使用SW6―2011计算压力容器开孔补强的几个问题-2019年文档
压力容器的开孔与补强

压力容器的开孔与补强压力容器是一种用于储存和运输高压气体、液体或气体液体混合物的装置。
由于容器内部承受着巨大的压力,因此对于压力容器的结构设计和制造质量的要求非常高,尤其是它的壁厚和容积大小等参数必须经过精密计算和实验验证。
然而,即使设计和制造工艺都非常优秀,压力容器在使用过程中,也一定会出现开孔或由于压力过高而造成形变或者破裂的情况。
为了避免这种情况的发生,我们可以采用开孔和补强两种方法进行预防和解决。
开孔是一种常见的预防压力容器事故的方法。
通过在容器的垂直和水平方向上开孔,可以使容器内部受到更好的冷却和通风,从而减少容器内部压力的累积。
另一方面,开孔的位置也可根据容器内部压力变化而进行调整,使事故的风险降到最低。
此外,设定开孔的位置和数量还可以为维护和保养提供更大的便利。
例如在容器的底部开孔,可以更轻松地清除容器内部积存的物质。
尽管开孔是一种有效的预防措施,但在一些情况下,由于开孔会改变容器的整体结构,从而降低容器的承载能力。
这时,可以采用补强的方法来保证容器的安全。
补强的方法主要是在容器受力较大的地方加装加强筋或者钢板等材料来提高容器的强度和承载能力。
这种方法的优点是可以增加整个容器的稳定性和韧性,从而避免容器内部压力过高而造成的泄漏和破裂等意外事件的发生。
需要注意的是,在进行压力容器的开孔和补强的时候,我们必须严格遵守国家标准,以确保容器的质量和安全。
另外,在进行相关的维修和改装时必须由具备相关资质、资历的专业人员进行操作,这样可以有效地避免其他安全隐患的发生。
最后,压力容器在工业生产和人们的日常生活中发挥着重要的作用,但与之相关的安全问题也时刻需要引起人们的重视。
因此,在日常生活和工作中,我们应该尽可能地避免对压力容器的摩擦和碰撞,同时,也应该注意对其的定期检查和维修,以避免意外事件的发生。
压力容器大开孔补强计算方法实例分析

- 43 -第6期压力容器大开孔补强计算方法实例分析王嘉瑶,翟新锋(中泰创新技术研究院有限责任公司, 新疆 乌鲁木齐 830000)[摘 要] 在压力容器设计中,经常面临着大开孔补强问题。
在壳体上开孔影响其承压能力,且开孔的大小、尺寸受到诸多限制,补强方法也多种多样。
本文总结了常用的几种开孔补强计算方法,如等面积法、分析法和压力面积法,并通过对某φ2000卧式容器开φ800孔的实例进行计算和分析,有助于设计人员更好地理解和应用这几种补强方法。
[关键词] 压力容器;大开孔;等面积法;分析法;压力面积法作者简介:王嘉瑶(1998—),女,湖北人,本科学历,在中泰创新技术研究院有限责任公司从事设备设计工作。
1 前言大开孔一般被定义为超过限制值的开孔。
大开孔会削弱壁厚的强度,且孔边缘薄膜应力和弯曲应力都较大,因此最常用的等面积法在大开孔上一般不能使用。
化工装置中,常使用带水包的压力容器,利用油水密度差进行油水分离。
而水包的公称直径普遍和设备直径较为接近,即d/D 较大,这时就需要考虑大开孔补强。
本文用三种方法对一个设计压力0.42MPa ,设计温度60℃,内径φ2000,C1=0.3mm ,C2=2mm 的卧式容器筒体上开φ800孔的设计实例进行计算和简单分析比较。
图1 圆筒开孔补强等面积法与分析法适用范围图2 算例示意图2 等面积法等面积法就是用补强材料在壳体开孔附近一段距离内对开孔削弱的承载面积给予等面积补偿。
它的理论基础仅考虑了壳体中存在的拉伸薄膜应力,类似双向受拉伸开有小孔的无限大平板上孔边的应力集中,所以对小直径的开孔安全可靠。
除此之外,还具有长期的使用经- 44 -论文广场石油和化工设备2021年第24卷验,开孔较大时只要对其开孔尺寸和形状等给予一定的配套限制,也能保证安全,是一般开孔的首选算法。
此方法适用于在受压筒体或者平封头上开圆孔、长短径比小于等于2的椭圆或长圆形孔。
因为本次开孔接管垂直于筒体,所以满足这部分要求。
压力容器设计开孔补强精品文档4页

开孔补强4.5.5.5等面积补强的分析与计算■等面积补强----壳体承受应力所必需的金属截面,因开孔被削去多少,就必须在开孔周围的补强范围内补回同样截面的金属面积。
有效补强的金属面积大于或等于开孔削弱的金属面积A 、判断是否可以不补强和不作进一步补强计算(1)强度裕量(开孔后仍有的)●容器实际壁厚大于计算壁厚(δδφe )●接管厚度大于计算厚度(t et δδφ)●接管根部有填角焊缝 ●所开孔不在焊缝处,但壁厚计算的中径公式仍考虑了焊缝系数,计算壁厚有裕量。
(2)GB150-1998对不另行补强的规定同时满足下列条件时,开孔后可不另行补强:②相邻两孔中心的距离()2d d +≥B、等面积补强计算(1)所需最小补强面积接管有效面积:接管转化为壳体的当量面积:ΔA-----弥补[][]tttσσ≤而需增加的面积;或接管有效承载面积的折减量。
■圆柱壳■外压柱壳或球壳■平盖注:上述平盖和外压容器的公式来由参见丁伯民《压力容器设计----原理及应用》对平盖和外压容器,决定壳体厚度或承载能力的是弯曲应力,开孔削弱的是抗弯截面模量(而不是壁厚截面积)。
为保证开空前后的抗弯截面模量相等(w=w 0),要求k=A/A 0=1/(2+S/S 0),为保守起见,取k=0.5。
s —补强圈厚度,s 0----平盖厚度;A----补强面积,A 0----开孔削弱面积。
(2)补强范围■有效宽度B■接管外侧高度h 1■接管内侧高度h 2{}接管实际内伸高度,min 2nt d h δ=1(3)补强范围内富裕的可作补强的金属面积A e■A 1----壳体有效厚度减去计算厚度之后的多余面积■接管有效厚度减去计算厚度之后的多余面积()()r et r t et f C h f h A 221222-+-=δδδ■A 3----有效补强区内焊缝金属的截面积(4)有效补强区内另外再增加的补强元件的金属截面积A 4若A A e >,则开孔后无需补强。
使用SW6-2011计算压力容器开孔补强的几个问题

1 补 强 方 法 及 适 用范 围
1 . 1 计算时应注意的问题 在使用 S W6 — 2 0 1 l 计算开孔补 强之前要 先判断接 管的直 径和壁 厚是否满足 G B 1 5 0 . 3 — 2 0 1 1 中6 . 1 _ 3 不另行 补强的最 大开孔 直径_ 1 _ 的要 求. 满足要求的可以不进行计算 . 没有进行判断直接 输入数据的 , 生成 计算书会显示满 足不另行补强 的最大开孔 直径 的要求 .不 予进行计 算 还需要注意的是单 个孔 开孔补强计算合格 , 然 而该 孔的有效补强 区B = 2 d 范 围内还有其他开孔 . 形成孔桥的 . 则应 按孔桥处理 在计算 两相邻开孔 中心的间距或者 任意两孔 中心 的间距时对 曲面间距应按 弧长计算 . 按照弦长或中心线垂 直距离计 算是 不正确 的 1 . 2 补强计算方法及适用范围的理解 S W6 — 2 0 1 1 补强计 算方法 给出 四种 : 等面积补 强法 、 另一 补强方 法、 分析方法和压力面积法。 计算软件 中的等面积补强法是指单个 开孔 的等面积法 , 联合补强 法是指多个开孔的等面积法 等面积法是 开孔补 强计算方法 中最广泛 应用的计算方法 . 该法是以补偿 开孔局 部截 面的一次拉伸强度作为补 强准则的 . 是以无限大平 板上开有小圆孔 时孔边 的应力集中作为理论 基础 的. 即仅 考虑 容器壳体 中存 在的拉伸薄膜 应力 , 对开孔 边缘的二 次应力 的安定 性问题是通过 限制开孔形状 .长短径之 比和开孔范 围 8 ( 开孔率 ) 间接 考虑的日 , 使用该法应考虑开孔是否 满足 G B 1 5 0 . 3 — 2 0 1 1 d o p 中6 . 1 . 1的规 定 对于承受静载的压力 容器开孔 , 长期实践证 明该法在 允许使用范围内 . 其补强结果是 比较安全 可靠 的。分析法是根据弹性 : ! ! 一{ 薄壳理论得到 的应力分析法 用于内压作用下具 有径 向接管 圆筒的开 j l 孔补强设计 . 其开孔率可达 0 . 9 。 压力面积法 为 H G 2 0 5 8 2 — 2 0 1 1 大开孔 的补强计算口 中介绍 的补强方法 , 其开孑 L 率可达 0 . 8 。分析法和压力面 积法都是适用于大开孔径向接管补强计算 的 , 不能计算斜接管 。大开 A 1 A 1 孑 L 即超 出等面积补强法适用范 围的开孔。 而且 分析法 只能用在筒体上 I 1 | 的开孑 L . 封 头上的大开孔应用 压力面积法计 算 , 但在我 国压力面积法 J f 尚不能作为合法 的设计依据 . 该 方法只能参考使 用。压力面积法和等 面积法一样 . 都不适用于有疲劳强度要 求的开 孔补强计算。另一补强 f l J 方法则为基于塑性失效准则的极限分析法 . 对 受内压单个开孑 L 的密集 补强采用H 。 这种设计方法 限制条 件 : 接管横截 面必须为 圆形 , 其 中性 轴垂直 于壳体 、 接 管和补强件应 采用整体结 构 . 过渡部分应 打磨成 圆 图 1 补强面积 A 角 。 使用 S W6 — 2 0 1 1 软件进行单个开孑 L 补强计算输 入数据后 . 软件根 A, = ( — d) ( — ) 一 2 ( - - 6 ) ( 1 ) ( 1 ) 据输入条件 自动选择适合的计算方法 . 如不符合单 孔补强条件形成孔 式 中: B为补强有效宽度 ; 如 为开孔直径 ; 为壳体 开孔处 的有效 桥 的. 则必须选择 联合补强法 . 并 输入相关数 据才能得 到正 确的计算 厚 度 ; 6 为壳体 开孔处 的计算厚 度 ; & 为接管有效 厚度 为强度削弱 结果 系数 因1 - , : 的值很小 , 一般情况下 A 。 的值 随 6 的值 增大而增大。有 2 封头最小厚度对开孑 L 补强计算 的影响 效 厚度一般按式 ( 2 ) 计算 : 2 . 1 封头最小厚度的确定 = 一 c l — c 2 ( 2 ) 冲压封头 的最小厚度必须满足强度设计 的要求 . 是压力容器安全 式中: 为名 义 厚度; c 。 为钢板负偏差; c 为腐蚀余量。( ] 々 第9 1 页)
SW6开孔补强计算书Word版

0.8
mm
壳体腐蚀裕量C
2
mm
壳体材料许用应力[σ]t
113
MPa
开孔中心到壳体轴线的距离
1000
mm
接管轴线与壳体表面法线的夹角
56.44
度
接管实际外伸长度
100
mm
接管材料名称及类型
20(GB8163),管材
接管实际内伸长度
10
m
2
mm
补强圈材料名称
设计条件
简图
计算压力pc
0.1
MPa
设计温度
115
℃
壳体型式
椭圆形封头
壳体材料
名称及类型
Q235-B
板材
壳体开孔处焊缝系数φ
0.85
壳体内直径Di
2400
mm
壳体开孔处名义厚度δn
10
mm
壳体厚度负偏差C
0.8
mm
壳体腐蚀裕量C
2
mm
壳体材料许用应力[σ]t
113
MPa
椭圆形封头长短轴之比
2.143
Q235-B
板材
壳体开孔处焊缝系数φ
0.85
壳体内直径Di
2400
mm
壳体开孔处名义厚度δn
10
mm
壳体厚度负偏差C
0.8
mm
壳体腐蚀裕量C
2
mm
壳体材料许用应力[σ]t
113
MPa
椭圆形封头长短轴之比
2.143
开孔中心到壳体轴线的距离
mm
接管轴线与壳体表面法线的夹角
2.235
度
接管实际外伸长度
100
sw6计算塔器时应注意的几个问题

工程技术・189・SW6计算塔器时应注意的几个问题李燕平中国石油天然气第一建设有限公司河南洛阳471023摘要本文就应用SW6软件进行塔器计算时应注意的一些问题进行了探讨,尤其对设计时易忽略的内容包括液注静压力的影响、开孔补强计算、管道外载的计算等提供了设计思路并给出了合理化建议。
关键词塔器液注静压力开孔补强管道外载中图分类号:TP205文献标识码:B文章编号:1672-9323(2019)02-0189-02塔设备是石油化工等生产装置中最重要的设备之一,其性能对整个装置的产品质量、生产能力以及能耗等都有重大的影响。
因此,塔器的合理设计就显得尤为重要。
另外,塔器的操作条件较为苛刻,计算比较复杂,在使用SW6软件时,应全面考虑计算的正确性和完整性,才能确保塔器设计的安全性。
1下封头的液注静压力使用SW6计算塔器时,下封头数据输入对话框中并没有液注静压力的输入项,也就是说程序会按照NB/T47041的规定,把小于设计压力5%的液注静压力忽略不计。
通常情况下,忽略小于设计压力5%的液注静压力对壁厚计算影响不大,但当塔壳直径较大且液注静压力接近5%的设计压力时,对下封头的厚度计算就会产生较大的影响。
某项目一台直径5500的粗脩塔,设计压力l.OMPa,腐蚀裕量2mm,手算得出下封头的液注静压力为0.047MPa,小于设计压力的5%。
因此,软件自动忽略液注静压力的影响,只考虑内压,下封头计算厚度为15.2mm,设计选用的名义厚度为18mm(不考虑成型减薄),组合应力校核结果为合格。
如果考虑0.047MPa的液注静压力,用1.047MPa的计算压力进行计算,下封头的计算厚度为16.07mm,手算得出的设计厚度为16.07+2+0.3=18.37nnn,计算厚度增加了0.87mm,名义厚度需圆整到20mm。
液注静压力是塔器在操作过程中实际存在的载荷,当塔器直径较大时,忽略液注静压力是不可取的,设计者应通过计算后确定,对壁厚取值没有影响的自然可忽略,影响壁厚跳档的还是考虑为宜。
SW6计算问题汇总

SW6计算问题汇总1. 什么叫波形膨胀节的加强圈?它起什么作用?答:指加于膨胀节直边段外侧的加强圈(一般为扁钢)。
该加强圈能减小波纹管直边段的周向薄膜应力。
2. 经常发生用水压试验压力代入后,波形膨胀节的薄膜应力较核通不过的情况。
但SW6-98未提出此要求。
答:不是SW6-98未提出此要求,而是膨胀节标准GB16749-1997未提出此要求。
3. 鞍座计算时,鞍座高度h是指鞍座的标准高度还是鞍座的腹板高度?答:由于h是用来计算鞍座腹板的平均应力s9,故应输入鞍座腹板中间处的最小高度。
4. GB151中,对筒体规定了一个最小厚度,但有时强度计算并不需这么厚,似乎有浪费,特别对于贵重有色金属设备更是如此。
答:GB151中规定的最小厚度是考虑了管束等内件重量使得在制造、安装时筒体所需要的刚度,这是必须要满足的。
但对于有色金属设备,GB151尚没有给出筒体的最小厚度,应建议标准编制单位补充该条规定。
5. 在固定管板换热器计算时,如用F19×2的管子,管子的压应力校核往往通不过,原因是计算得到的许用压应力很小,用何方法调整?答:首先,请注意管子的受压失稳当量长度是否按GB151的规定取值,该值对管子许用压应力的影响很大。
其次,管子的直径对许用压应力也有较大的影响,一般F25的管子要比F19的管子在许用压应力的计算值上大50%左右。
由于管子的直径一般不能改动,因其对换热面积有很大的影响,故工程上一般只能考虑减小折流板的间距。
当折流板的间距无法再改小时,只能由设计人员根据使用经验自行确定是否忽略换热管压应力的校核结果。
6. 计算锥形封头时,如压力很小(如p=0.1MPa),p/[s]t×f 的值往往小于0.002,这时程序不能计算,如何解决?答:由于GB150-1998中计算锥形壳体大、小端加强厚度时的Q值曲线图横座标的右端极限(p/[s]t×f)为0.002,故程序也限定此值为计算的界限。
压力容器卷筒大开孔补强计算方法

压力容器卷筒大开孔补强计算方法摘要:压力容器是能够承载一定压力的气体或液体容器,大开孔的压力容器为保证其抗压能力,需在开孔接管位置进行补强。
本文主要对压力容器大开孔补强的相关计算方法进行了分析,并对其进行比较,以找出最适合的补强方法。
关键词:压力容器;大开孔补强;计算方法随着工程技术的发展,对压力容器的要求也越来越高,压力容器常需要进行大的开孔接管工序,而在压力容器上进行开孔操作就会破坏原来的应力状态,使压力容器内的力平衡遭到破坏,因而为了恢复容器内应力平衡状态,需要对容器开孔位置进行补强,而对于补强的计算主要有以下几种方法。
1.压力面积法压力面积法是通过使圆筒、补强原件和接管有效截面产生的承载力与有效补强范围内产生的载荷相等来实现补强的一种计算方法,这种方法在计算时主要考虑补强材料薄膜应力即可,并没有涉及到容器开孔孔边弯曲强度问题,这一方法的计算方式虽然和以往等面积方法有所不同,但原理是一样的。
其计算通式是(Ap/Aσ+1/2)p≤[σ],其中Ap是指压力容器有效补强范围内的压力作用面积,而Aσ是指补强元件、接管等有效承载面积,p是容器圆筒的设计压力,[σ]则是指所应用的补强材料的许用应力,从上面的计算式就可以看出这一方法的计算是建立在补强截面薄膜应力计算的基础上,而不涉及孔边弯曲应力,因而在实际应用中,常会因实际应力与计算结果相差太大而失去补强的目的,因此这种方法在实际工程中应用较少。
2.ASME计算法鉴于压力面积法在弯矩问题上的缺点,ASME方法就在压力面积法上增加了弯矩作用计算,在理论上就是在计算薄膜应力的同时增加弯矩应力计算,因而其计算通式是,Sb=,M=(/6+RRne)p,其中As是指开孔区域内的横截面面积,而I是指As面积中所对应的中性轴惯性矩,a是指中性轴和容器壁表面之间的距离,Rm是指课题平均的半径长度,Rnm是指接管颈平均的半径长度,e是指As面积中性轴和壳壁中面处之间的距离,由上面的计算式可以看出该计算方法对薄膜应力的计算和压力面积方法相同,并对补强范围进行了调整,然后在这一基础上增加了弯矩计算,弯矩应力主要包括两个部分,一是在实施开孔操作后在孔边缘产生的轴向拉力,二是开空前在开孔区域内压位置上差异不同所带来的弯矩,这一种计算方法较压力面积法更为进步,考虑了开孔位置边缘弯矩应力问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用SW6―2011计算压力容器开孔补强的几个问题
0 引言
为满足工艺或结构需要,在压力容器设计中开孔是必不可少的。
容器开孔接管后会引起开孔或接管部位的应力集中,再加上接管上会有各种外载荷所产生的应力及热应力,以及容器材料和制造缺陷等各种因素的综合作用,使得开孔和接管附近就成为压力容器的薄弱部位。
虽然标准和规范对设计和计算都作了较为详细的规定,但在使用SW6-2011过程设备强度计算软件计算开孔补强时需要注意对标准规范中有关定义的理解和把握,灵活运用软件,必要时对有关数据进行调整,才能得到正确的结论,保证设备的安全可靠性。
1 补强方法及适用范围
1.1 计算时应注意的问题
在使用SW6-2011计算开孔补强之前要先判断接管的直径和壁厚是否满足GB150.3-2011中6.1.3不另行补强的最大开孔直径[1]的要求,满足要求的可以不进行计算,没有进行判断直接输入数据的,生成计算书会显示满足不另行补强的最大开孔直径的要求,不予进行计算。
还需要注意的是单个孔开孔补强计算合格,然而该孔的有效补强区B=2d范围内还有其他开孔,形成孔桥的,则应按孔桥处理。
在计算两相邻开孔中心的间距或者任意两孔中心的间距时对曲面间距应按弧长计算,按照弦长或中心线
垂直距离计算是不正确的。
1.2 补强计算方法及适用范围的理解
SW6-2011补强计算方法给出四种:等面积补强法、另一补强方法、分析方法和压力面积法。
计算软件中的等面积补强法是指单个开孔的等面积法,联合补强法是指多个开孔的等面积法。
等面积法是开孔补强计算方法中最广泛应用的计算方法,该法是以补偿开孔局部截面的一次拉伸强度作为补强准则的,是以无限大平板上开有小圆孔时孔边的应力集中作为理论基础的,即仅考虑容器壳体中存在的拉伸薄膜应力,对开孔边缘的二次应力的安定性问题是通过限制开孔形状,长短径之比和开孔范围(开孔率)间接考虑的[2],使用该法应考虑开孔是否满足GB150.3-2011中6.1.1的规定。
对于承受静载的压力容器开孔,长期实践证明该法在允许使用范围内,其补强结果是比较安全可靠的。
分析法是根据弹性薄壳理论得到的应力分析法用于内压作用下具有径向接管圆筒的开孔补强设计,其开孔率可达0.9。
压力面积法为HG20582-2011大开孔的补强计算[3]中介绍的补强方法,其开孔率可达0.8。
分析法和压力面积法都是适用于大开孔径向接管补强计算的,不能计算斜接管。
大开孔即超出等面积补强法适用范围的开孔。
而且分析法只能用在筒体上的开孔,封头上的大开孔应用压力面积法计算,但在我国压力面积法尚不能作为合法的设计依据,该方法只能参考使用。
压力面积法和等面积法一样,都不适用于有疲劳强度要
求的开孔补强计算。
另一补强方法则为基于塑性失效准则的极限分析法,对受内压单个开孔的密集补强采用[4],这种设计方法限制条件:接管横截面必须为圆形,其中性轴垂直于壳体、接管和补强件应采用整体结构,过渡部分应打磨成圆角[5]。
使用SW6-2011软件进行单个开孔补强计算输入数据后,软件根据输入条件自动选择适合的计算方法,如不符合单孔补强条件形成孔桥的,则必须选择联合补强法,并输入相关数据才能得到正确的计算结果。
2 封头最小厚度对开孔补强计算的影响
2.1 封头最小厚度的确定
冲压封头的最小厚度必须满足强度设计的要求,是压力容器安全使用的前提条件。
GB/T25198-2010《压力容器封头》中6.3.13规定:根据制造工艺确定封头的投料厚度,以确保封头的成品最小厚度不小于设计要求的最小成型厚度[6]。
设计要求的最小成型厚度一般要大于等于设计压力下的设计厚度即计算厚度加上腐蚀余量。
还应考虑由于下料厚度大于名义厚度后有可能造成许用应力下降,如遇此种情况应把设计规定的成型后封头最小厚度乘以最小厚度的许用应力与落料厚度许用应力的比值。
还有些设备需要标注最高允许工作压力的,比如需安装安全泄放装置且需进行气密性试验的容器,为使安全泄放装置的整定压力高于气密性试验压力,应确定设备的最高允许工作压力。
由于固定式压力容器安全技术监察规程4.8规定:对于介质毒性程度为极度、高
度危害或者设计上不允许有微量泄露的压力容器,应该进行泄漏实验,泄露试验根据试验介质种类的不同,分为气密性实验以及氨检漏试验、卤素检漏试验和氦检漏试验等。
其中气密性试验压力为压力容器的设计压力。
进行气密性试验时,一般应当将安全附件装配齐全。
又根据固定式压力容器安全技术监察规程3.9.2规定:超压泄放装置的动作压力(1)装有超压泄放装置的压力容器,超压泄放装置的动作压力不得高于压力容器的设计压力(2)对于设计图样中注明最高允许工作压力的压力容器,允许超压泄放装置的动作压力不高于该容器的最高允许工作压力[7]。
为使超压泄放装置在做气密性试验的时候不起跳,又能满足规定,需要在图纸上注明最高允许工作压力,最高允许工作压力应综合考虑包括筒体、封头、法兰和接管等在内的所有受压部件所允许承受的最大表压力。
这时取气密性试验压力等于设计压力,超压泄放装置的动作压力高于该容器的设计压力,低于最高允许工作压力。
此时封头的最小成型厚度要大于等于最高许用工作压力下的设计厚度。
2.2 开孔补强计算时封头有效厚度的确定按照
GB150.3-2011等面积补强法进行开孔补强计算时,需计算壳体有效厚度减去计算厚度之外的多余面积A1如图1所示,其值按式(1)计算。
图1 补强面积A1
A■=(B-d■)(δ■-δ)-2δ■(δ■-δ)(1-f■)(1)
式中:B为补强有效宽度;dop为开孔直径;δe为壳体开孔处的有效厚度;δ为壳体开孔处的计算厚度;δet为接管有效厚度;fr为强度削弱系数。
因1- fr的值很小,一般情况下A1的值随δe的值增大而增大。
有效厚度一般按式(2)计算:
δe=δn-c1-c2(2)
式中:δn为名义厚度;c1为钢板负偏差;c2为腐蚀余量。
由于封头给出最小厚度δmin时,封头的实际厚度可能小于名义厚度,此时进行开孔补强计算时,封头开孔处的有效厚度应取δe=δmin-c2。
采用SW6-2011软件进行开孔补强计算时,封头的有效厚度不是直接输入的,而是程序根据输入数据计算生成的,为得到合理的计算结果,通常用两种方法对输入数据进行调整。
(1)对腐蚀裕量的值进行调整为c2,=(δn-c1-δmin)+c2;
(2)把封头的最小厚度填到壳体名义厚度的地方,并且指定壁厚负偏差为零进行计算。
3 开孔补强接管有效外伸长度及椭圆开孔直径的确定
3.1 开孔补强接管有效外伸长度
旧标准GB150-1998《钢制压力容器》标准里没有明确的给出开孔补强的计算截面的选取。
在实际设计中有些设计者往往分不清接管实际外伸长度具体指的是筒体轴向截面的外伸高度还
是筒体径向截面的外伸高度,而且非径向接管的外伸端面并非平行于筒体表面,因此在径向和轴向截面上接管两侧的伸出长度也不一定相等。
在这种情况下,简单的选取最短边就有可能造成裕量过大和材料浪费。
新标准GB150.3-2011中规定了:所需最小补强面积应在下列规定的截面上求取,对于圆筒或锥壳开孔,该截面通过开孔中心点与筒体轴线,对于凸形封头和球壳开孔,该截面通过开孔中心点沿开孔最大尺寸方向且垂直于壳体表面。
这一规定明确了开孔补强计算的取值截面,给设计者带来很大的方便,其理论依据是因为内压圆筒的计算厚度公式是根据一次总体环向薄膜应力所导出的,环向应力是轴向应力的两倍,是筒体中最大的一次薄膜应力,并且为纵向截面所承载。
因此,开孔削薄的计算面积也应是轴向截面,相应的接管外伸有效高度也应是在轴向截面上接管的外伸高度。
3.2 椭圆开孔直径的确定
SW6-2011计算椭圆开孔补强时,输入开孔直径的通常处理办法为:位于封头上的椭圆人孔在确定开孔直径时应按长轴尺寸确定;位于筒体上时,按平行设备轴线方向的开孔尺寸确定。
例如,椭圆开孔的短轴平行于设备的轴线,那么开孔尺寸按短轴尺寸计算。
这主要取决于设备的应力分布,筒体的轴向应力是其环向应力值得一半。
4 结论
SW6-2011计算软件在压力容器设计中的应用,提高了设计
效率,给设计人员带来了很大的方便,但对设计人员的素质也提出了较高的要求。
有的设计人员由于缺乏正确理解常用标准规范和软件计算的理论基础,导致数据输入有误,又忽略计算过程,得出错误的结论,产生安全隐患。
开孔补强计算是压力容器强度计算的重要部分,需要设计人员充分考虑设计参数、标准要求、计算方法及特殊情况对数据的调整,重视设计过程中的某些细节问题,计算时严格校审选用的模块、输入的数据、输出的结果,详细检查计算书的每一个数据是否正确,确保其符合设计标准规范的规定,保证设备的安全可靠性。
【。