及其结 果的直观分析
第1种:指标拆开单个处理综合分析法
第一步:将各个指标值(实验结果)填入表内。将多个 指标拆开,按各个单指标正交实验分别计算各因素不同
4
L8(41×24) L18(61×36) L9(34)
L9(34), L16(45)
5
L8(41×24)
L18(61×36) L16(44×23)
L8(27)
6
L18(61×36)
L18(61×36) L16(42×23)
L8(27)
7
L18(61×36)
L18(61×36) L16(44×23)
1
1 (130) 1
1(3)
1(甲)
0.56
2
1 (130) 2
2(2)
2(乙)
0.74
3
1 (130) 3
3(4)
3(丙)
0.57
4
2 (120) 1
2(2)
3(丙)
0.87
5
2 (120) 2
3(4)
1(甲)
0.85
6
2 (120) 3
1(3)
2(乙)
0.82
7
3 (110) 1
3(4)
2(乙)
L8(27)
L16(45)
L18(61×36) L16(44×23) L18(61×36) L16(44×23)
L8(41×24)的设计由L8(27)的改造而成
正交试验设计PPT课件精选全文

所谓均衡分散,是指用正交表挑选出来的 各因素水平组合在全部水平组合中的分布是均 匀的 。 由 图10-1可以看出,在立方体中 ,任 一平面内都包含 3 个“(·)”, 任一直线上都包 含1个“(·)” ,因此 ,这些点代表性强 ,能够 较好地反映全面试验的情况。
上一张 下一张 主 页 退 出
整齐可比是指每一个因素的各水平间 具有可比性。因为正交表中每一因素的任 一水平下都均衡地包含着另外因素的各个 水平 ,当比较某因素不同水平时,其它 因素的效应都彼此抵消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、 A3 条件下各有 B 、C 的 3个不同水计计 算算
Kk 值值
计 算 极 差
R
绘 制 因 素 指 标 趋
势
图
计算各列偏差平方和、 自由度
列方差分析表,
进行F 检验
优水平 优组合
因素主次顺序
结论
分析检验结果, 写出结论
实例:为提高山楂原料的利用率,研究酶法液化工艺 制造山楂原汁,拟通过正交试验来寻找酶法液化的最 佳工艺条件。
例如,要考察增稠剂用量、pH值和杀菌温度对豆奶稳 定性的影响。每个因素设置3个水平进行试验 。
A因素是增稠剂用量,设A1、A2、A3 3个水平;B因素 是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度,设 C1、C2、C3 3个水平。这是一个3因素3水平的试验,各因 素的水平之间全部可能组合有27种 。
9个试验点均衡地分布于整个立方体内 ,有很强 的代表性 , 能 够比较全面地反映选优区内的基本情 况。
上一张 下一张 主 页 退 出
1.3 正交表及其基本性质
1.3.1 正交表
由于正交设计安排试验和分析试验结果都要用正 交表,因此,我们先对正交表作一介绍。
上一张 下一张 主 页 退 出
整齐可比是指每一个因素的各水平间 具有可比性。因为正交表中每一因素的任 一水平下都均衡地包含着另外因素的各个 水平 ,当比较某因素不同水平时,其它 因素的效应都彼此抵消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、 A3 条件下各有 B 、C 的 3个不同水计计 算算
Kk 值值
计 算 极 差
R
绘 制 因 素 指 标 趋
势
图
计算各列偏差平方和、 自由度
列方差分析表,
进行F 检验
优水平 优组合
因素主次顺序
结论
分析检验结果, 写出结论
实例:为提高山楂原料的利用率,研究酶法液化工艺 制造山楂原汁,拟通过正交试验来寻找酶法液化的最 佳工艺条件。
例如,要考察增稠剂用量、pH值和杀菌温度对豆奶稳 定性的影响。每个因素设置3个水平进行试验 。
A因素是增稠剂用量,设A1、A2、A3 3个水平;B因素 是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度,设 C1、C2、C3 3个水平。这是一个3因素3水平的试验,各因 素的水平之间全部可能组合有27种 。
9个试验点均衡地分布于整个立方体内 ,有很强 的代表性 , 能 够比较全面地反映选优区内的基本情 况。
上一张 下一张 主 页 退 出
1.3 正交表及其基本性质
1.3.1 正交表
由于正交设计安排试验和分析试验结果都要用正 交表,因此,我们先对正交表作一介绍。
试验最优化--正交试验设计

二、实验设计方案选择
实验设计方案“七步论”
• • • • • • • 1)确定并表述所要研究的问题; 2)选择自变量、自变量的范围和水平; 3)选择反应变量; 4)选择实验设计; 5)实验的实施; 6)对数据进行统计分析; 7)作出结论和进一步研究的建议。
科学的实验研究方法包括:
• 1、要以最少的实验工作量来获得尽可能 多的关于研究对象的信息; • 2、在研究的工程参数变化范围内建立起 优化对象各指标与工程参数之间精度较 高的函数关系; • 3、通过对优化对象各指标间科学地协调 与分析中,达到指标的总体优化。
• 每列中,各种水平出现的次数相等; • 任意两列中,完全对出现的次数也相等。
正交表的性质
• 列的位置可以互换 • 行的位置可以互换 • 同列的水平可以互换
3、正交表及其特点
(3) 交互作用及交互作用列表
• 交互作用:
在多因素试验中一个因素对试验结果的影响依赖 于另一因素所取的水平时,称两因素有交互作用。 在多因素对比试验中,某些因素对指标的影响往 往是互相制约、互相联系的。 即在试验中不仅因素起作用,而且因素间有时联 合起来起作用,这种联合作用并不等于各因素单独作 用所产生的影响之和,称这种联合作用为交互作用。
实验设计
• 广义的实验设计:指的是研究者在实验开始之 前所作的各项具体计划,包括实验研究中的涉 及所有的环节。 • 狭义的实验设计:把实验处理安排到实验单位 (在心理学中通常称为被试,故以下称被试)的 过程或模式,或者说是对被试进行分组接受不 同实验处理的过程或模式。
• 实验设计是数理统计中的一个较大的分支,它的内容十分丰富。
1、正交试验法
• 优点 试验次数少,效果好,方法简单,使用 方便,效率高。