2019-2020学年八年级数学《轴对称》(二)教案2 新人教版.doc
2019-2020学年八年级数学上册 13.2.1 作轴对称图形教案 新人教版.doc

2019-2020学年八年级数学上册 13.2.1 作轴对称图形教案新人教版教学目标1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.教学过程Ⅰ.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.•这节课我们就是来作简单平面图形经过轴对称后的图形.Ⅱ.导入新课•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.Ⅲ.随堂练习(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.(二)回顾本节课内容,然后小结.Ⅳ.课时小结本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.Ⅴ.动手并思考(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.(1)你会得怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?答案:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)•中的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,•因此得到的图案一定有4条对称轴.(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,•剪出的图案至少有4条对称轴.(二)自己设计并制作一个花边.课后作业:同步练习Ⅵ.活动与探究如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.“十字”可以折叠两次,剪出它的四分之一即可.板书设计一、轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.二、利用轴对称变换设计图案。
2019-2020学年八年级数学上册《轴对称》教案2

2019-2020学年八年级数学上册《轴对称》教案2主备人课时年 月 日分管领导 验收结果教学目标(1)认识轴对称以及轴对称图形的概念,并能判断图形是否是轴对称图形. (2)掌握轴对称的性质,能够应用它画对称轴,画轴对称图形. (3)掌握线段的垂直平分线和角平分线的性质及其应用.通过复习,熟练掌握轴对称与轴对称图形的性质及轴对称知识在生活中的应用,进一步掌握等腰三角形的性质与识别.重点、难点:判断图形是否是轴对称图形,线段垂直平分线、角平分线的性质教 学 过 程 教师活动学生活动一、选择题(每小题4分,共40分)1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( ) A : B : C : D :2、一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像是( )3、已知A 、B 两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A 、B 关于x 轴对称;②A 、B 关于y 轴对称;③A 、B 关于原点对称;④若A 、B 之间的距离为4,其中正确的有( )A :1个B :2个C :3个D :4个 4、如图2把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对 6、如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ) A :90° B : 75° C :70° D : 60° 7、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ) A :75°或15° B :75° C :15° D :75°和30° 8、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:D CBAF ElOCBDA①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ) A :1个 B :2个 C :3个 D :4个9、如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿AH 和DH 剪下,这样剪得的 △ADH 中 ( )A :AH=DH ≠ADB :AH=DH=ADC :AH=AD ≠DH D :AH ≠DH ≠AD 10、如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米, 则∆EBC 的周长为( )厘米A :16B :18C :26D :28 二、填空题(每小题4分,共40分)11、如图:在Rt △ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝,则AB= ㎝;12、如图:从镜子中看到一钟表的时针和分针,此时的实际时刻是________; 13、等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 14、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则 △PMN 的周长为 ;15、点P (2,-3)关于直线y=1的对称点的坐标是 ;16、等腰三角形一腰上的高若等于这个三角形某一边的长度的一半,则其顶角等于 17、如图:在△ABC 中,AB=AC=9,∠ABD=120°,AD 是△AB C 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点F ,则DF 的长为 ; 18、如图:AC=AD=DE=EA=BD ,∠BDC=28°∠ADB=42°, 则∠BEC= ; 19、如图:在△ABC 中,AB=AC ,BC=BD ,DA=DE=EB ,则∠A= 度; 20、如图:△ABC 的三边AB 、BC 、AC 的长分别为20、30、40,其三条角平分 线将△ABC 分成三个三角形,则=∆∆∆OAC OBC OAB S S S :: ;三、解答题(共70分)21、(10分)如图:△ABC 和△ADE 是等边三角形,AD 是BC 边上的中线。
2019-2020学年八年级数学 14.1轴对称教案 人教新课标版.doc

2019-2020学年八年级数学 14.1轴对称教案人教新课标版教学目标:1、通过生活中的具体实例认识轴对称,让学生掌握轴对称图形和关于直线成轴对称这两个概念。
2、培养学生的观察能力、思维能力、操作能力、归纳能力。
3、让学生体会数学的对称美在生活中的广泛应用和体现。
教学重点:准确掌握轴对称图形和关于直线成轴对称这两个概念的实质。
教学难点:轴对称图形和关于直线成轴对称的区别和联系。
学生课前准备:每人准备一张纸和一把剪刀教学过程:一、情景创设在生活中,许多事物与图形紧密联系在一起。
现在老师给大家准备了一些生活中的常见的事物图案和标志,请大家观赏。
(投影显示)[教学说明:创设情景将生活中的对称图案和标志展示出来,引导学生将生活中的对称美牵引到数学中来]二、探索研讨做一做(活动)将同学们准备好的一张纸对折后,用笔沿着折线画一条直线,然后从折叠处剪出一个你喜欢的图形,想一想,展开后会是一个什么样的图形?[教学说明:让同学们从动手实践中总结出结论:剪出来的图形关于折线对称] (引出课题)看一看,想一想细心观察一些日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?(投影显示)[教学说明:让学生通过观察、讨论得出规律。
]请同学们细心观察动画后,总结出轴对称图形的概念(投影显示)轴对称图形定义:如果一个图形沿着某条直线对折,对折后的两面部分能够完全重合,就称这样的图形为轴对称图形。
这条直线叫做这个图形的对称轴。
在我们的现实生活中有很多物体的平面图形是轴对称图形,你能举例说说吗?3、例题讲解:请同学们细心观察,下列轴对称图形各有多少条对称轴?[教学说明:让学生从本题中总结出轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条等,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。
]练一练判断下列图形哪些是轴对称图形,如果是,请找出所有对称轴。
(结论:一般的三角形,一般的梯形,一般的平行四边形不是轴对称图形(可以通过折纸验证。
2019-2020学年八年级数学上册《14.1.2轴对称》教案 人教新课标版.doc

2019-2020学年八年级数学上册《14.1.2轴对称》教案人教新课标版教学目标1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.2.探究线段垂直平分线的性质.3.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.教学重点1.轴对称的性质.2.线段垂直平分线的性质.教学难点体验轴对称的特征.教学过程Ⅰ.创设情境,引入新课上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢?今天继续来研究轴对称的性质.Ⅱ.导入新课观看投影并思考.如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、•B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系?图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂直.AA′、BB′和CC′与MN除了垂直以外还有什么关系吗?△ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.我们可以看出轴对称图形与两个图形关于直线对称一样,•对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.归纳图形轴对称的性质:如果两个图形关于某条直线对称,•那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.下面我们来探究线段垂直平分线的性质.[探究1]如下图.木条L 与AB 钉在一起,L 垂直平分AB ,P 1,P 2,P 3,…是L 上的点,•分别量一量点P 1,P 2,P 3,…到A 与B 的距离,你有什么发现?1.用平面图将上述问题进行转化,先作出线段AB ,过AB 中点作AB 的垂直平分线L ,在L 上取P 1、P 2、P 3…,连结AP 1、AP 2、BP 1、BP 2、CP 1、CP 2… 2.作好图后,用直尺量出AP 1、AP 2、BP 1、BP 2、CP 1、CP 2…讨论发现什么样的规律.探究结果:线段垂直平分线上的点与这条线段两个端点的距离相等.即AP 1=BP 1,AP 2=BP 2,…证明.证法一:利用判定两个三角形全等.如下图,在△APC 和△BPC 中, PC PC PCA PCB Rt AC BC =⎧⎪∠=∠=∠⎨⎪=⎩⇒ △APC ≌△BPC ⇒ PA=PB.证法二:利用轴对称性质.由于点C 是线段AB 的中点,将线段AB 沿直线L 对折,线段PA 与PB 是重合的,•因此它们也是相等的.带着探究1的结论我们来看下面的问题.[探究2]如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?活动:1.用平面图形将上述问题进行转化.作线段AB ,取其中点P ,过P 作L ,在L 上取点P 1、P 2,连结AP 1、AP 2、BP 1、BP 2.会有以下两种可能.2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?探究过程:1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L 与AB不垂直.2.如上图乙,若A P1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB 重合.当AP2=BP2时,亦然.探究结论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在[•探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.[师]上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.•所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.Ⅲ.随堂练习课本P121练习 1、2.Ⅳ.课时小结这节课通过探索轴对称图形对称性的过程,•了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.Ⅴ.课后作业(一)课本习题14.1─3、4、9题.X k b 1 . c o m课后作业:<<课堂感悟与探究>>Ⅵ.活动与探究如图甲,△ABC和△A′B′C′关于直线L对称,延长对应线段AB和A′B′,两条延长线相交吗?交点与对称轴L有什么关系?延长其他对应线段呢?在图乙中,AC与A•′C′又如何呢?再找几个成轴对称的图形观察一下,能发现什么规律吗?过程:在图甲中,AB与A′B′不平行,所以它们肯定会相交.下面来研究交点与对称轴L的关系.问题1:点和直线有几种位置关系?有两种.一种是点不在直线上,另一种是点在直线上.问题2:先来假设一下交点不在对称轴L上,看是否成立.如果交点(P)不在对称轴L上,那么在L的另一侧一定有另外一点(P′)与交点(P)关于直线L 对称,且该点(P′)也是两延长线的交点.•但是由于两条直线相交只可能有一个交点,所以这两点是重合的.即交点(P)只能在对称轴L上.所以交点一定在对称轴上.延长其他的对应线段,结果也一样.再看图乙,我们来讨论下一个问题.AC与A′C′是平行的,它们的两条延长线也不会相交.结论:成轴对称的两个图形,对应线段的延长线如果相交,交点一定在对称轴上;对应线段的延长线如果不相交,也就是对应线段所在的直线平行,•那么它们也与对称轴平行.板书设计。
2019-2020学年八年级数学上册 13.1 轴对称(第3课时)教案 新人教版.doc

2019-2020学年八年级数学上册 13.1 轴对称(第3课时)教案 新人教版 教学内容作轴对称图形的对称轴.教学过程一、导入新课思考:有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、探究新知1.对称轴与线段的垂直平分线通过复习成轴对称的两个图形的性质,学生易得结论:如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.2.对称轴的作法如下图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?分析:我们只要连接点A 和点B ,作出线段AB 的垂直平分线,就可以得到点A 和点B 的对称轴.为此作出到点A ,B 距离相等的两点,即线段AB 的垂直平分线上的两点,从而作出线段AB 的垂直平分线. 作法:如下图.(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 就是所求作的直线.学生记忆上述作法.3.轴对称图形的对称轴轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.让学生思考如何画出五角星的对称轴,尝试完成作法.让学生阅读教材第63页画出五角星的对称轴作法.4.练习作出下列图形的一条对称轴,和同学比较一下,你们作出的对称轴一样吗?提示:有些图形不止一条对称轴.三、课堂小结1.能用尺规作线段的垂直平分线.2.进一步了解作图的一般步骤和作图语言,了解作图的依据.3.运用尺规作图的方法解决简单的作图问题.四、课后作业习题13.1 第10、12题.教学反思:。
最新2019-2020年度人教版八年级数学上册《轴对称》教案-优质课教案

《轴对称》优秀教学设计【教学目标】1.知识与能力(1)理解轴对称图形,两个图形关于某直线对称的概念。
(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。
(3)了解轴对称的性质。
2.过程与方法通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。
3.情感、态度与价值观通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系。
【教学难点】轴对称的性质。
【教学方法】创设情境-主体探究-合作交流-应用提高.【教学用具】多媒体课件、直尺、剪刀和彩纸等【教学过程】一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).(1)这些图形有什么共同的特征?对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念师生互动操作设计:教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.在学生交流的基础上,引导学生对轴对称的概念进行归纳.把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念1. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C的对称点,线段AA′、BB′、CC′和直线MN有什么关系?学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合于是有AP=PA′、∠MPA=∠MPA′=90°对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.2. 鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”3. 进而引导学生进行归纳:轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.四、师生合作,应用提高,拓展创新1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.对称轴是任何一对对应点所连线段的垂直平分线。
八年级数学上册轴对称教案2(新版)新人教版
《轴对称》教学目标知识技能1.在生活中认识轴对称,理解轴对称的概念,了解轴对称图形的性质;2.掌握线段垂直平分线的概念及其性质;3.掌握作图形轴对称图的方法.数学思考1.通过丰富的生活实例认识轴对称,能识别简单的轴对称图形及其对称轴;2.探究线段垂直平分线的性质,培养学生认真探究、积极思考的能力;3.在探究过程中,培养学生观察、分析和归纳能力.情感态度1.通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高;2.在探究的过程中,更大程度的激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力.教学重点和难点重点:1.轴对称图形的概念以及轴对称的性质;2.线段垂直平分线的性质.难点:1.找出轴对称图形的对称轴;2.体验轴对称的特征;3.探索轴对称图形对称轴的作法.教学过程与流程设计1.观察图形,认识轴对称图形把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花,你能发现什么共同的特点?轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫过轴对称图形,这条直线就是它的对称轴.课堂练习1:下列图形是轴对称图形吗?如果是,你能指出它的对称轴吗?2.观察,认识图形关于轴对称观察下面的每对图形有什么共同特点?像上面这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么说这两个图形关于这条折线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.课堂练习2:下面给出的每幅图形中的两个图案是轴对称的吗?如果是,使者找出它们的对称轴,并找出一对对称点.3.自己动手,小组合作,探究两个图形对称的性质,学习垂直平分线的定义如图,△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′、B ′、C ′分别是点A 、B 、C 的对称点,线段A A ′、B B ′、CC ′与直线MN 有什么关系? 简单证明你的结论.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段. 垂直平分线:经过线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线.思考:(1)线段是轴对称图形吗?如果是,找出它的对称轴;如果不是,说明理由.(2)如果两个图形关于某条直线对称,则对称轴是任何一对对应点连线的_____.轴A BC A ′ B ′ C ′ M N P对称图形的对称轴是任何一对对应点所连线段的_________ .4.自主探究垂直平分线的性质在一张半透明的纸上作一条线段AB,将线段AB对折,使A、B重合,画出折痕l,即直线l是线段AB的垂直平分线.在直线l上取点P1,P2,P3,分别量出P1,P2,P3到A与B 的距离,你有什么发现?垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.课堂练习3:如图,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D.BE=6,求△BCE的周长.再次讨论,探究垂直平分线性质定理的逆定理是否成立?下图是由一根木棒和一根弹性均匀的橡皮筋做成的一个简易的“弓”,现在要使“箭”从木棒中央的孔射出去,怎样才能保证射出箭的方向与木棒垂直呢?为什么?与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.课堂练习3:5.从例题学习中,学习线段垂直平分线的作法例如图,点A和点B关于某条直线称轴对称,你能作出这条直线吗?作法:如图课堂练习4:6.课堂小结(1)学习本内容中,你有什么收获?(2)还有什么疑问吗?。
新人教版八年级数学上册《轴对称》教案
CB AD 《轴对称)》教案【学习目标】1.了解轴对称(图形)的性质,会准确画出轴对称(图形)的对称轴; 2.理解线段垂直平分线的性质;3.通过轴对称性质的学习加强学生对事物的内在联系,增强学生创造 美好生活的信心.【学习重点】理解线段垂直平分线的性质. 【学习难点】线段垂直平分线的性质应用.【学前准备】认真阅读课本P59—P60,完成练习1.如图1,△ABC 和△A 1B 1C 1关于y 轴对称. (1)点A 的对应点是 ,y 轴经过线段AA 1的中点吗? y 轴垂直线段AA 1吗? 其它对应点有同样的结论吗?(2)线段垂直平分线的定义: 经过 并且 的直线,叫做这条线段的垂直平分线.2.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对 的 ;(2)轴对称图形的对称轴,是 的垂直平分线. 如图1,y 轴垂直平分 ;y 轴垂直平分 ;y 轴垂直平分 ; 3.如下图,直线l 垂直平分线段AB ,在直线l 上任取..一点P ,连结PA 、PB ,通过测量、折叠等方法判断PA 、PB 的关系是 .猜想线段的垂直平分线有什么性质,并用简练的语言叙述出来: 试证明以上猜测:【课堂探究】4.归纳:线段垂直平分线的性质:线段垂直平分线上的点与 相等.符号语言的表述:如图:∵AD⊥ , BD= (或AD 是线段BC 的垂直平分线) ∴ = ( )A 1B 1C 1 图1BA lCB AD EDCB A5.如图,线段AB 的垂直平分线l 交AB 于点C ,点P 在l 上,PA=5,AC=4,求△PAB 的周长.6.探究:如图,AD⊥BC,BD=DC ,点C 在AE 的垂直平分线上,AB 、AC 、CE 的长度有什么关系?AB+BD 与DE 有什么关系?【课堂检测】1.如图,△ABC 中,AD 垂直平分BC ,则AD⊥ ,CD =_____,原因是: ;AB =_______,原因是 .2.如图,△ABC 中, AD 是边BC 的垂直平分线,若AB=10cm ,BC=12 cm ,则AC= cm ,BD= cm . 3.如图, DE 是AC 的垂直平分线,AE=3,△ABD 的周长为cm 31,求△ABC 的周长.【课堂小结】1.线段垂直平分线的定义:经过 并且 的直线,叫做这条线段的垂直平分线. 2.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对 的 ;(2)轴对称图形的对称轴,是 的垂直平分线.3.线段垂直平分线的性质:线段垂直平分线上的点与 相等.课后作业1302--轴对称 (课时2)1.如图,在△ABC 中,AD 垂直平分边BC ,AB =5,那么AC =_________. 2.如图,在 ABC 中,AB 、BC 的垂直平分线相交于三角形内一点P , 下列结论中,错误的是( )A .PA=PB B .PA=PC C .PB=PCD .点P 到AB 、BC 、CA 的距离相等第1、2题(第2题)3.如图,已知AE =CE , BD ⊥AC .求证:AB +CD =AD +BC .4.如图,在△ABC 中,DE 是AB 的垂直平分线,(1)请写出相等的线段 _________________________; (2)若BC =10cm ,AC =6cm ,求△ADC 的周长.5.如图所示,已知在△ABC 中,AB 与AC 的垂直平分线分别交AB 于点D ,交AC 于点E ,它们相交于点F ,求证:BF=FC .6.如图所示,在△ABC 中,AC=12,BC=7,DE 垂直平分AB 交AC 于D ,交AB 于E , 求△BCD 的周长.7.如图,△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABC 的周长为22,AE=5,求△ABD 的周长.※ 8.如图,点P 在AOB 内,点M 、N 分别为点P 关于直线AO 、BO 的对称点,M 、N 的连线与AO 、B O 交与E 、F .若△PEF 的周长为20cm ,求线段MN 的长.【教学反思】 答案: 课堂探究:4.线段两个端点的距离解:BC DC AB AC 线段垂直平分线上的点与线段两个端点的距离相等. 5.解:∵PC 是线段AB 的垂直平分线,∴∠ACP=∠BCP=90° ∵PA=5,AC=4 ∴BC=AC=4,PB=AP=5FEM PNA B第1题第2题∴△PAB的周长为:5+5+8=186.AB+BD=DE.∵AD⊥BC,BD=DC(垂直平分线)∴AB=AC.∴AC+CD=AB+BD又∵点C在AE的垂直平分线上,∴AC=EC.又∵AC+CD=AB+BD,∴EC+CD=AB+BD.即AB+BD=DE.【课堂检测】1.BC BD 线段垂直平分线的定义AC 线段垂直平分线上的点与线段两个端点的距离相等2.10 63.如图:AE=3∵DE为AC的垂直平分线∴AE=EC=3 AD=DC又∵△ABD的周长为13 即:AB+AD+BD=13∴△ABC的周长为AB+AC+BD=AB+(AE+EC)+(BD+DC)=13+6=19课后作业:1.52.D3.∵AE=CE ,BD⊥AC∴BA=BC, DA=DC(线段的垂直平分线的点到这条线段的2个端点相等)∴AB+CD=AD+BC4.(1)AD=BD,AE=BE(2)∵DE是AB的垂直平分线∴AD=DB∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=16cm5.证明:连接AF∵CD为AB的垂直平分线,∴AF=BF∵EF为AC的垂直平分线,∴AF=FC∴BF=FC6.解:AC=12 ,∵DE垂直平分AB,∴BE=AE,∴BE+EC=AE+EC=AC,∵BC=7,∴△BCE的周长=BC+BE+EC=BC+AC=7+12=19.7.解:∵DE是边AC的垂直平分线,∴AD=CD,AE=EC,∵AE=5,△ABC的周长为22,∴AC=AE+EC=5+5=10,△ABC的周长=AB+BC+AC=22∴AB+BC=22-10=12△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=12,8.∵点M是点P关于AO,的对称点,∴AO垂直平分MP,∴EP=EM.同理PF=FN.∵MN=ME+EF+FN,∴MN=EP+EF+PF,∵△PEF的周长为20cm,∴MN=EP+EF+PF=20cm.。
2019-2020学年八年级数学上册 13.1 轴对称教案 (新版)新人教版.doc
2019-2020学年八年级数学上册 13.1 轴对称教案(新版)新人教版
问题1:如图,把一张纸对折,剪出一个图案(折
痕处不要完全剪断),再打开这张对折的纸,就得到
了美丽的窗花.观察得到的窗花,你能发现它们有什
么共同的特点吗?
师指出:如果一个平面图形沿一条直线折叠,直
线两旁的部分能够互相重合,这个图形就叫做轴对称
图形,这条直线就是它的对称轴.这时,我们也说这
追问1:你能说明其中的道理吗?
追问2:上面的问题说明
′关于直线MN 对称,那么,
′和CC′,并且直线
′”.如果将其中的“三角形”改为“四边形”
边形”…其他条件不变,上述结论还成立吗?
追问:你能用数学语言概括前面的结论吗?
轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
性格开朗的学生特别活跃,也容易引起老师的注意,而对那些胆小性格较内向的学生关注不够,应注意引导.。
最新2019-2020年度人教版八年级数学上册《轴对称》全章教学设计-优质课教案
第十二章轴对称12.1 轴对称(1)教学目标①通过丰富的实例认识轴对称图形,并能找出轴对称图形的对称轴.②了解轴对称图形、两个图形成轴对称这两个概念之间的联系和区别.③经历丰富材料的学习过程,发展对图形的观察、分析、判断、归纳等能力.④体验数学与生活的联系、发展审美观.教学重点与难点重点:轴对称的有关概念;难点:轴对称图形与两个图形关于某条直线对称这两个概念之间的联系与区别.教学准备教师:收集有关轴对称的素材(包括图形、实物、图片等).学生:准备复写纸;收集有关窗花的素材,并要求进行剪纸----双喜字或其他窗花.教学设计作品展示,交流体会1.作品展示:让部分学生展示课前的剪纸作品(可以将作品粘贴到黑板上);2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?注:通过对收集材料、剪纸操作,增加学生对轴对称图形的感性认识,为轴对称概念的引出作准备.活动的目的一是为了交流,更主要的是说出(发现)“对称”.概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.注:在学生经历了一系列的过程后让学生尝试归纳,这本身也是一种能力的培养和对轴对称的理解.教学中应该有意识地加以渗透.2.结合教科书第118页图12.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例:试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教科书第119页练习;(2)补充:判断下面的图形是不是轴对称图形?并简要说明理由.注:对于一个概念的建立,让学生经历“实物——概括——应用”的过程,符合学生的认识规律.(二)两个图形关于某条直线对称对于第二个概念的建立,分两个步骤进行:先观察图形,再进行画图.其目的是突出两个图形和这两个图形之间的关系,在这个基础上再给出定义,比较合理.1.观察教科书第119页中的图12.1-3,思考:图中的每对图形有什么共同的特点?2.操作:取一张薄纸,先对折,然后中间夹一张复写纸,再在纸上任意画一个图案,取出复写纸后你发现两层纸上的图案有什么关系?3.两个图形成轴对称的定义.如下图,图形F与图形F'就是关于直线l对称,点A与点A'是对称的.4.举例:你能举出一些生活中两个图形成轴对称的例子吗?5.练习:教科书第120页.辨析概念分组讨论:轴对称图形和两个图形成轴对称这两个概念之间的联系和区别.讨论后可列表比较如下:轴对称图形两个图形成轴对称区别一个图形两个图形联系1.沿着某条直线对折后,直线两旁的部分都能够互相重合(即直线两旁的两部分全等)2.都有对称轴(至少一条)3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线对称;如果把两个成轴对称的图形看成一个图形,那么这个图形就是轴对称图形注:通过讨论、比较,便于进一步理解概念,弄清它们之间的联系和区别,以突破本课的教学难点.采用小组讨论的目的意在引导学生参与,改变学习方式,发挥更佳的学习效果.实践和应用1.下列图片是生活中的一些建筑物,它们是轴对称图形吗?2.下列图形是部分汽车的标志,哪些是轴对称图形?奔驰宝马大众奥迪3.下图中的两个图形是否成轴对称?如果是,请找出它的对称轴.4.请在下图这一组图形符号中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年八年级数学《轴对称》(二)教案2 新人教版
教学目标
1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.
2.探究线段垂直平分线的性质.
3.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.教学重点
1.轴对称的性质.
2.线段垂直平分线的性质.
教学难点
体验轴对称的特征.
教学过程
Ⅰ.创设情境,引入新课
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢?
今天继续来研究轴对称的性质.
Ⅱ.导入新课
观看投影并思考.
如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点
A、•
B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系?
图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂直.
AA′、BB′和CC′与MN除了垂直以外还有什么关系吗?
△ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点.
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.我们可以看出轴对称图形与两个图形关于直线对称一样,•对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.
归纳图形轴对称的性质:
如果两个图形关于某条直线对称,•那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.
下面我们来探究线段垂直平分线的性质.
[探究1]
如下图.木条L 与AB 钉在一起,L 垂直平分A B ,P 1,P 2,P 3,…是
L 上的点,•分别量一量点P 1,P 2,P 3,…到A 与B 的距离,你有什么发
现?
1.用平面图将上述问题进行转化,先作出线段AB ,过AB 中点作
AB 的垂直平分线L ,在L 上取P 1、P 2、P 3…,连结AP 1、AP 2、BP 1、BP 2、
CP 1、CP 2…
2.作好图后,用直尺量出AP 1、AP 2、BP 1、BP 2、CP 1、CP 2…讨论发现什么样的规律. 探究结果:
线段垂直平分线上的点与这条线段两个端点的距离相等.即AP 1=BP 1,AP 2=BP 2,… 证明.
证法一:利用判定两个三角形全等.
如下图,在△APC 和△BPC 中,
PC PC PCA PCB Rt AC BC =⎧⎪∠=∠=∠⎨⎪=⎩
⇒ △APC ≌△BPC ⇒ PA=PB.
证法二:利用轴对称性质.
由于点C 是线段AB 的中点,将线段AB 沿直线L 对折,线段PA 与PB 是重合的,•因此它们也是相等的.
带着探究1的结论我们来看下面的问题.
[探究2]
如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,
“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?
为什么?
活动:
1.用平面图形将上述问题进行转化.作线段AB,
取其中点P,过P作L,在L上取点P1、P2,连结AP1、
AP2、BP1、BP2.会有以下两种可能.
2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?
探究过程:
1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.
2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然.
探究结论:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在[•探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.
[师]上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.•所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.Ⅲ.随堂练习
课本P121练习 1、2.
Ⅳ.课时小结
这节课通过探索轴对称图形对称性的过程,•了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.
Ⅴ.课后作业
(一)课本习题14.1─3、4、9题.
课后作业:<<课堂感悟与探究>>
Ⅵ.活动与探究
如图甲,△AB C和△A′B′C′关于直线L对称,延长对应线段AB和A′B′,两条延长线相交吗?交点与对称轴L有什么关系?延长其他对应线段呢?在图乙中,AC与A•′C′又如何呢?再找几个成轴对称的图形观察一下,能发现什么规律吗?
过程:在图甲中,AB与A′B′不平行,所以它们肯定会相交.下面来研究交点与对称轴L的关系.
问题1:点和直线有几种位置关系?
有两种.一种是点不在直线上,另一种是点在直线上.
问题2:先来假设一下交点不在对称轴L上,看是否成立.
如果交点(P)不在对称轴L上,那么在L的另一侧一定有另外一点(P′)与交点(P)关于直线L对称,且该点(P′)也是两延长线的交点.•但是由于两条直线相交只可能有一个交点,所以这两点是重合的.即交点(P)只能在对称轴L上.所以交点一定在对称轴上.延长其他的对应线段,结果也一样.
再看图乙,我们来讨论下一个问题.
AC与A′C′是平行的,它们的两条延长线也不会相交.
结论:成轴对称的两个图形,对应线段的延长线如果相交,交点一定在对称轴上;对应线段的延长线如果不相交,也就是对应线段所在的直线平行,•那么它们也与对称轴平行.
板书设计
一、复习:轴对称图
来,与这条线段两个端点距离相等的点都在它的垂直平分线上.。