二次函数重要知识点归纳
二次函数知识点全总结初中

二次函数知识点全总结初中二次函数是代数学中的重要内容,也是中学数学中的重要内容之一。
在学习二次函数时,不仅要掌握它的基本概念和性质,还要掌握它的图像、方程和应用等方面的知识。
下面对二次函数的知识点进行全面总结。
一、二次函数的基本概念和性质1. 二次函数的定义二次函数是形如f(x) = ax² + bx + c (a≠0)的函数,其中a、b、c为常数。
二次函数的自变量x的最高次数是2,因此称为二次函数。
2. 二次函数的图像二次函数的图像通常是一个开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的开口方向由二次项的系数a决定。
3. 二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, f(-b/2a))。
顶点的横坐标为-x轴上的对称轴,纵坐标为抛物线的最低值或最高值。
4. 二次函数的对称轴对称轴是过顶点并垂直于x轴的直线,对称轴的方程为x = -b/2a。
5. 二次函数的零点二次函数与x轴相交的点称为零点,其坐标为(x, 0)。
二次函数的零点可以由解二次方程ax² + bx + c = 0得到。
6. 二次函数的凹凸性凹凸性是指二次函数的图像的形状,当a>0时,抛物线开口向上,图像是凹的;当a<0时,抛物线开口向下,图像是凸的。
二、二次函数的图像与性质1. 二次函数图像的平移二次函数y = ax² + bx + c的图像平移,一般可以通过改变常数c来实现。
当c>0时,图像上移;当c<0时,图像下移。
常数b则可以控制图像的水平平移。
2. 二次函数图像的伸缩二次函数图像的伸缩可以通过改变系数a来实现。
当|a|>1时,图像纵向伸缩;当0<|a|<1时,图像纵向压缩。
系数b则可以控制图像的水平伸缩。
3. 二次函数的最值对于二次函数y = ax² + bx + c,当a>0时,最小值为f(-b/2a),最大值为正无穷;当a<0时,最大值为f(-b/2a),最小值为负无穷。
二次函数的知识点总结

二次函数的知识点总结一、二次函数的定义二次函数是指一个形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是常数,且 $a \neq 0$。
在这个表达式中,$x$ 是自变量,$y$ 是因变量,$a$、$b$ 和 $c$ 是系数,其中 $a$ 称为二次项系数,$b$ 称为一次项系数,$c$ 称为常数项。
二、二次函数的性质1. 抛物线形状:二次函数的图像是一个向上或向下开口的抛物线。
2. 开口方向:当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
3. 对称轴:二次函数图像关于直线 $x = -\frac{b}{2a}$ 对称,这条直线称为抛物线的对称轴。
4. 顶点:抛物线的顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$。
5. 与 X 轴的交点:二次函数与 X 轴的交点称为根,可以通过解方程$ax^2 + bx + c = 0$ 来找到。
三、二次函数的图像1. 顶点式:$y = a(x - h)^2 + k$,其中 $(h, k)$ 是顶点坐标。
2. 交点式:$y = a(x - x_1)(x - x_2)$,其中 $x_1$ 和 $x_2$ 是与 X 轴的交点坐标。
3. 标准式:$y = ax^2 + bx + c$。
四、求解二次方程1. 因式分解法:当能够找到两个数,它们的和等于 $b$,积等于$c$ 时,可以使用因式分解法。
2. 完全平方法:通过配方将二次方程转化为完全平方的形式。
3. 公式法:使用二次公式 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$ 来求解。
五、二次函数的应用1. 物理运动:描述物体在重力作用下的自由落体运动和抛体运动。
2. 优化问题:在商业和工程中,用于寻找最大利润或最小成本。
3. 数据拟合:在统计学中,用于拟合数据点,找到最佳曲线。
二次函数知识点总结3篇

二次函数知识点总结第一篇:二次函数的基本定义及图像二次函数是指一个多项式中最高次为二次的函数,通常写成 $f(x)=ax^2+bx+c$ 的形式,其中 a,b,c 为常数,a 不为零。
二次函数是数学中一类重要的函数类型,其图像为对称的抛物线。
一、基本定义对于二次函数 $f(x)=ax^2+bx+c$,其中 a,b,c 为常数,a 不为零:1. a 是二次函数的开口方向和开口程度的决定因素,当a>0 时,抛物线开口向上;当 a<0 时,抛物线开口向下。
2. x=-b/2a 是二次函数的对称轴。
3. (x, y) = (-b/2a, c-b^2/4a) 是二次函数的顶点,也是对称轴上的最高点或最低点。
4. 当 a>0 时,对于任何 x,有$f(x)≥y_{min}$;当a<0 时,对于任何 x,有$f(x)≤y_{max}$,其中$y_{min}$ 和 $y_{max}$ 分别为二次函数的最小值和最大值。
二、图像特征二次函数的图像是一条对称的抛物线,其最高点或最低点位于对称轴上,最大值或最小值发生在相应顶点处。
抛物线与 x 轴的交点称为根,由于对称性,常见情况下二次函数最多有两个根。
三、常用的二次函数图像变换1. 上下移动。
将二次函数整体向上或向下平移 k 个单位,得到一种新的二次函数 $y=f(x)+k$。
2. 左右移动。
将二次函数整体向左或向右平移 k 个单位,得到一种新的二次函数 $y=f(x-k)$ 或 $y=f(x+k)$。
3. 垂直方向压缩或拉伸。
将二次函数沿 y 轴缩短或拉长至原来的 s 倍,得到一种新的二次函数 $y=sf(x)$。
4. 水平方向压缩或拉伸。
将二次函数沿 x 轴缩短或拉长至原来的 s 倍,得到一种新的二次函数 $y=f(sx)$。
总之,二次函数的图像特征以及常用的变换方式是掌握二次函数知识的重要基础。
在实际应用中,这些基础概念和操作将为我们处理二次函数相关问题提供宝贵的帮助和指导。
《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
抛物线的对称轴是直线 x = b / 2a 。
抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。
三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。
函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。
2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。
函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。
五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。
向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。
向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。
六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。
二次函数知识点梳理

二次函数知识点梳理一、二次函数的定义二次函数是指一个变量的二次多项式函数,其一般形式为 f(x) =ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。
二、二次函数的图像二次函数的图像是一个抛物线。
根据 a 的正负,抛物线开口向上或向下。
a > 0 时,抛物线开口向上;a < 0 时,抛物线开口向下。
三、顶点二次函数的顶点是抛物线的最高点或最低点。
顶点的坐标可以通过公式 (-b/2a, f(-b/2a)) 计算得出。
四、对称轴二次函数的对称轴是一条垂直线,其方程为 x = -b/2a。
对称轴将抛物线分为两部分,这两部分关于对称轴对称。
五、判别式二次函数的判别式是 b^2 - 4ac。
根据判别式的值,可以判断二次函数与 x 轴的交点情况:- 如果判别式 > 0,则有两个实数根。
- 如果判别式 = 0,则有一个实数根(重根)。
- 如果判别式 < 0,则没有实数根。
六、根的性质1. 根的和:如果α 和β 是二次方程 ax^2 + bx + c = 0 的两个根,则α + β = -b/a。
2. 根的积:如果α 和β 是二次方程的两个根,则αβ = c/a。
七、因式分解某些二次函数可以因式分解为 (x - α)(x - β) = 0 的形式,其中α 和β 是函数的根。
八、配方法配方法是求解二次方程的一种方法,通过将二次函数转化为完全平方的形式,从而更容易找到方程的解。
九、二次函数的应用二次函数广泛应用于物理、工程、经济等领域,如描述物体的抛体运动、优化生产成本等。
十、二次不等式二次不等式是形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0 的不等式。
解这类不等式通常需要考虑二次函数的图像和判别式。
十一、复合二次函数复合二次函数是指外层函数是二次函数,内层函数可以是任何实值函数的情况。
这类函数的性质更为复杂,需要结合内外层函数的特点进行分析。
二次函数知识点总结

二次函数知识点总结二次函数是高中数学中的一个重要概念,它在数学和实际问题中都有广泛的应用。
本文将对二次函数的定义、性质、图像及其相关内容进行总结。
一、二次函数的定义二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c为常数且a ≠ 0。
其中,a 表示二次项的系数,b 表示一次项的系数,c 表示常数项。
二次函数的定义域为全体实数集。
二、二次函数的性质1. 凹凸性:二次函数的凹凸性取决于a 的正负性。
当a > 0 时,函数图像开口向上,为凹函数;当 a < 0 时,函数图像开口向下,为凸函数。
2. 对称轴:二次函数的对称轴是 x = -b / (2a)。
对称轴是图像的中心线,函数图像关于对称轴对称。
3. 零点:二次函数的零点是指函数值等于零的 x 值。
二次函数的零点可以有 0、1 或 2 个。
当判别式 D = b^2 - 4ac > 0 时,有 2个不同的实零点;当 D = 0 时,有一个实零点;当 D < 0 时,没有实零点。
4. 最值:当二次函数的开口向上时,函数的最小值为 f(-b / (2a)) = c - (b^2 - 4ac) / (4a);当二次函数的开口向下时,函数的最大值为 f(-b / (2a)) = c + (b^2 - 4ac) / (4a)。
三、二次函数的图像二次函数的图像为抛物线,其开口方向、顶点、对称轴和零点等特征在前面已经介绍过。
关于图像的绘制,可以根据以下步骤进行:1. 确定顶点:顶点的横坐标为 -b / (2a),纵坐标为 f(-b / (2a))。
2. 确定对称轴:对称轴的方程为 x = -b / (2a)。
3. 确定开口方向:根据 a 的正负性可以确定开口方向。
4. 确定零点:根据判别式 D 的值可以确定零点的情况。
除了以上内容,二次函数还与一些相关概念有密切联系:1. 判别式:二次函数的判别式 D = b^2 - 4ac 可以用来判断二次函数的零点情况。
二次函数的相关知识点总结
二次函数的相关知识点总结一、二次函数的概念。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。
- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。
二、二次函数的图象。
1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
2. 抛物线的顶点坐标。
- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。
根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。
3. 抛物线的对称轴。
- 对称轴方程为x =-(b)/(2a)。
4. 抛物线的开口方向。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。
三、二次函数的性质。
1. 增减性。
- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。
- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。
2. 最值。
- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。
二次函数的知识点总结
二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。
其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。
2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。
4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。
零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。
5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。
二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。
通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。
2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。
3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。
4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。
三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。
2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。
二次函数知识点总结(详细)
2.已知二次函数 的图象如图所示, 有以下结论: ① ;② ;③ ;④ ;⑤ 其中所有正确结论的序号是( ) A. ①②B. ①③④C. ①②③⑤D. ①②③④⑤3.二次函数 的图象如图所示, 则下列关系式中错误的是( ) A. a <0 B. c >0 C. >0 4、D. >0图12为二次函数 的图象, 给出下列说法:① ;②方程 的根为 ;③ ;④当 时, y 随x 值的增大而增大;⑤当 时, . 其中, 正确的说法有 .(请写出所有正确说法的序号)5.已知=次函数y =ax +bx+c 的图象如图. 则下列5个代数式: ac, a+b+c, 4a -2b+c, 2a+b, 2a -b 中, 其值大于0的个数为( ) A. 2B 3C 、4D 、5四、二次函数解析式的确定 例4.求二次函数解析式:(1)抛物线过(0, 2), (1, 1), (3, 5);(2)顶点M (-1, 2), 且过N (2, 1);(3)已知抛物线过A (1, 0)和B (4, 0)两点, 交y 轴于C 点且BC =5, 求该二次函数的解析式。
(1) 练习: 根据下列条件求关于x 的二次函数的解析式 当x=3时, y 最小值=-1, 且图象过(0, 7)图象过点(0, -2)(1, 2)且对称轴为直线x=图象经过(0, 1)(1, 0)(3, 0)五、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)11 1 Oxy已知抛物线y=x2-2x-8,(1)求证: 该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B, 且它的顶点为P, 求△ABP的面积。
2、1.二次函数y=x2-2x-3图象与x轴交点之间的距离为如图所示, 二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C,则△ABC的面积为( )A.6B.4C.3D.13.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方, 则m 的取值范围是六、直线与二次函数的问题例6 已知: 二次函数为y=x2-x+m, (1)写出它的图像的开口方向, 对称轴及顶点坐标;(2)m为何值时, 顶点在x轴上方, (3)若抛物线与y轴交于A, 过A作AB∥x轴交抛物线于另一点B, 当S△AOB=4时, 求此二次函数的解析式.1.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。
二次函数知识点归纳
二次函数知识点归纳二次函数是高中数学中重要的内容之一,它在数学以及其他科学领域中有着广泛的应用。
下面是针对二次函数的相关知识点的归纳,希望能够对您理解和掌握二次函数有所帮助。
一、基本概念1. 二次函数的定义: 二次函数是形如f(x) = ax^2+bx+c的函数,其中a、b、c为常数且a不等于零。
2. 二次函数的图像: 二次函数的图像是一个抛物线,其开口方向由二次项系数a的符号确定。
- 若a>0,则抛物线开口向上;- 若a<0,则抛物线开口向下。
二、图像的性质1. 对称轴:二次函数的图像关于直线x=-b/2a对称。
2. 最值点:二次函数的最值点即为图像的顶点,其横坐标为-x/2a,纵坐标为f(-x/2a)。
- 当a>0时,函数的最小值为f(-x/2a);- 当a<0时,函数的最大值为f(-x/2a)。
3. 零点:二次函数的零点即为使函数取值为零的x值,可通过解二次方程ax^2+bx+c=0来求得。
三、函数的变换1. 平移:二次函数可以通过改变h和k的值来进行平移操作。
- f(x)的图像向左平移|k|个单位,新函数为f(x+h);- f(x)的图像向右平移|k|个单位,新函数为f(x-h);- f(x)的图像向上平移|k|个单位,新函数为f(x)+k;- f(x)的图像向下平移|k|个单位,新函数为f(x)-k。
2. 压缩和拉伸:二次函数可通过改变a的值来改变图像的形状。
- 若|a|>1,则函数图像纵向压缩;- 若0<|a|<1,则函数图像纵向拉伸。
四、函数的性质1. 定义域:对于二次函数,其定义域为实数集R,即所有实数x都在定义域内。
2. 奇偶性:二次函数一般是偶函数,除非存在线性项b,则二次函数为奇函数。
3. 单调性:当a>0时,二次函数在抛物线的开口范围内是单调递增的;当a<0时,二次函数在抛物线的开口范围内是单调递减的。
4. 零点和交点: 二次函数与x轴的交点即为零点,与y轴的交点为常数项c,与抛物线的交点为实数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数知识点归纳
1.表达式:①一般式:2y ax bx c =++(0a ≠); ②顶点式:()2
y a x h k =-+(0a ≠) ③交点式:y=a(x –x1)(x –x2) (a ≠0)(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标) 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以
写成交点式,只有抛物线与x 轴有交点,即2
40b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
2.顶点坐标:①(2b a
-,244ac b a -) ②(h ,k ) 3.顶点意义:①当2b x a =-时,0a >,y 有最小值为244ac b a -;0a <,y 有最大值为244ac b a - ②当h x =时,0a >,y 有最小值为k ;0a <,y 有最大值为k
4.a 的意义:
⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.
总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,
a 越大开口
越小.
5.对称轴:①2b x a =-;②h x =;③122x x x +=(其中x 1、x 2为抛物线上对称点的横坐标)
6.对称轴位置分析:①0b =,对称轴为y 轴;
②0ab <,即a 、b 异号,对称轴在y 轴的右侧;
③0ab >,即a 、b 同号,对称轴在y 轴的左侧;(左同右异)
7.增减性:①0a >,2b x a >-(或x >h )时,y 随x 的增大而增大;2b x a
<-(或x <h )时,y 随x 的增大而减小;
②0a <,2b x a >-(或x >h )时,y 随x 的增大而减小;2b x a
<-(或x <h )时,y 随x 的增大而增大
8. 抛物线2y ax bx c =++与y 轴的交点为(0,c ),c 值为抛物线在y 轴上的截距.
9.抛物线与x 轴的交点:①240b ac ∆=-=时,抛物线与x 轴有一个交点;②240
b a
c ∆=->
时,抛物线与x 轴有两个交点;③240b ac ∆=-<时,抛物线与x 轴没有交点.
10.图象的平移:化成顶点式()2y a x h k =-+,上加下减:k m ±;左加右减:h m ±
11.设抛物线与x 轴交于A 、B
两点,则AB a =
或12AB x x =-=12.抛物线上重要的点:抛物线与x 轴、y 轴的交点坐标,以及顶点坐标解题中经常会用到,
所以同学们应能熟练地由解析式求这些点的坐标.
13.二次函数与一元二次方程根的分布: ①若抛物线与x 轴的两个交点在正半轴上,则212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩
; ②若抛物线与x 轴的两个交点在负半轴上,则212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩
; ③若抛物线与x 轴的两个交点分别在正、负两半轴上,则212400b ac c x x a ⎧∆=->⎪⎨=<⎪⎩
④若抛物线与x 轴的两个交点只有一个点在m <x <n 范围内,则f (m )·f (n )<0
14.抛物线2y ax bx c =++与直线y =mx +n 的位置关系:
两式消掉y ,得2()0ax b m x c n +-+-=,2()4()b m a c n ∆=---,①∆>0相交,两解析式组成的方程组的解即为图象交点坐标;②∆<0相离;③∆=0相切.
15.二次函数与二次不等式:
若抛物线2y ax bx c =++与x 轴交于(x 1,0)、(x 2,0),①a >0时,20ax bx c ++>解集为 x <x 1或x >x 2;20ax bx c ++<时,解集为x 1<x <x 2;①a <0时,20ax bx c ++>解集为x 1<x <x 2;20ax bx c ++<时,解集为x <x 1或x >x 2
16.二次函数与一次函数值的比较:
如图:x <x 1或x >x 2时,二次函数值大于一次函数值;;x 1<x <x 2二次函数小于一次函数值.。