C筒形压力容器上切向接管开孔补强计算
压力容器之使用补强圈补强的接管补强计算

接管连接型式
插入式接管
接管实际内伸长度
0
mm
接管材料
20(GB8163)
接管焊接接头系数
1
名称及类型
管材
接管腐蚀裕量
1
mm
补强圈材料名称
凸形封头开孔中心至
封头轴线的距离
mm
补强圈外径
mm
补强圈厚度
mm
接管厚度负偏差C1t
0.6
mm
补强圈厚度负偏差C1r
mm
接管材料许用应力[σ]t
148.25
MPa
接管:B1,B2,φ108×4
计算方法: GB150.3-2011等面积补强法,单孔
设计条件
简图
计算压力pc
3.5
MPa
设计温度
150
℃
壳体型式
圆形筒体
壳体材料
名称及类型
Q245R
板材
壳体开孔处焊接接头系数φ
1
壳体内直径Di
450
mm
壳体开孔处名义厚度δn
8
mm
壳体厚度负偏差C1
0.3
mm
壳体腐蚀裕量C2
8
mm2
A1+A2+A3=158
mm2,小于A,需另加补强。
补强圈面积A4
561
mm2
A-(A1+A2+A3)
430
mm2
结论:合格
封头轴线的距离
mm
补强圈外径
210
mm
补强圈厚度
6
mm
接管厚度负偏差C1t
0.6
mm
补强圈厚度负偏差C1r
0.3
mm
接管材料许用应力[σ]t
开孔与开孔补强的计算编程

第一章绪论1.1开孔补强的重要性在压力容器设计中,为满足工艺操作,容器制造、安装、检验及维修等要求,开孔是不可避免的。
由于容器开孔以后,不仅消弱了容器的整体强度,而且还因开孔引起的应力集中以及接管和容器壁的连接造成开孔边缘的局部的高应力,这种高应力可以达到容器筒体一次总体薄膜应力的3倍,某些场合甚至会达到5~6倍,再加上接管有时还会受到各种外加载荷的作用而产生的应力温差产生的热应力,使得开孔接管处的局部应力进一步的提高。
又由于材质和制造缺陷等各综合作用,开孔接管附近就成了压力容器的破坏源—主要疲劳破坏和脆性裂口。
因此,压力容器设计中必须充分考虑开孔的补强问题。
1.2 开孔补强的设计方法(一)等面积补强法采用此方法要求容器开孔后,在容器和接管连接处周围的补强金属必须等于或大于开孔缩消弱的金属量(已通过孔截面的投影面积计算)。
它是根据补强后,强度安全系数为4~5的经验制订,希望不降低容器开孔后的平均应力。
这种补强方法比较安全可靠,使用简便,就是在接管同时受到内压、弯矩、推力等作用也能够给出足够的安全裕度。
但对不同的接管进行补强时,会得到不同的应力集中系数。
等面积补强应以在开孔中心截面上的投影面积进行计算,使补强材料的截面积不小于因开孔而挖掉的金属面积。
补强材料一般需与壳体材料相同,补强材料许用应力小于壳体的时,补强面积按壳体材料与补强材料许用应力之比而增加。
若补强材料的许用应力大于壳体的许用应力,所需的面积不得减少。
(二)根据弹塑性失效准则的设计方法这种补强方法,允许补强后的容器在开孔附近出现塑性变形。
在一次加载过程中出现的一定量的塑性变形,在第二次以后的重复加载中,除了蠕变效应外,不会再出现新的塑性变形。
只要一次应力加上二次应力小于三倍许用应力即两倍的屈服应力,容器就认为是安定的。
这种补强方法是根据美国压力容器研究委员会(PVRC)在圆筒和球壳上装有单根圆筒形径向接管的研究结果得出,其基本的出发点是从应力分类中的安定性概念出发,为维持开孔接管区的安定而僵局部高应力点的虚拟应力限制于δ2s,且将开孔并补强后壳体的屈服压力维持在为开孔时的98%的屈服压力。
压力容器圆筒开孔补强计算方法研究.docx

压力容器圆筒开孔补强计算方法研究应力集中危害问题要通过正确的方式强化管理,实现补强计算分析,进而充分的保障压力容器的安全性,提升整体的经济性。
通过开孔补强计算方式,可以有效的解决此种问题。
1.压力容器圆筒大开孔补强计算方法应用价值多数工程具有复杂化、大型化以及工艺特殊的特征,在施工中一些压力容器要通过较大的开孔接管进行处理,此种方式会转变原有容器的应力状态,消弱压力容器的强度。
针对与柱壳容器,开孔之后会导致其受到接管弹性约束的影响,导致容器主管的开孔附近受到薄膜应力状态轴向力以及环向力的影响,出现弯矩以及扭矩等问题。
为了提升整体稳定性,在实践中针对一些大开孔设计y要通过科学合理的方式分析受力状况,进而保障施工安全性,提升整体质量。
2.压力容器圆筒大开孔补强计算方法2.1压力面积法通过欧盟标准压力面积法,综合我国实际状况,在被开孔削弱面积补在孔的周围,给出其需药补强的具体面积,不计孔周边的应力集中问题。
开孔补强设计主要的要求就是基于结构进行静力强度分析,基于一次应力强度出发,分析开孔边缘二次应力安定性。
综合其安全系数以及实践经验系统分析。
此种方式对于开孔边缘的应力强度进行分析是否满足一次总体以及局部中对于薄膜应力静力强度要求。
通过对补强范围材料平均薄膜应力控制的方式达到进行应力强度的控制与管理,要保障其在一倍的许用应力。
综合压力在壳体受压面积产生的荷载以及有效补强范围中的课题、接管。
补强材料面积承载能力平衡的相关静力平衡条件则可以确定其进行接管补强计算的方式。
在壳体以及接管、补强材料相同的时候要根据以下公式进行补强计算公式为:P表示的是设计压力。
2.2分析法分析法就是根据弹性薄壳理论获得的应力分析方式。
主要就是在内压作用之下其具有径向接管圆筒开孔的补强设计分析。
分析法设计准则与压力面积法之间具有一定的差别。
此种方式的模型假定接管以及壳体属于连续性的整体型结构,其计算模型如下图所示。
在应用分析法的时候,要保障焊接接头的质量,保障其整体焊透性。
压力容器筒体上锥形接管开孔补强计算的探讨

补强范围是以端部受均布载荷的圆柱壳的环向薄膜
等面积补强法是 以拉伸的开孔大平板为计算模 以补强壳体的一次总体平均应力作为补强准则。当 开孔较小时 , 开孔边缘的局部应力 以薄膜应力为主 , 故该方法可适用。随着壳体开孔直径增大 , 开孔边 缘不仅存在很大的薄膜应力 , 而且还产生很 高的弯
径 向和非 径 向锥形接 管五种 开 孔结 构形 式 开孔补 强 的计算 进行探 讨 。 关键 词 : 开孔补 强 ; 锥 形接 管 ; 径 向; 非径 向
I ) OI : 1 0 . 1 3 7 8 3 / j . e n k i . e n 4 1—1 2 7 5 / g 4 . 2 0 1 5 . 0 3 . 0 3 0
定》 中, 第 6章针对非径 向接管的开孔补强计算 , 提
出 了适用 于 圆筒 、 锥壳 、 球壳 、 凸形 封 头 和平 封 头 在 内压 或外 压作 用 下装 有单个 或 多个 非径 向圆形接 管
( 包括球壳和凸形封头 的非径 向接管 、 圆筒 或锥壳
轴 向斜接 管 和 周 向斜 接 管 、 平封头斜 接管) 的 补 强 计算 方法 , 适用 范 围为壳体 或封头 所允许 的最大开孔 直径 ( 以椭 圆 孔 的短 轴 计 ) 。按 G B 1 5 0 . 1—1 5 0 . 4—
油 化 工 压 力 容 器 设 计 工作 。
・
1 2 5・
孔 大平板 孔 边应力 的衰 减 范 围进 行 考 虑 的 , 即补 强 范 围取 为 2倍 开孑 L 直径 对应 的范 围 。接管 上 的有 效
应力的衰减范围 进行考虑的, 即补强范围取为 ̄ /
( d为开孔直径 , 为接管名义厚度 ) 。
等面积补强法以补偿开孔局部截面的拉伸强度 作为补强准则 , 其补强 只涉及静力强度问题 。壳体
压力管道设备开孔补强计算方法探讨

[1]周冬雨,压力管道设备开孔补强计算方法研究.2018.
[2]郎图婷,浅谈压力管道设备开孑L补强计算方法探讨.2018.
总之,开孔补强的计算方法大体分为两种,一种是按照压力容器开孔补强方法,另一种是按照压力管道设备有关标准的要求进行计算或补强核算,这两种计算方法的理论基础均为等面积补强。用等面积补强法计算或者核算开孔补强时会有所不同,具体采用哪种方法,需在满足相应标准的前提下,根据环境、材料及工程具体情况等因素来选择,使工程设计更加合理准确。大开孔补强应力分析法是基于弹性薄壳理论的计算方法,很好地体现危险截面的应力集中情况,为压力管道大开孔补强设计提供了一种安全快捷的计算方法。
2.许用应力取值方法不同。采用前者方法计算时的许用应力可以在文献中直接查取,而采用后者计算方法时则通过查取材料的屈服强度后乘上设计系数得出。这两种方法会使同种材料许用应力的取值有不小的差异,导致简体的计算壁厚也相差不少。另外,如果在文献[1]中查取材料的许用应力,那么文献中没有列出的材料就无法查到相应的许用应力值。而采用后者计算方法,只要知道材料的屈服强度和设计系数就可以计算出许用应力值。适用范围广泛。
压力管道设备开孔补强计算方法探讨
摘要:随着工艺要求的提高,管线开孔在没有标准管件可用的情况下,大口径管道上直接开孔焊接支管是管道设计时经常会遇到的问题,由于开孔面积较大,需要对开孔处进行详细核算以确定是否需要补强。若需要补强,要根据具体情况、相关标准规范来进行计算和判断,找出最适合的补强方式,并根据计算补强的具体参数要求进行开孔补强,核算结果的准确与否及开孔补强是否足够将影响管道的安全平衡运行。
2.压力面积法。压力面积法是G20582-2011《钢制化工容器强度计算规定》介绍的大开孔计算方法,来源于西德AD规范B9补强设计的规定,这是一种近似的分析方法,基本上是一种经验的极限分析方法。它根据试验应变测量,对具有各种尺寸的开孔与带有齐平径向接管的圆筒形容器上做了一系列压力试验,以壳体开孔接管处产生0.2%的应变所需的压力导出削弱系数,并绘制成曲线。在确定补强设计时,需将削弱系数值代入壳体厚度公式中进行计算,并将开孔率限制在0.8。该法在本质上仍与等面积法相同,对于开孔边缘应力只考虑满足一次总体及局部薄膜应力的静力要求。压力面积法的基本出发点是,对于内压壳体,是以压力载荷的面积和壳体、接管、补强件的承载截面积之间相互平衡为基础的,即由压力载荷的面积对压力乘积所表示的载荷和壳体、接管、补强件承载横截面积对材料许用应力的乘积之间相互平衡,在工程实践中往往应用于低压容器开孔补强的计算中,该方法在计算高压管道大开孔补强时,其结果往往是偏冒进的,随着新版G20582的发布,其方法的适用范围受到更加严格的限制,因此压力面积法不适合压力管道开孔补强计算。
压力容器开孔补强方法

压力容器开孔补强方法作者:马军伟来源:《中国新技术新产品》2015年第11期摘要:在工程应用中经常需要为满足各种工艺和结构上的要求在压力容器上开孔和安装接管。
容器开孔以后,开孔的地方会形成较大应力,这时需要进行补强,本文列举了一系列容器开孔方法,如等面积法、分析法以及压力面积法等。
关键词:大开孔;补强;压力容器中图分类号:TQ050 文献标识码:A1 前言随着石油化工技术以及海洋和空间等技术的发展,压力容器结构也不再像传统容器结构那样简单。
工艺以及结构需求的不同,使得容器的许多受压元件均要开孔接管,有时还需设计直径大于800mm的大开孔。
容器通过进行开孔,可以减弱其整体强度,使开孔边缘应力过于集中。
按照JB 4732规范提到的应力分类,容器开孔后的应力有以下几种:相贯线壳体变形造成的应力及峰值应力等等。
在容器设计制造中,国内对容器接管开孔补强一般采用以下几种方法:补强圈补强及厚壁接管补强等。
当补强圈补强与壳体厚度相等时,补强圈由于面积过大从而不能集中补强,而且壳体本身和壳体上的其它部件通常也会限制补强圈面积,因此补强圈补强一般适用于容器应力水平低,材料塑韧性好,且容器的工作条件比较优良的场合。
当采用厚壁接管补强时,由于接管与筒体的壁厚相差较大,增大了现场焊接难度和制造成本,若再出现接管力和接管弯矩作用时,接管的设计壁厚将急剧增加,将无法实现接管壁厚补强,因此接管壁厚补强一般适用于像仪表口等小直径接管的补强;而整体锻件补强由于受到锻件制造工艺的约束,目前一般用于封头人孔接管的补强,其结构尺寸大(DN500),成本高,制造难度大,周期长。
以上几种补强对小直径接管来说,优势非常明显。
但对于容器直径较大的(>800mm)开孔接管补强,会因为它的根部峰值应力过大,使得装置运行后,造成容器衬里脱落,甚至可能会造成装置停车。
从这个角度来看,传统的接管补强方法已经不能满足大型化装置。
针对以上情况本文介绍几种常用的压力容器大开孔计算方法。
浅谈压力容器开孔补强的方法.

浅谈压力容器开孔补强的方法浅谈压力容器开孔补强的方法2011-04-17 09:23 来源:未知浏览次数:关键字:方法,补强,开孔,压力容器,浅谈,浅谈压力容器开孔补强的方法李文英摘要:本文主要对压力容器开孔后进行补强的方法进行探讨,主要针对等面积补强;压力容器大开孔补强方法;平盖开孔补强;高压蒸汽过热器联箱开孔补强这几种方法进行了比较。
关键词:压力容器开孔补强方法随着化工行业的发展,压力容器在化工厂中越来越普遍,其安全性也越来越受到重视。
这样在压力容器设计中一些较易出现问题的地方,更引起人们的注意了,如压力容器封头上的开孔及补强是一个非常爱出问题的地方,一旦计算有误就会造成容器的破坏,甚至引起工作人员的伤害,或者造成经济上的浪费。
下面就对压力容器的开孔补强进行分析。
1.等面积补强化工容器常用的开孔补强方法是等面积补强法,其基础理论是在有效补强范围内所加补强材料的截面积必须大于或等于因为开孔而失去的截面积。
其实质在于补强壳体的平均强度,即维持容器整体的屈服强度,理论模型是无限大平板开小孔,不至于因开边缘附加弯曲应力引起大的误差,故对小直径开孔安全可靠,其计算方法如下:满足下列条件不需补强:A1+A2+A3≥A不满足这一条件则需要补强,补强金属的面积为:AO= A一(A1+A2+A3 )式中:A---壳体因开孔而削弱的截面积;AO----补强金属的面积;A1---筒体或封头上超过计算厚度S所多余的金属截面积;A2---接管上超过强度计算厚度所多余的金属截面积;A3---补强区内焊缝的截面积。
其适用范围是局部补强的材料基本上应与壳体相同,其强度不应小于壳壁材料强度的75%。
适用于筒体的最大开孔直径dI≤1000毫米,而封头的开孔最大直径是dI≤1/2DJ。
d i—开孔最大直径;DJ—封头内径。
这类计算方法只能在一般情况下应用,在特殊情况下则不适用,例如容器大开孔时补强,平盖的开孔补强以及高压蒸汽过热器的开孔补强,下面将分别讨论。
压力容器圆筒开孔补强计算方法研究.docx

压力容器圆筒开孔补强计算方法研究.docx压力容器圆筒开孔补强计算方法研究应力集中危害问题要通过正确的方式强化管理,实现补强计算分析,进而充分的保障压力容器的安全性,提升整体的经济性。
通过开孔补强计算方式,可以有效的解决此种问题。
1.压力容器圆筒大开孔补强计算方法应用价值多数工程具有复杂化、大型化以及工艺特殊的特征,在施工中一些压力容器要通过较大的开孔接管进行处理,此种方式会转变原有容器的应力状态,消弱压力容器的强度。
针对与柱壳容器,开孔之后会导致其受到接管弹性约束的影响,导致容器主管的开孔附近受到薄膜应力状态轴向力以及环向力的影响,出现弯矩以及扭矩等问题。
为了提升整体稳定性,在实践中针对一些大开孔设计y要通过科学合理的方式分析受力状况,进而保障施工安全性,提升整体质量。
2.压力容器圆筒大开孔补强计算方法2.1压力面积法通过欧盟标准压力面积法,综合我国实际状况,在被开孔削弱面积补在孔的周围,给出其需药补强的具体面积,不计孔周边的应力集中问题。
开孔补强设计主要的要求就是基于结构进行静力强度分析,基于一次应力强度出发,分析开孔边缘二次应力安定性。
综合其安全系数以及实践经验系统分析。
此种方式对于开孔边缘的应力强度进行分析是否满足一次总体以及局部中对于薄膜应力静力强度要求。
通过对补强范围材料平均薄膜应力控制的方式达到进行应力强度的控制与管理,要保障其在一倍的许用应力。
综合压力在壳体受压面积产生的荷载以及有效补强范围中的课题、接管。
补强材料面积承载能力平衡的相关静力平衡条件则可以确定其进行接管补强计算的方式。
在壳体以及接管、补强材料相同的时候要根据以下公式进行补强计算公式为:P表示的是设计压力。
2.2分析法分析法就是根据弹性薄壳理论获得的应力分析方式。
主要就是在内压作用之下其具有径向接管圆筒开孔的补强设计分析。
分析法设计准则与压力面积法之间具有一定的差别。
此种方式的模型假定接管以及壳体属于连续性的整体型结构,其计算模型如下图所示。