八年级数学上册轴对称难题经典题(有难度)
八年级数学(上册)《轴对称图形》经典例题含解析

《第2章轴对称图形》一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或174.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75°D.()n•85°8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3 B.P4P5C.P7P8 D.P8P910.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2二、填空题11.下面有五个图形,与其它图形众不同的是第______个.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是______.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=______°.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是______.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为______.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有______种.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为______.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l 对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G为DF的中点,那么EG与DF垂直吗?26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.《第2章轴对称图形》参考答案与试题解析一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°【考点】等腰三角形的性质.【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.6.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的三线合一得到BF=FC,根据直角三角形的性质判断A;根据直角三角形的性质判断B;根据三角形内角和定理和等腰三角形的性质判断C,根据直角三角形的性质判断D.【解答】解:∵AB=AC,AF⊥BC,∴BF=FC,∵BE⊥AC,∴EF=BC=BF,A不合题意;∵DE=AB,EF=BC,不能证明DE=EF,B符合题意;∵DE垂直平分AB,∴EA=EB,又BE⊥AC,∴∠BAC=45°,∴∠C=67.5°,又FE=FC,∴∠EFC=45°,C不合题意;∵FE=FB,∴∠BEF=∠CBE;故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质和直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75°D.()n•85°【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.【点评】三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了等边三角形的性质.9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3 B.P4P5C.P7P8 D.P8P9【考点】利用轴对称设计图案.【分析】利用轴对称图形的性质分别分析得出即可.【解答】解:由题意可得:当连接P2P3,P4P5,P7P8时,所形成的图形是轴对称图形,当连接P8P9时,所形成的图形不是轴对称图形.故选:D.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.【点评】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难,属于中考选择题中的压轴题.二、填空题11.下面有五个图形,与其它图形众不同的是第③个.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第①②④⑤个图形是轴对称图形,第③个不是.故答案为:③.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形进行画图即可.【解答】解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△BCD、△FBE、△HCE,△AFG,共5个.故答案为:5.【点评】本题考查轴对称图形的定义,以及利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是 4 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,然后根据角平分线上的点到角的两边距离相等可得DE=CD,即可得解.【解答】解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,作出图形并熟记性质是解题的关键.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= 15 °.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9 .【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= 70 °.【考点】轴对称的性质;平行线的判定与性质.【专题】常规题型.【分析】先证明四边形BDEC是菱形,然后求出∠ABD的度数,再利用三角形内角和等于180°求出∠BAD的度数,然后根据轴对称性可得∠BAC=∠BAD,然后求解即可.【解答】解:∵CD与BE互相垂直平分,∴四边形BDEC是菱形,∴DB=DE,∵∠BDE=70°,∴∠ABD==55°,∵AD⊥DB,∴∠BAD=90°﹣55°=35°,根据轴对称性,四边形ACBD关于直线AB成轴对称,∴∠BAC=∠BAD=35°,∴∠CAD=∠BAC+∠BAD=35°+35°=70°.故答案为:70.【点评】本题考查了轴对称的性质,三角形的内角和定理,判断出四边形BDEC是菱形并得到该图象关于直线AB成轴对称是解题的关键.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是40°.【考点】线段垂直平分线的性质.【分析】根据三角形内角和定理求出∠B+∠C的度数,根据线段的垂直平分线的性质得到PA=PB,QA=QC,得到∠PAB=∠B,∠QAC=∠C,结合图形计算即可.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠PAB=∠B,∠QAC=∠C,∴∠PAB+∠QAC=∠B+∠C=70°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=40°,故答案为:40°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有13 种.【考点】利用轴对称设计图案.【专题】压轴题.【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.【解答】解:如图所示:故一共有13做法,故答案为:13.【点评】此题主要考查了利用轴对称设计图案,熟练利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为8 .【考点】等腰三角形的性质.【专题】应用题.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为8.【点评】此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l 对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.(2)S四边形A1B1C1D1=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2=12﹣1﹣1﹣﹣2=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.【考点】线段垂直平分线的性质.【专题】作图题.【分析】(1)作线段AB的垂直平分线即可;(2)到一个角的两边距离相等的点在这个角的平分线上.那么点P是∠B的平分线和线段AB的垂直平分线的交点.【解答】解:(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴.【点评】用到的知识点为:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.到一个角的两边距离相等的点在这个角的平分线上.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】开放型.【分析】(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.【解答】解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【点评】本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G为DF的中点,那么EG与DF垂直吗?【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】连接DE,EF,易证△BDE≌△CFE,可得DE=EF,可证△DGE≌△FGE,可求得∠DGE=∠FGE=90°.【解答】解:连接DE,EF,∵AB=AC,∴∠B=∠C,在△BDE和△CFE中,,∴△BDE≌△CFE(SAS),∴DE=EF,在在△DGE和△FGE中,,∴△DGE≌△FGE(SSS),∴∠DGE=∠FGE,∵∠DGE+∠FGE=180°,∴∠DGE=∠FGE=90°,∴EG⊥DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证DE=EF是解题的关键.26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.【考点】全等三角形的判定与性质;等腰三角形的性质;轴对称的性质.【分析】(1)根据对称得出AD=AD′,根据SSS证△ABD≌△ACD′即可;(2)根据全等得出∠BAD=∠CAD′,求出∠BAC=∠DAD′,根据对称得出∠DAE=∠DAD′,代入求出即可.【解答】(1)证明:∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴AD=AD′,∵在△ABD和△ACD′中,∴△ABD≌△ACD′;(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′,∴∠BAC=∠DAD′=120°,∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴∠DAE=∠D′AE=∠DAD′=60°,即∠DAE=60°.【点评】本题考查了全等三角形的性质和判定、对称的性质的应用,主要考查学生的推理能力,题型较好,难度适中.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【考点】几何变换综合题;平行线的性质;全等三角形的判定与性质;等腰直角三角形;多边形内角与外角.【专题】几何综合题;压轴题.【分析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.【点评】本题考查了全等三角形的判定与性质、平行线的性质、等腰直角三角形的判定与性质、多边形的内角与外角等知识,渗透了变中有不变的辩证思想,是一道好题.。
八年级数学上册第十三章轴对称考点专题训练(带答案)

八年级数学上册第十三章轴对称考点专题训练单选题1、如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1= 140°,则∠2的度数是()A.80°B.100°C.120°D.140°答案:B分析:根据等边三角形的性质可得∠A=60°,再由三角形外角的性质可得∠AEF=∠1-∠A=80°,从而得到∠BEF=100°,然后根据平行线的性质,即可求解.解:∵△ABC是等边三角形,∴∠A=60°,∵∠1=140°,∴∠AEF=∠1-∠A=80°,∴∠BEF=180°-∠AEF=100°,∵m∥n,∴∠2=∠BEF=100°.故选:B小提示:本题主要考查了等边三角形的性质,三角形外角的性质,平行线的性质,熟练掌握等边三角形的性质,三角形外角的性质,平行线的性质是解题的关键.2、山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是()A.B.C.D.答案:D分析:根据轴对称图形的概念,对各选项分析判断即可得解;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.小提示:本题考查了轴对称图形,正确掌握相关定义是解题关键.3、下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形答案:B分析:分别求出各个图形的对称轴的条数,再进行比较即可.解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.小提示:此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.4、如图,在△ABC中,分别以点B和点C为圆心,大于1BC长为半径画弧,两弧相交于点M,N.作直线MN,2交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25B.22C.19D.18答案:C分析:由垂直平分线的性质可得BD=CD,由△ABD的周长=AB+AD+BD=AB+AD+CD=AB+AC得到答案.解:由作图的过程可知,DE是BC的垂直平分线,∴BD=CD,∵AB=7,AC=12,∴△ABD的周长=AB+AD+BD=AB+AD+CD=AB+AC=19.故选:C小提示:此题考查了线段垂直平分线的作图、线段垂直平分线的性质、三角形的周长等知识,熟练掌握线段垂直平分线的性质是解题的关键.5、下列说法正确的是()A.已知点M(2,﹣5),则点M到x轴的距离是2B.若点A(a﹣1,0)在x轴上,则a=0C.点A(﹣1,2)关于x轴对称的点坐标为(﹣1,﹣2)D.点C(﹣3,2)在第一象限内答案:C分析:分别根据坐标系中点的坐标到坐标轴的距离;在x轴上的点的纵坐标为零;关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;各个象限上的点的坐标符号逐一判断即可.解:A.已知点M(2,-5),则点M到x轴的距离是|-5|=5,故本选项不合题意;B.若点A(a-1,0)在x轴上,则a可以是全体实数,故本选项不合题意;C.点A(-1,2)关于x轴对称的点坐标为(-1,-2),故本选项符合题意;D.C(-3,2)在第二象限内,故本选项不合题意;故选:C.小提示:本题考查了关于x轴对称的点的坐标以及点的坐标,掌握平面直角坐标系中的点的坐标特点是解答本题的关键.6、如图所示,有三条道路围成RtΔABC,其中BC=1000m,一个人从B处出发沿着BC行走了700m,到达D 处,AD恰为∠CAB的平分线,则此时这个人到AB的最短距离为()A.1000m B.700m C.300m D.1700m答案:C分析:据角平分线上一点到角两边的距离相等,知此人此时到AB的最短距离即D到AB的距离,而D到AB的距离等于CD,而CD=BC-BD即得答案.解:如下图,过D作DE⊥AB于E,则此时此人到AB的最短距离即是DE的长.∵AD平分∠CAB,AC⊥BC∴DE=CD=BC-BD=1000-700=300(米).故选:C.小提示:本题考查角平分线性质定理和“垂线段最短”.其关键是运用角平分线上一点到角两边的距离相等得出CD等于D到AB的距离.7、图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A.A点B.B点C.C点D.D点答案:B分析:根据光反射定律可知,反射光线、入射光线分居法线两侧,反射角等于入射角并且关于法线对称,由此推断出结果.连接EF,延长入射光线交EF于一点N,过点N作EF的垂线NM,如图所示:由图可得MN是法线,∠PNM为入射角因为入射角等于反射角,且关于MN对称由此可得反射角为∠MNB所以光线自点P射入,经镜面EF反射后经过的点是B故选:B.小提示:本题考查了轴对称中光线反射的问题,根据反射角等于入射角,在图中找出反射角是解题的关键.8、如图,△ABC中∠A=40°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,点C恰好落在BE上的点G处,此时∠BDC=82°,则原三角形的∠B的度数为()A.57°B.60°C.63°D.70°答案:C分析:根据折叠的性质可知:∠BDG=∠BDC=82°,∠ABE=∠A'BE=∠A'BG=∠A'BC,根据三角形外角性质可得:∠DBA=∠BDC﹣∠A=82°﹣40°=42°,进一步可求出∠ABE=∠A'BE=21°,∠ABC=3×21°=63°,即原三角形的∠B=63°.解:由折叠性质可得,∠BDG=∠BDC=82°,∠ABE=∠A'BE=∠A'BG=∠A'BC,∵∠BDC是△BDA的外角,∴∠DBA=∠BDC﹣∠A=82°﹣40°=42°,∴∠ABE=∠A'BE=21°,∴∠ABC=3×21°=63°,即原三角形的∠B=63°,故选:C.小提示:此题主要考查的是图形的折叠及三角形外角性质,能够根据折叠的性质发现∠BDG=∠BDC=82°,∠ABE=∠A'BE=∠A'BG=∠A'BC是解答此题的关键.9、下列体现中国传统文化的图片中,是轴对称图形的是()A.B.C.D.答案:B分析:根据轴对称图形的定义分析即可求解,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.解:A.不是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项符合题意;C.不是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项不合题意.故选:B.小提示:本题考查了轴对称图形的识别,掌握轴对称图形的定义是解题的关键.10、如图,在平面直角坐标系中,线段AC所在直线的解析式为y=−x+4,E是AB的中点,P是AC上一动点,则PB+PE的最小值是( )A.4√2B.2√2C.2√5D.√5答案:C分析:作点B关于AC的对称点B′,连接B′E,与AC的交点,即符和条件的P点,再求出B′,E的坐标,根据勾股定理求出B′E的值,即为P′B+P′E的最小值.作点B关于AC的对称点B′,连接B′E交AC于P′,此时,PB+PE=P′B+P′E的值最小,最小值为B′E的长,∵线段AC所在直线的解析式为y=−x+4,∴A(0,4),C(4,0),∴AB=4,BC=4,∵E是AB的中点,∴E(0,2),∵B′是点B关于AC的对称点,∴BB′⊥AC,OB=OB′=1AC,AO=CO,2∴四边形ABCB′是正方形,∴B′(4,4),∴PB+PE的最小值是B′E=√42+(4−2)2=2√5.故选:C.小提示:本题考查一次函数求点的坐标和性质,轴对称−最短路径问题,勾股定理,掌握轴对称−最短路径的确定方法是解题的关键.填空题11、如图,AB=AC,AD=AE,∠BAD=20°,则∠CDE度数是_______度.答案:10分析:根据三角形外角定理得出∠EDC+∠C=∠AED,进而求出∠C+∠EDC=∠ADE,再利用∠B+∠BAD=∠ADC,进而利用已知求出即可.解:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠EDC+∠C=∠AED,∴∠C+∠EDC=∠ADE,又∵∠B+∠BAD=∠ADC,∴∠B+20°=∠C+∠EDC+∠EDC,∵∠B=∠C.∴2∠EDC=20°,∴∠EDC=10°.所以答案是:10.小提示:本题主要考查了三角形外角定理以及角之间等量代换,利用外角定理得出∠C+∠EDC=∠ADE是解决问题的关键.12、如图,在平面直角坐标系中,长方形OABC的边OA 在x轴上,OC在y轴上,OA=1,OC=2,对角线 AC 的垂直平分线交AB 于点E,交AC于点D.若y轴上有一点P(不与点C重合),能使△AEP是以为 AE 为腰的等腰三角形,则点 P的坐标为____.答案:(0,34),(0,−34)或(0,12)分析:设AE=m ,根据勾股定理求出m 的值,得到点E (1,54),设点P 坐标为(0,y ),根据勾股定理列出方程,即可得到答案.∵对角线 AC 的垂直平分线交AB 于点E ,∴AE=CE ,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴设AE=m ,则BE=2-m ,CE=m ,∴在Rt∆BCE 中,BE 2+ BC 2=CE 2,即:(2-m )2+12=m 2, 解得:m=54,∴E (1,54), 设点P 坐标为(0,y ),∵△AEP 是以为 AE 为腰的等腰三角形,当AP=AE ,则(1-0)2+(0-y)2= (1-1)2+(0-54)2,解得:y=±34,当EP=AE ,则(1-0)2+(54-y)2= (1-1)2+(0-54)2,解得:y=12, ∴点 P 的坐标为(0,34),(0,−34),(0,12),故答案是:(0,34),(0,−34),(0,12). 小提示:本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键.13、把一张长方形纸条ABCD 沿EF 折叠成图①,再沿HF 折叠成图②,若∠DEF =β(0°<β<90°),用β表示∠C ''FE ,则∠C ''FE =_______.答案:180°−3β分析:先利用平行线的性质得到∠EFH =∠DEF =β,∠EFC =180°−β,再根据折叠的性质得到∠EFC′=180°−β,所以∠HFC′=180°−2β,接着再利用折叠的性质得到∠C′′FH =∠C′FH =180°−2β,然后计算∠C ″FH −∠EFH 即可.∵四边形ABCD 为长方形,∴AD//BC ,∴∠EFH =∠DEF =β,∠EFC =180°−β,∵方形纸条ABCD 沿EF 折叠成图①,∴∠EFC′=∠EFC =180°−β,∴∠HFC′=∠EFC′−∠EFH =180°−β−β=180°−2β,∵长方形ABCD 沿HF 折叠成图②,∴∠C′′FH =∠C′FH =180°−2β,∴∠C ″FE =∠C ″FH −∠EFH =180°−2β−β=180°−3β.所以答案是:180°−3β. 小提示:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14、如图,Rt△ABC中,∠C=90°,AC=3,BC=4,EF垂直平分AB,点P为直线EF上一动点,则△APC周长的最小值为_____.答案:7分析:△APC周长=AC+AP+CP,因为AC=3,所以求出AP+CP的最小值即可求出△APC周长的最小值,根据题意知点A关于直线EF的对称点为点B,故当点P与点E重合时,AP+CP的值最小,即可得到结论.∵直线EF垂直平分AB,∴A,B关于直线EF对称,设直线EF交BC于E,∴当P和E重合时,AP+CP的值最小,最小值等于BC的长,∴△APC周长的最小值=AC+AP+CP=3+4=7,所以答案是:7.小提示:本题考查了轴对称-最短路线问题的应用、垂直平分线的性质、三角形周长,解答本题的关键是准确找出P的位置.15、小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.答案:∠A=60°(答案不唯一)分析:利用等边三角形的判定定理即可求解.解:添加∠A=60°,理由如下:∵△ABC为等腰三角形,=60°,∴∠B=∠C=180°−∠A2∴△ABC为等边三角形,所以答案是:∠A=60°(答案不唯一).小提示:本题考查了等边三角形的判断,解题的关键是掌握三角形的判断定理.解答题16、如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E.(1)求证:△FBD≌△ACD;(2)求证:△ABC是等腰三角形;BF.(3)求证:CE=12答案:(1)见解析(2)见解析(3)见解析分析:(1)根据等腰直角三角形的直角边相等可得BD=CD,再利用“边角边”证明△FBD和△ACD全等即可;(2)根据全等三角形对应角相等可得∠DBF=∠DCA,再根据∠DCA+∠A=90°推出∠DBF+∠A=90°,然后求出∠AEB=90°,再利用“角边角”证明△ABE和△CBE全等,根据全等三角形对应边相等可得AB=CB,从而得证;BF.(3)根据全等三角形对应边相等可得BF=AC,AE=CE,然后求出CE=12(1)在等腰Rt △DBC 中,BD =CD ,∵∠BDC =90°,∴∠BDC =∠ADC =90°,∵在△FBD 和△ACD 中,{DA =DF∠BDC =∠ADC BD =CD,∴△FBD ≌△ACD (SAS );(2)∵△FBD ≌△ACD ,∴∠DBF =∠DCA ,∵∠ADC =90°,∴∠DCA +∠A =90°,∴∠DBF +∠A =90°,∴∠AEB =180°-(∠DBF +∠A )=90°,∵BF 平分∠DBC ,∴∠ABF =∠CBF ,∵在△ABE 和△CBE 中,{∠AEB =∠CEB =90°BE =BE∠ABF =∠CBF, ∴△ABE ≌△CBE (ASA ),∴AB =CB ,∴△ABC 是等腰三角形;(3)∵△FBD ≌△ACD ,∴BF =AC ,∵△ABE ≌△CBE ,∴AE =CE =12AC ,∴CE =12BF .小提示:本题考查了等腰直角三角形的性质,全等三角形的判定与性质,等角对等边的性质,等边对等角的性质,综合题但难度不大,熟记各性质是解题的关键.17、已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.答案:(1)见解析(2)见解析分析:(1)结合题干的∠BAC=∠EDF=60°,推导出两个三角形为等边三角形,再由全等三角形的判定和性质即可求解;(2)由第(1)小问的解题思路和∠BAC=∠EDF、ED=DF这两个条件想到:在FA上截取FM=AE,求证△AED≌△MFD,再由全等的性质可得DA=DM=AB=AC,即可证△ABC≌△DAM,最后由全等的性质得AM=BC即可求解.(1)∵∠BAC=∠EDF=60°,∴△ABC、△DEF为等边三角形,∴∠BCE+∠ACE=∠DCA+∠ECA=60°,AB=AF∴∠BCE=∠DCA∵BC=AC、CE=CD∴△BCE≌△ACD(SAS),∴AD=BE,∵AB=AE+BE∴AF=AE+AD;(2)在FA上截取FM=AE,连接DM;AF,DE相交于点G∵∠BAC=∠EDF,∠AGE=∠DGF∴∠AED=∠MFD,∵AE=MF,ED=DF∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,∵AC=DM∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC.小提示:本题主要考查三角形全等的判定、全等三角形的性质、等边三角形和等腰三角形的性质等知识点,属于中难档的几何综合题.其中解题的关键是结合题干信息正确的作出辅助线.18、如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH∠BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连接MD,过点D作DN⊥DM交线段A延长线于N点,则S△BDM-S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.答案:(1)1;(2)见解析;(3)不改变,94分析:(1)证△OAP≌△OBC(ASA),即可得出OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,证△COM≌△PON(AAS),得出OM=ON.得出HO平分∠CHA,即可得出结论;(3)连接OD,由等腰直角三角形的性质得出OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD,则∠OAD=45°,证出∠DAN=∠MO D.证△ODM≌△ADN(ASA),得S△ODM=S△ADN,进而得出答案.解:(1)∵BO⊥AC,AH⊥BC,∴∠AOP=∠BOC=∠AHC=90°,∴∠OAP+∠C=∠OBC+∠C=90°,∴∠OAP=∠OBC,在△OAP和△OBC中,{∠AOP=∠BOCAO=BO∠OAP=∠OBC,∴△OAP≌△OBC(ASA),∴OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图1所示:在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,{∠COM=∠PON∠OMC=∠ONPOC=OP,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=12∠AHC=45°;(3)S△BDM﹣S△ADN的值不发生改变,等于94.理由如下:连接OD,如图2所示:∵∠AOB=90°,OA=OB,D为AB的中点,∴OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD∴∠OAD =45°,∠MOD =90°+45°=135°,∴∠DAN =135°=∠DOM .∵MD ⊥ND ,即∠MDN =90°,∴∠MDO =∠NDA =90°﹣∠MD A .在△ODM 和△ADN 中,{∠MDO =∠NDAOD =AD ∠DOM =∠DAN,∴△ODM ≌△ADN (ASA ),∴S △ODM =S △ADN ,∴S △BDM ﹣S △ADN =S △BDM ﹣S △ODM =S △BOD =12S △AOB=12×12AO •BO =12×12×3×3=94.小提示:本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质以及三角形面积等知识;本题综合性强,证明三角形全等是解题的关键.。
苏科版数学八年级上册第2章轴对称图形章末重难点题型(举一反三)(原卷版)

轴对称图形章末重难点题型汇编【举一反三】【苏科版】【考点1 判断轴对称图形】【方法点拨】掌握轴对称图形的概念:把一个图形沿着某一条直线翻折,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
注意:理解轴对称图形的定义应注意两点:(1)轴对称图形是一个图形,反映的是这个图形自身的性质。
(2)符合要求的“某条直线”可能不止一条,但至少要有一条。
【例1】(2019春•相城区期中)下列图形中,不是轴对称图形的是()A.B.C.D.【变式1-1】(2018秋•思明区校级期中)如图,四个手机应用图标中是轴对称图形的是()A.B.C.D.【变式1-2】(2018秋•开封期中)下列四个图形中,不是轴对称图形的是()A.B.C.D.【变式1-3】(2018秋•宜兴市校级期中)下列图形中,不是轴对称图形的有()A.1个B.2个C.3个D.4个【考点2 角平分线的应用】【方法点拨】掌握角平分线的性质定理:角平分线上的点到角两边的距离相等牢记:(1)角平分线的性质是证明线段相等的一个比较简单的方法;(2)当遇到有关角平分线的问题时,通常过角平分线上的点向角的两边作垂线,构造相等的线段。
【例2】(2019春•港南区期中)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE ⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【变式2-1】(2018秋•九龙坡区校级期中)如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6B.8C.4D.10【变式2-2】(2018秋•思明区校级期中)如图,△ABC中,AB=6,AC=4,AD平分∠BAC,DE⊥AB于点E,BF⊥AC于点F,DE=2,则BF的长为()A.3B.4C.5D.6【变式2-3】(2018秋•西城区校级期中)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC =24,DE=4,AB=7,则AC长是()A.3B.4C.6D.5【考点3 线段垂直平分线性质的应用】【方法点拨】掌握线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等注意:(1)这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。
八年级上册轴对称解答题易错题(Word版 含答案)

八年级上册轴对称解答题易错题(Word版含答案)一、八年级数学轴对称解答题压轴题(难)1.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠A BC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.2.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.3.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB ∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.5.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC是等腰三角形,90BAC∠=︒,D是BC的中点,以AD为腰作等腰ADE,且满足90DAE∠=︒,连接CE并延长交BA的延长线于点F,试探究BC与CF之间的数量关系.图1发现:(1)BC与CF之间的数量关系为 .探究:(2)如图2,当点D是线段BC上任意一点(除B、C外)时,其他条件不变,试猜想BC与CF之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.6.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC -=.在图5中,(1)中的结论成立,OD OE OC -=【解析】【分析】(1)通过ASA 证明CDO CEF ∆∆≌即可得到CD=CE ;(2)过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,通过AAS 证明CMD CNE ∆∆≌同样可得到CD=CE ;(3)①方法一:过点 C 作 C M OA ⊥,CN OB ⊥垂足分别为 M ,N ,通过AAS 得到CMD CNE ∆∆≌,进而得到,CD CE DM EN ==,利用等量代换得到=OE OD ON OM ++,在 Rt CMO ∆中,利用30°角所对的边是斜边的一半得12OM OC =,同理得到1 2ON OC =,所以OE OD OC +=;方法二:以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,通过ASA 证明CDO CEF ∆∆≌,得到,CD CE OD EF ==,所以OE OD OE EF OF OC +=+==;②图4:以OC 为一边,作∠OCF=60°与OB 交于F 点,利用ASA 证得△COD ≌△CFE ,即有CD=CE ,OD=EF得到OE=OF+EF=OC+OD ;图5:以OC 为一边,作∠OCG=60°与OA 交于G 点,利用ASA 证得△CGD ≌△COE ,即有CD=CE ,OD=EF ,得到OE=OF+EF=OC+OD.【详解】解:(1)OC 平分AOB ∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC ∴=又456590︒∠+∠=∠+∠=在CDO ∆与CEF ∆中,1346OC FC ∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA ∴∆∆≌CD CE ∴=(2)如图2,过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形 O DCE 中,12360AOB DCE∠+∠+∠+∠=︒,又∵90AOB DCE∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD∆与CNE∆中,32CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC+=.理由如下:方法一:如图3(1),过点C作C M OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形ODCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵60120180AOB DCE∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD ∆与CNE ∆中,13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS ∆∆≌,∴,CD CE DM EN ==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在 Rt CMO ∆中,1490590302AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO ∠=∠+∠=︒,∴46∠=∠,在CDO ∆与CEF ∆中,1346CO CF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA ∆∆≌,∴,CD CE OD EF ==.∴OE OD OE EF OF OC +=+==.-=.②在图4中,(1)中的结论成立,OE OD OC如图,以OC为一边,作∠OCF=60°与OB交于F点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD ≌△COE (ASA )∴CD=CE ,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.7.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.8.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE+AE=BE.【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC=AD,∠PAC=∠PAD=20°,根据等边三角形的性质可得AC=AB,∠BAC=60°,即可得AB=AD,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D的度数,再由三角形外角的性质即可求得∠AEB的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°.∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中,AB AC BAM CAE AM AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AMB ≌△AEC .∴CE =BM .∴CE +AE =BE .【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE 转化到BE 上,再证明CE =BM 即可得结论.9.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .(1)若10AC =,求HI 的长度;(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解;(2)延长BD至Q,使DQ=AB,连结EQ,就可以得出BE=BQ,得出△BEQ是等边三角形,就可以得出BE=QE,得出△BCE≌△QDE就可以得出结论.【详解】解:如图1,作FP∥BC交AB于点P,∵ABC∆是等边三角形,∴∠ABC=∠A=60°,∵FP∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF∆是等边三角形,∴PF=AF,∵FH AB⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI∆和BGI∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠B=60°.∵AE=BD ,DQ=AB ,∴AE+AB=BD+DQ ,∴BE=BQ .∵∠B=60°,∴△BEQ 为等边三角形,∴∠B=∠Q=60°,BE=QE .∵DQ=AB ,∴BC=DQ .∴在△BCE 和△QDE 中,BC DQ B Q BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△QDE (SAS ),∴EC=ED .∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论; (3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠= 120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+ (2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠= 180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠= ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+737276222PQ ∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
人教版八年级上册数学 轴对称解答题专题练习(解析版)

人教版八年级上册数学轴对称解答题专题练习(解析版)一、八年级数学轴对称解答题压轴题(难)1.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等边三角形的性质,得出∠BAC=∠ACB=60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA,然后结合(1)可得∠MDC=∠BAD,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BAD=60°﹣∠DAE,∠EDC=60°﹣∠E,又∵DE=DA,∴∠E=∠DAE,∴∠BAD=∠EDC.(2)由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=60°,∴△ADM是等边三角形,∴AD=AM.【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.2.再读教材:宽与长的比是5-1(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB22AC BC+2212+55(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE ,矩形MNDE .∵AD =5.AN =AC =1,CD =AD ﹣AC =5﹣1. ∵BC =2,∴CD BC =51-,∴矩形BCDE 是黄金矩形. ∵MN DN =15+=51-,∴矩形MNDE 是黄金矩形. (4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.长GH 51,宽HE =35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.3.已知:AD 是ABC ∆的高,且BD CD =. (1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF . 【解析】 【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长. 【详解】解:(1)证明:如图1,AD BC ⊥,BD CD = AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴== AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=- 同理12FN EF m ==,2124CF FG m ==-在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+ 解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =. 【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.4.如图,在等边△ABC 中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边△CDE ,连结BE . (1)求∠CAM 的度数;(2)若点D 在线段AM 上时,求证:△ADC ≌△BEC ;(3)当动D 在直线..AM 上时,设直线BE 与直线AM 的交点为O ,试判断∠AOB 是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB 是定值,∠AOB =60°. 【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC =BC ,DC =EC ,∠ACB =∠DCE =60°,由等式的性质就可以∠BCE =∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出△ACD ≌△BCE 而有∠CBE =∠CAD =30°而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出△ACD ≌△BCE 同样可以得出结论. 【详解】(1)∵△ABC 是等边三角形,∴∠BAC =60°. ∵线段AM 为BC 边上的中线,∴∠CAM 12=∠BAC ,∴∠CAM =∠BAM =30°. (2)∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE .在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°. 由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°. ③当点D 在线段MA 的延长线上时. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD和△BCE中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD.由(1)得:∠CAM=30°,∴∠CBE=∠CAD=150°,∴∠CBO=30°,∠BAM=30°,∴∠BOA=90°﹣30°=60°.综上所述:当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.已知如图1,在ABC∆中,AC BC=,90ACB∠=,点D是AB的中点,点E是AB边上一点,直线BF垂直于直线CE于点F,交CD于点G.(1)求证:AE CG=.(2)如图2,直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M,求证:BE CM=.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D 是AB 中点,∠ACB =90°,可得出∠ACD =∠BCD =45°,判断出△AEC ≌△CGB ,即可得出AE =CG ;(2)根据垂直的定义得出∠CMA +∠MCH =90°,∠BEC +∠MCH =90°,再根据AC =BC ,∠ACM =∠CBE =45°,得出△BCE ≌△CAM ,进而证明出BE =CM . 【详解】(1)∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∴∠CAD =∠CBD =45°,∴∠CAE =∠BCG . 又∵BF ⊥CE ,∴∠CBG +∠BCF =90°. 又∵∠ACE +∠BCF =90°,∴∠ACE =∠CBG .在△AEC 和△CGB 中,∵CAE BCG AC BC ACE CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC ≌△CGB (ASA ),∴AE =CG ;(2)∵CH ⊥HM ,CD ⊥ED ,∴∠CMA +∠MCH =90°,∠BEC +∠MCH =90°,∴∠CMA =∠BEC .在△BCE 和△CAM 中,BEC CMA ACM CBE BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CAM (AAS ),∴BE =CM .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.6.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:∴1064OP BP BO ,∴P 点的坐标是()4,0; 当AP AB =时,如图二所示:∴6OP BO∴P 点的坐标是()6,0;当AP BP =时,如图三所示:设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP +=即:22286x x解之得:73x = ∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在;当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上, ∴AEG △和GOP 是直角三角形,EGA OGP ∴EAG OPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA ∴'FAO FAO ,'FAE FAE ∴'EAG EAO 则有:'OPGEAO ∴'AOP 是等腰三角形,则有'8OP OA , ∴22228882AP AO OP ,设BE x =,则有6AEx ,根据勾股定理,有: 22222BP BE EP AP AE 即:2222688210x x 解之得:425BEx 【点睛】 本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.7.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC和△ADE均为等边三角形(如图1),∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS)∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n ,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n.∴∠AEC=90°+12n .【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.8.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动秒后,△AMN是等边三角形?(2)点M、N在BC边上运动时,运动秒后得到以MN为底边的等腰三角形△AMN?(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.【答案】(1)125;(2)485;(3)点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【解析】【分析】(1)当AM=AN时,△MNA是等边三角形.设运动时间为t秒,构建方程即可解决问题;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.构建方程即可解决问题;(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.【详解】(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒则有:2t=12﹣3t解得t=12 5故点M、N运动125秒后,△AMN是等边三角形;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN则有:2t﹣12=36﹣3t解得t=48 5故运动485秒后得到以MN为底边的等腰三角形△AMN;(3)设点M、N运动t秒后,可得到直角三角形△AMN ①当M在AC上,N在AB上,∠ANM=90°时,如图∵∠A=60°∴∠AMN=30°∴AM=2AN则有2t=2(12﹣3t)∴t=3;②当M在AC上,N在AB上,∠AMN=90°时,如图∵∠A=60°∴∠ANM=30°∴2AM=AN∴4t=12﹣3t∴t=127;③当M、N都在BC上,∠ANM=90°时,如图CN =3t ﹣24=6解得t =10;④当M 、N 都在BC 上,∠AMN =90°时,则N 与B 重合,M 正好处于BC 的中点,如图此时2t =12+6解得t =9;综上所述,点M 、N 运动3秒或127秒或10秒或9秒后,△AMN 为直角三角形. 【点睛】本题主要考查了等边三角形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握相关知识点是解决本题的关键.9.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==.(3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.10.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP,BP=PQ,PQ=CQ时,∵AB=BP,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP,BQ=PQ,PQ=CQ时,∴∠PQC=∠C=2∠PBQ,∴12∠C+∠C=30°,解得:∠C=20°.综上所述:∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键.。
南京市八年级数学上册第十三章《轴对称》经典练习卷(含答案解析)

一、选择题1.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°D 解析:D【分析】设两内角的度数为x 、4x ,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x 、4x ,当等腰三角形的顶角为x 时,x +4x +4x =180°,x =20°;当等腰三角形的顶角为4x 时,4x +x +x =180°,x =30°,4x =120°;因此等腰三角形的顶角度数为20°或120°.故选:D .【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.2.若实数a ,b 满足a 2-4a +4+(b -4)2=0,且a ,b 恰好是等腰△ABC 两条边的长,则△ABC 周长为( )A .8B .8或10C .12D .10D 解析:D【分析】由已知等式,结合非负数的性质求a 、b 的值,再根据等腰三角形的性质,分类求解即可.【详解】解:∵a 2-4a +4+(b -4)2=0,∴(a -2)2+(b -4)2=0,∴a−2=0,b−4=0,解得:a =2,b =4,当a =2作腰时,三边为2,2,4,不符合三角形三边关系定理;当n =4作腰时,三边为2,4,4,符合三角形三边关系定理,周长为:2+4+4=10. 故选:D .【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求a ,b 的值,再根据a 或b 作为腰,分类求解.3.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限B .第二象限C .第三象限D .第四象限A解析:A【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A 1与A 2关于x 轴对称,A 2与A 3关于y 轴对称,A 3与A 4关于x 轴对称,A 4与A 5关于y 轴对称,A 1与A 5是同一个点,四次一循环,100÷4=25,A 100与A 4重合,即第一象限,故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .4C解析:C【分析】 根据题意作图可知:AD 是BAC ∠的平分线,由此判断①正确;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,判断②正确;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断③正确;证明Rt △ACD ≌Rt △AED ,得到S △ACD =S △AED ,根据等底同高得到S △AED =S △BED ,即可得到:1:3DAC ABC S S =,判断④错误.【详解】解:由题意得:AD 是BAC ∠的平分线,故①正确;∵90C ∠=︒,30B ∠=︒,∴∠BAC=60︒,∵AD 是BAC ∠的平分线,∴∠CAD=∠BAD=30B ∠=︒,∴60ADC ∠=︒,故②正确;过点D 作DE ⊥AB 于E ,∵∠BAD=30B ∠=︒,∴AD=BD ,∴△ABD 是等腰三角形,∴AE=BE ,∴点D 在AB 的中垂线上,故③正确;∵AD 是BAC ∠的平分线,DC ⊥AC ,DE ⊥AB ,∴CD=DE ,∠C=∠AED=90︒,又∵AD=AD ,∴Rt △ACD ≌Rt △AED ,∴S △ACD =S △AED ,∵AE=BE ,DE ⊥AB ,∴S △AED =S △BED ,∴:1:3DAC ABC S S =,故④错误;故选:C ..【点睛】此题考查角平分线的作图方法及性质应用,全等三角形的判定及性质,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.5.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A.1个B.2个C.3个D.4个D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.6.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .5B 解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD , ∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.7.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③B解析:B【分析】 根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC =∠CAD ,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG =∠ACD ,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE 是中线,∴AE =CE ,∴△ABE 的面积=△BCE 的面积(等底等高的三角形的面积相等),故①正确; ∵CF 是角平分线,∴∠ACF =∠BCF ,∵AD 为高,∴∠ADC =90°,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ACB +∠CAD =90°,∴∠ABC =∠CAD ,∵∠AFG =∠ABC +∠BCF ,∠AGF =∠CAD +∠ACF ,∴∠AFG =∠AGF ,故②正确;∵AD 为高,∴∠ADB =90°,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ABC +∠BAD =90°,∴∠ACB =∠BAD ,∵CF 是∠ACB 的平分线,∴∠ACB =2∠ACF ,∴∠BAD =2∠ACF ,即∠FAG =2∠ACF ,故③正确;根据已知条件不能推出∠HBC =∠HCB ,即不能推出BH =CH ,故④错误;故选:B .【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.8.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°A解析:A【分析】 根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.9.如图,在ABC 中,DE 是AC 的垂直平分线,交AC 边于E ,交BC 边于D ,连接AD ,若3AE =,ABD △的周长为13,则ABC 的周长( )A .16B .19C .20D .24B解析:B【分析】 根据线段垂直平分线性质得出 AD = DC ,求出和 AB + BC 的长,即可求出答案.【详解】DE 是 AC 的垂直平分线,AE=3cm,.∴ AC=2AE=6cm ,AD = DC ,△ ABD 的周长为13cm ,∴ AB + BD +AD=13cm ,∴AB + BD + DC = AB +BC=13cm∴ △ ABC 的周长为 AB + BC +AC=13cm+6cm=19cm ,故选 B .【点睛】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.10.如果等腰三角形两边长分别是8cm 和4cm ,那么它的周长( )A .8cmB .20cmC .16cm 或20cmD .16cm B解析:B【分析】解决本题要注意分为两种情况4cm 为底或8cm 为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【详解】解:∵等腰三角形有两边分别分别是4cm和8cm,∴此题有两种情况:①4cm为底边,那么8cm就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4cm是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20cm.故选:B.【点睛】本题考查了等腰三角形性质;解题时涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.二、填空题11.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是______.10【分析】使△AOP为等腰三角形只需分两种情况考虑:OA当底边或OA当腰当OA是底边时有2个点;当OA是腰时有8个点即可得出答案【详解】∵A(80)∴OA=8设△AOP的边OA上的高是h则×8×h解析:10【分析】使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.【详解】∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则12×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合, ②以O 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合, ③作AO 的垂直平分线分别交直线a 、b 于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B .【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 12.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90° ∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.13.如图,点A 为线段BC 外一动点,4BC =,1AB =,分别以AC 、AB 为边作等边ACD △、等边ABE △,连接BD .则线段BD 长的最大值为______.5【分析】连接CE 根据等边三角形的性质得到AE =ABAC =AD ∠CAD =∠BAE =60°再利用SAS 推出△BAD ≌△EAC 由全等三角形的性质得到BD =EC 由于线段BD 长的最大值=线段EC 的最大值即可解析:5【分析】连接CE,根据等边三角形的性质得到AE =AB ,AC =AD ,∠CAD =∠BAE =60°,再利用SAS 推出△BAD ≌△EAC ,由全等三角形的性质得到BD =EC ,由于线段BD 长的最大值=线段EC 的最大值,即可得到结果.【详解】解:连接CE ,∵△ACD 与△ABE 是等边三角形,∴AE =AB ,AC =AD ,∠CAD =∠BAE =60°,∴∠CAD +∠BAC =∠BAE +∠BAC ,即∠BAD =∠EAC ,在△BAD 与△EAC 中,AD AC BAD EAC AB AE ⎧⎪∠∠⎨⎪⎩===,∴△BAD ≌△EAC (SAS ),∴BD =EC ;∵线段BD 长的最大值=线段EC 的最大值,当线段EC 的长取得最大值时,点E 在CB 的延长线上,且BC =4,AB =1,∴线段BD 长的最大值为BE +BC =AB +BC =5.故答案为:5.【点睛】本题考查了三角形的综合问题,掌握等边三角形的性质、全等三角形的判定与性质,并正确的作出辅助线构造全等三角形是解题的关键.14.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A (1+m1-n )与点B (-32)关于y 轴对称∴1+m=31-n=2∴m=2n=-1∴(m +n )202解析:1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m +n )2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.15.如图,等边△ABC的边长为4,点D在边AC上,AD=1.(1)△ABC的周长等于_____;(2)线段PQ在边BA上运动,PQ=1,BQ>BP,连接QD,PC,当四边形PCDQ的周长取得最小值时,请在如图所示的矩形区域内,用无刻度的直尺和圆规,画出线段PC,QD,并简要说明点P和点Q的位置是如何找到的(保留作图痕迹,不要求证明)_____.见解析过点C作CE∥AB且CE=1作点D关于AB的对称点F连接EF交AB于一点为Q在AB上BQ之间截取PQ=1连接CPDQ则四边形PCDQ为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算解析:见解析,过点C作CE∥AB,且CE=1,作点D关于AB的对称点F,连接EF交AB于一点为Q,在AB上BQ之间截取PQ=1,连接CP、DQ,则四边形PCDQ为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算;(2)过点C作CE∥AB,且CE=1,作点D关于AB的对称点F,连接EF交AB于一点为Q,在AB上BQ之间截取PQ=1,连接CP、DQ,则四边形PCDQ为所求的周长最小的四边形.【详解】⨯=,(1)△ABC的周长等于4312故答案为:12;(2)如图:故答案为:过点C作CE∥AB,且CE=1,作点D关于AB的对称点F,连接EF交AB于一点为Q,在AB上BQ之间截取PQ=1,连接CP、DQ,则四边形PCDQ为所求的周长最小的四边形..【点睛】此题考查等边三角形的性质,三角形周长计算公式,轴对称的性质,综合掌握各知识点是解题的关键.16.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,……按此规律作下去,若11A B O α∠=,则1010A B O ∠=___________.【分析】根据等腰三角形两底角相等用α表示出∠A2B2O 依此类推即可得到结论【详解】解:∵B1A2=B1B2∠A1B1O =α∴∠A2B2Oα同理∠A3B3O ∠A2B2Oα∠A4B4Oα∴∠AnBnOα 解析:512α. 【分析】 根据等腰三角形两底角相等用α表示出∠A 2B 2O ,依此类推即可得到结论.【详解】解:∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O 12=α, 同理∠A 3B 3O 12=∠A 2B 2O 212=α, ∠A 4B 4O 312=α, ∴∠A n B n O 112n -=α, ∴∠A 10B 10O 95221αα==. 故答案为:512α. 【点睛】 本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.17.若等腰三角形的一条边长为5cm ,另一条边长为10cm ,则此三角形第三条边长为__________cm .10【分析】因为等腰三角形的两边分别为5cm 和10cm 但没有明确哪是底边哪是腰所以有两种情况需要分类讨论【详解】当5cm 为底时其它两边都为10cm5cm10cm10cm 可以构成三角形;当5cm 为腰时解析:10【分析】因为等腰三角形的两边分别为5cm 和10cm ,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当5cm 为底时,其它两边都为10cm ,5cm 、10cm 、10cm 可以构成三角形;当5cm 为腰时,其它两边为5cm 和10cm ,因为5+5=10,所以不能构成三角形,故舍去. 所以三角形三边长只能是5cm 、10cm 、10cm ,所以第三边是10cm .故答案为:10.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 18.如图,在ABC 中,12 cm AB AC ==, 6 cm BC =,D 为AC 的中点,动点P 从点A 出发,以每秒1 cm 的速度沿A B C --的方向运动,设运动时间为t ,当过D ,P 两点的直线将ABC 的周长分成两部分,当其中一部分是另一部分的2倍时,t =_________.4或14秒【分析】由于动点P 从点A 出发沿的方向运动所以分两种情况进行讨论:(1)P 点在AB 上时设P 点运动了t 秒用含t 的代数式分别表示BPAP 根据条件过DP 两点的直线将的周长分成两部分使其中一部分是另解析:4或14秒.【分析】由于动点P 从点A 出发,沿A B C --的方向运动,所以分两种情况进行讨论:(1)P 点在AB 上时,设P 点运动了t 秒,用含t 的代数式分别表示BP ,AP ,根据条件过D ,P 两点的直线将ABC 的周长分成两部分,使其中一部分是另一部分的2倍,求出t 的值;(2)P 点在BC 上时,同理,可解得t 的值.【详解】解:分两种情况:(1)P 点在AB 上时,如图,∵12 cm AB AC ==,1 6 cm 2AD CD AC ===, 设P 点运动了t 秒,则AP t =,12BP t =-,由题意得: ()12AP AD BP BC CD +=++或()12AP AD BP BC CD +=++, ∴()1612662t t +=-++①或1(6)12662t t +=-++②, 解①得4t =秒,解②得,14t =(舍去);(2)P 点在BC 上时,如图,P 点运动了t 秒,则AB BP t +=,18PC AB BC t t =+-=-,由题意得:()2AD AB BP PC CD ++=+或()2AD AB BP PC CD ++=+, ∴()62186t t +=-+①或()26186t t +=-+②解①得14t =秒,解②得,4t =秒(舍去).故当4t =或14秒时,过D 、P 两点的直线将ABC 的周长分成两个部分,使其中一部分是另一部分的2倍.故答案为4或14秒.【点睛】本题考查了等腰三角形的性质及动点问题.解答此题时要分情况进行讨论,不要漏解. 19.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.【分析】根据勾股定理可得AC的长度作点C关于x轴的对称点C′连接AC′与x轴交于点P利用勾股定理求出AP+PC的最小值从而得出答案【详解】AC=如图作点C关于x轴的对称点C′连接AC′与x轴交于点P 解析:21022+【分析】根据勾股定理可得AC的长度,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,利用勾股定理求出AP+PC的最小值,从而得出答案.【详解】AC=22+=,2222如图,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,则AP+PC=AP+PC′=AC′,此时AP+PC22+=26210所以△PAC周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质.20.如图,△ABC中,AB=AC,点D、E、F分别在AB、BC、CA边上,且BE=CF,BD=CE,如果∠A=44°,则∠EDF的度数为__.56°【分析】根据可求出根据△DBE ≌△ECF 利用三角形内角和定理即可求出的度数【详解】解:∵AB =AC ∴∠ABC =∠ACB 在△DBE 和△CEF 中∴△DBE ≌△ECF (SAS )∴DE =EF ∴△DEF解析:56°【分析】根据44A ∠=︒可求出68ABC ACB ∠=∠=︒,根据△DBE ≌△ECF ,利用三角形内角和定理即可求出 EDF ∠的度数.【详解】解:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS ),∴DE =EF ,∴△DEF 是等腰三角形,∵△DBE ≌△ECF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°, ∴()118044682B ∠=︒-︒=︒, ∴1218068∠+∠=︒-︒,∴3218068∠+∠=︒-︒,∴∠DEF =68°, ∴18068562EDF ︒-︒∠==︒.故答案为:56°.【点睛】此题主要考查全等三角形的判定与性质的理解和掌握,主要应用了三角形内角和定理和平角是180︒,根据等腰三角形的性质得出B C ∠=∠是解题的关键.三、解答题21.如图,△ABC 是边长为12cm 的等边三角形,动点M 、N 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动.(1)若点M 的运动速度是2cm/s ,点N 的运动速度是4cm/s ,当N 到达点C 时,M 、N 两点都停止运动,设运动时间为t (s ),当t=2时,判断△BMN 的形状,并说明理由; (2)当它们的速度都是2cm/s ,当点M 到达点B 时,M 、N 两点停止运动,设点M 的运动时间为t (s ),则当t 为何值时,△MBN 是直角三角形?解析:(1)△BMN 是等边三角形,见解析;(2)当t=2或t=4时,△BMN 是直角三角形.【分析】(1)先由等边三角形的性质解得,当t=2时,AM =4,BN=8,继而证明BM=BN ,再根据等边三角形的判定解题即可;(2)若△MBN 是直角三角形,则∠BNM=90°或∠BMN=90°,根据直角三角形含30°角的性质列方程解题即可.【详解】解:(1)△BMN 是等边三角形当t=2时,AM =4,BN=8,∵△ABC 是等边三角形且边长是12∴BM=12-4=8,∠B=60°∴BM=BN∴△BMN 是等边三角形;(2)△BMN 中,BM=12-2t ,BN=2t①当∠BNM=90°时,∠B=60°∴∠BMN=30° ∴12BN BM = ∴12(122)2t t =-∴t=2②当∠BMN=90°时,∠B=60°∴∠BNM=30° ∴12BM BN = ∴112222t t -=⨯ ∴t=4综上:当t=2或t=4时,△BMN 是直角三角形.【点睛】本题考查直角三角形的判定、等边三角形的判定与性质、几何动点与一元一次方程等知识,涉及含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.如图,以△ABC 的两边AB 和AC 为腰在△ABC 外部作等腰Rt △ABD 和等腰Rt △ACE ,AB =AD ,AC =AE ,∠BAD =∠CAE =90°.(1)连接BE 、CD 交于点F ,如图①,求证:BE =CD ,BE ⊥CD ;(2)连接DE ,AM ⊥BC 于点M ,直线AM 交DE 于点N ,如图②,求证:DN =EN .解析:(1)见详解;(2)见详解.【分析】(1)只要证明△ABE ≌△ADC 即可解决问题;(2)延长AN 到G ,使AG=BC ,连接GE ,先证AEG CAB △≌△,再证GE ADN N △≌△即可解决问题.【详解】(1)证明:∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,又∵∠BAD=∠CAE=90°,∴∠BAD+∠DAE=∠CAE+∠DAE ,即∠BAE=∠DAC ,∴△ABE ≌△ADC ,∴BE=DC ,∠ABE=∠ADC ,又∵∠DOF=∠AOB ,∠BOA+∠ABE=90°,∴∠ABE+∠DOF=90°∴∠ADC+∠DOF=90,即BE ⊥DC .(2)延长AN 到G 使AG=BC ,连接GE ,AM BC ⊥,AC 90MAC M ∴∠+∠=︒,90NAE MAC ∠+∠=︒,ACM=NAE ∴∠∠,同理可证:ABC DAN ∠=∠ AC=AE ,∴()AEG CAB SAS △≌△,GE AB AD ∴==,ABC G ∠=∠,DAN G ∴∠=∠,又NA=GNE D ∠∠,∴GE ADN N △≌△,DN=EN ∴.【点睛】此题考查了全等三角形的判定与性质,等腰三角形的性质,直角三角形的性质,辅助线是解此题的关键.23.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DHFB FH =+. 解析:(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 24.已知45MAN ∠=︒,点B 为射线AN 上一定点,点C 为射线AM 上一动点(不与点A 重合),点D 在线段BC 的延长线上,且CD CB =.过点D 作DE AM ⊥于点E .(1)当点C 运动到如图1的位置时,点E 恰好与点C 重合,此时AC 与DE 的数量关系是 ;(2)当点C 运动到如图2的位置时,依题意补全图形,并证明:2AC AE DE =+; (3)在点C 运动的过程中,点E 能否在射线AM 的反向延长线上?若能,直接用等式表示线段AC ,AE ,DE 之间的数量关系;若不能,请说明理由.解析:(1)AC DE =;(2)补全图形见解析,证明见解析;(3)能,2.AC AE DE +=【分析】(1)先证明AC 是BD 的垂直平分线,可得:45ABD ADB ∠=∠=︒,可得:90DAB ∠=︒,可得45CAD CDA ∠=∠=︒,从而可得结论; (2)如图,过B 作BG AM ⊥于G ,证明:,BCG DCE ≌ 可得,,BG DE CG CE == 再证明:,AG BG DE == 从而可得()22,AC DE CE =+ ()2,AE DE DE CE +=+ 于是可得结论;(3)如图,过B 作BG AM ⊥于G ,同(2)理可得:(),BCG DCE AAS ≌AG BG =,可得,,CG CE BG DE == ,AG BG DE == 再证明2,AG AC AE =+从而可得结论.【详解】解:(1)当,E C 重合时,点D 在线段BC 的延长线上,CD CB =,DE AM ⊥,AC ∴是BD 的垂直平分线,,AB AD ∴=,ABD ADB ∴∠=∠45MAN ∠=︒,45ABD ∴∠=︒,45ABD ADB ∴∠=∠=︒,90DAB ∴∠=︒,45CAD CDA ∴∠=∠=︒,.AE DE ∴=故答案:.AE DE =(2)补全图形如图所示,过B 作BG AM ⊥于G ,DE AM ⊥,90DEC BGC ∴∠=∠=︒,,,BC DC BCG DCE =∠=∠(),BCG DCE AAS ∴≌,,BG DE CG CE ∴==45,MAN BG AM ∴∠=︒⊥,45GAB GBA ∴∠=∠=︒,,AG BG DE ∴==()()222,AC AG CG DE CE ∴=+=+()2,AE DE AG CG CE DE DE CE +=+++=+2.AC AE DE ∴=+(3)点E 能在射线AM 的反向延长线上,如图,过B 作BG AM ⊥于G ,同理可得:(),BCG DCE AAS ≌AG BG =,,,CG CE BG DE ∴==,AG BG DE ∴==2,AG AC CG AC CE AC AC AE AC AE ∴=+=+=++=+2.AC AE DE ∴+=【点睛】本题考查的是线段的垂直平分线的定义及性质,等腰三角形的判定,三角形全等的判定与性质,掌握以上知识是解题的关键.25.如图,在ABC 中,90,C AC BC ∠=︒>,D 为AB 的中点,E 为CA 延长线上一点,连接DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF .作点B 关于直线DF 的对称点G ,连接DG .(1)依题意补全图形;(2)若ADF α∠=.①求EDG ∠的度数(用含α的式子表示);②请判断以线段,,AE BF EF 为边的三角形的形状,并说明理由.解析:(1)补图见解析;(2)①90EDG α∠=︒-;②以线段,,AE BF EF 为边的三角形是直角三角形,理由见解析.【分析】(1)根据题意画出图形解答即可;(2) ①根据轴对称的性质解答即可;②根据轴对称的性质和全等三角形的判定和性质得出AE GE =,进而解答即可.【详解】解:(1)补全图形,如图所示,(2)①∵ADF α∠=,∴180BDF α∠=︒-,由轴对称性质可知,180GDF BDF α∠=∠=︒-,∵DF DE ⊥,∴90EDF ∠=︒,∴1809090EDG GDF EDF αα∠=∠-∠=︒--︒=︒-,②以线段,,AE BF EF 为边的三角形是直角三角形,如图,连接,GF GE ,由轴对称性质可知,,GF BF DGF B =∠=∠,∵D 是AB 的中点,∴AD BD =,∵GD BD =,∴AD GD =,∵90,GDE EDA DE DE α∠=∠=︒-=,∴GDE ADE ≌,∴,EGD EAD AE GE ∠=∠=,∵90EAD B ∠=︒+∠,∴90EGD B ∠=︒+∠,∴9090EGF EGD DGF B B ∠=∠-∠=︒+∠-∠=︒, ∴以线段,,GE GF EF 为边的三角形是直角三角形,∴以线段,,AE BF EF 为边的三角形是直角三角形.【点睛】此题考查全等三角形的判定和性质,关键是根据轴对称的性质和全等三角形的判定和性质解答.26.如图,在ABC 中,AB AC =,D 为AC 的中点,DE AB ⊥于点E ,DF BC ⊥于点F ,且DE DF =,连接BD ,点G 在BC 的延长线上,且CD CG =.(1)求证:ABC 是等边三角形;(2)若2CG =,求BC 的长.解析:(1)见解析 (2)4【分析】(1)只要证明Rt △ADE ≌Rt △CDF ,推出∠A=∠C ,推出BA=BC ,又AB=AC ,即可推出AB=BC=AC ;(2)证明BD 是等边三角形的∠ABC 的平分线,得∠DBC =30゜,再利用直角三角形的性质求解即可.【详解】解:(1)证明:∵DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,∴∠AED=∠CFD=90°,∵D 为AC 的中点,∴AD=DC ,在Rt △ADE 和Rt △CDF 中,AD DC DE DF ⎧⎨⎩==, ∴Rt △ADE ≌Rt △CDF ,∴∠A=∠C ,∴BA=BC ,∵AB=AC ,∴AB=BC=AC ,∴△ABC 是等边三角形.(2)∵DE ⊥AB ,DF ⊥BC ,且DE DF =,∴BD 平分ABC ∠,∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,∴BD AC ⊥,30CBD ∠=︒, ∴2BC CD =,∵CD CG =,2CG =∴24BC CG ==.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.27.在平面直角坐标系中,△ABC 的位置如图所示,已知点A 、B 的坐标为(-4,3)(3,0).(1)点C 关于x 对称的点的坐标( , );(2)在图中作出△ABC 关于y 轴的对称图形△A′B′C′;(3)△ABC 的面积为 .解析:(1)-2,-5;(2)见解析;(3)10【分析】(1)根据轴对称的性质解答;(2)根据轴对称的性质作图;(3)利用割补法求解.【详解】(1)根据坐标系知点C 坐标为(-2,5),∴点C 关于x 对称的点的坐标(-2,-5),故答案为:-2,-5;(2)如图,△A′B′C′即为所求;(3)1117537225510222ABC S=⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:10.【点睛】 此题考查关于坐标轴对称的性质:关于x 轴对称的点的横坐标相等,纵坐标互为相反数;关于y 轴对称的点的横坐标互为相反数,纵坐标相等.28.如图,ABC 的三个顶点的坐标分别是()3,3A ,()1,1B ,()4,1C -.(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1A (______,_______)、1B (______,_______)、1C (______,_______)(2)在图中作出ABC 关于y 轴对称的图形222A B C △.(3)求ABC 的面积.解析:(1)3,−3,1,−1,4,1;(2)见详解;(3)5【分析】(1)由关于x 轴对称的点的横坐标相等,纵坐标互为相反数,即可得到答案; (2)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得;(3)利用割补法求解可得.。
(必考题)初中八年级数学上册第十三章《轴对称》经典题

一、选择题1.如图所示,等腰直角三角形ADM 中,AM DM =,90AMD ∠=︒,E 是AD 上一点,连接ME ,过点D 作DC ME ⊥交ME 于点C ,过点A 作AB ME ⊥交ME 于点B ,4AB =,10CD =,则BC 的长度为( )A .3B .6C .8D .102.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .11 3.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个5.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大 6.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm 7.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 8.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( )A .17B .13或17C .13D .199.如图,在ABC 中,AB AC =,108BAC ∠=︒,72ADB ∠=︒,DE 平分ADB ∠,图中等腰三角形的个数是( )A .3B .4C .5D .610.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个11.如图,在△ABC 中,∠C =84°,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M ,N ,作直线MN 交AC 于点D ;以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P .若此时射线BP 恰好经过点D ,则∠A 的大小是( )A .30°B .32°C .36°D .42°12.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .1213.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180° 14.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD +CF =BD ;③CE =12BF ;④AE =BG .其中正确的是( )A .①②B .①③C .①②③D .①②③④ 15.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm二、填空题16.如图,在ABC 中,90ACB ︒∠=,30B ,6AC =,P 为BC 边的垂直平分线DE 上一个动点,则ACP △周长的最小值为________.17.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.18.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.19.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.20.如图,点A 为线段BC 外一动点,4BC =,1AB =,分别以AC 、AB 为边作等边ACD △、等边ABE △,连接BD .则线段BD 长的最大值为______.21.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________22.如图,在△ACB 中,∠ACB =∠90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,DC =4cm ,则D 到AB 的距离为________cm .23.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.24.若等腰三角形的一条边长为5cm ,另一条边长为10cm ,则此三角形第三条边长为__________cm .25.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.26.如图,P 是等边三角形ABC 内一点,∠APB ,∠BPC ,∠CPA 的大小之比为5:6:7,则以PA ,PB ,PC 为边的三角形三内角大小之比(从小到大)是_________________.三、解答题27.(1)问题:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,AB BP BC +=.求证:90APD ∠=︒;(2)问题:如图②,在三角形ABC 中,45B C ∠=∠=︒,P 是AC 上一点,PE PD =,且90EPD ∠=︒.求AE AP PC+的值.28.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △,并直接写出点1C 的坐标:________;(2)求ABC 的面积:(3)点(),2P a a -与点Q 关于x 轴对称,若6PQ =,则点P 的坐标为________. 29.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.30.如图,在ABC ∆中,点D 是边BC 上一点,点E 在边AC 上,且,,BD CE BAD CDE =∠=∠ADE C ∠=∠.(1)如图1,求证:ADE ∆是等腰三角形,∠,在不添加辅助线的情况下,请直接写出图中所有与(2)如图2,若DE平分ADC∠除外).CDE∠相等的角(CDE。
八年级数学上册第十三章轴对称考点精题训练(带答案)

八年级数学上册第十三章轴对称考点精题训练单选题1、如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,AD,BE相交于点F,连接CF,则下列结论:①BF=AC;②∠FCD=∠DAC;③CF⊥AB;④若BF=2EC,则△FDC周长等于AB的长.其中正确的有()A.①②B.①③④C.①③D.②③④答案:B分析:证明△BDF≌△ADC,可判断①;求出∠FCD=45°,∠DAC<45°,延长CF交AB于H,证明∠AHC=∠ABC+∠FCD=90°,可判断③;根据①可以得到E是AC的中点,然后可以推出EF是AC的垂直平分线,最后由线段垂直平分线的性质可判断④.解:∵△ABC中,AD,BE分别为B C、AC边上的高,∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC(ASA),∴BF=AC,FD=CD,故①正确,∵∠FDC=90°,∴∠DFC=∠FCD=45°,∵∠DAC=∠DBF<∠ABC=45°,∴∠FCD≠∠DAC,故②错误;延长CF交AB于H,∵∠ABC=45°,∠FCD=45°,∴∠AHC=∠ABC+∠FCD=90°,∴CH⊥AB,即CF⊥AB,故③正确;∵BF=2EC,BF=AC,∴AC=2EC,∴AE=EC=1AC,2∵BE⊥AC,∴BE垂直平分AC,∴AF=CF,BA=BC,∴△FDC的周长=FD+FC+DC=FD+AF+DC=AD+DC=BD+DC=BC=AB,即△FDC的周长等于AB,故④正确,综上:①③④正确,故选B.小提示:本题考查了全等三角形的性质与判定,也考查了线段的垂直平分线的性质与判定,也利用了三角形的周长公式解题,综合性比较强,对学生的能力要求比较高.<2、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30∘,则CE的长是()A.1cmB.2cmC.3cmD.4cm答案:B分析:根据等边三角形的性质得AC=AB=4,由等边三角形三线合一得到CD,由∠ACB=60°,∠E=30°,求出∠CDE,得出CD=CE,即可求解.∵△ABC是等边三角形,∴AC= AB=BC=4cm,∠ACB = 60°,∵BD平分∠ABC,∴AD=CD(三线合一)∴DC=12AC=12×4=2cm,∵∠E = 30°∴∠CDE=∠ACB-∠E=60°-30°=30°∴∠CDE=∠E所以CD=CE=2cm故选:B.小提示:本题考查的是等边三角形的性质、等腰三角形的判定,直角三角形的性质,直角三角形中30°角所对的直角边等于斜边的一半.3、如图,在△ABC中,AB=AC,AD是△ABC的角平分线,过点D分别作DE⊥AB,DF⊥AC,垂足分别是点E,F,则下列结论错误..的是()A.∠ADC=90∘B.DE=DF C.AD=BC D.BD=CD答案:C分析:根据等腰三角形底边上的高线、顶角的角平分线、底边上的中线这三线合一及角平分线的性质即可判断求解.解:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,BD=CD,∴∠ADC=90∘,故选项A、D结论正确,不符合题意;又AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,故选项B结论正确,不符合题意;由已知条件推不出AD=BC,故选项C结论错误,符合题意;故选:C.小提示:本题考察了等腰三角形的性质及角平分线的性质,属于基础题,熟练掌握其性质即可.4、已知等腰三角形的其中二边长分别为3,6,则这个等腰三角形的周长为()A.12或15B.12C.13D.15答案:D分析:因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.故选:D.小提示:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5、在平面直角坐标系中,点A的坐标为(-2,-3),点B的坐标为(3,-3),下列说法不正确的是()A.点A在第三象限B.点B在第二、四象限的角平分线上C.线段AB平行于x轴D.点A与点B关于y轴对称答案:D分析:根据点坐标特征、特殊直线的解析式可以作出判断.解:A、根据点坐标的符号特征,点A在第三象限,正确;B、第二、四象限的角平分线为y=-x,并且点B坐标符合y=-x,正确;C、线段AB为y=-3,平行于x轴,正确;D、与点A关于y轴对称的点为(2,-3),错误;故选D.小提示:本题考查点坐标的应用,熟练掌握点坐标特征及特殊直线的解析式是解题关键.6、某市计划在公路l旁修建一个飞机场M,现有如下四种方案,则机场M到A,B两个城市之间的距离之和最短的是()A.B.C.D.答案:B分析:用对称的性质,通过等线段代换,将所求路线长转化为两点之间的距离.作点A关于直线的对称点A′,连接BA′交直线l于M,根据两点之间线段最短,可知选项B机场M到A,B两个城市之间的距离之和最短.故选B小提示:本题考查了最短路径的数学问题,这类问题的解答依据是“两点之间,线段最短”,由于所给条件的不同,解决方法和策略上有所差别.7、如图,在平面直角坐标系中,点O为坐标原点,点A的坐标为(﹣5,12),它关于y轴的对称点为B,则△ABO的周长为()A.24B.34C.35D.36答案:D分析:平面直角坐标系中点关于y轴的对称点B的坐标为(5,12),到坐标轴的距离分别为5和12,利用勾股定理算出OA和OB的长度,最后加上AB,即可得到△ABO的周长.解:∵点A与点B关于y轴对称,A(﹣5,12),∴B(5,12),∴AB=10,∵A(﹣5,12),∴OA=13,∴OB=13,∴△AOB的周长=OA+OB+AB=26+10=36,故选D.小提示:本题考查了关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,本题还考查了勾股定理的运用.明确点到坐标轴的距离是本题的关键.8、如图,在△ABC中,AB=AC,∠A=40°,CD//AB,则∠BCD=()A.40°B.50°C.60°D.70°答案:D分析:先根据等腰三角形的性质得到∠B的度数,再根据平行线的性质得到∠BCD.解:∵AB=AC,∠A=40°,∴∠B=∠ACB=70°,∵CD∥AB,∴∠BCD=∠B=70°,故选D.小提示:本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.9、如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.1种B.2种C.3种D.4种答案:C分析:根据轴对称图形的概念,找到对称轴即可得答案.解:如下图,∵图形是轴对称图形,对称轴是直线AB,∴把1、2、3三个正方形涂黑,与原来涂黑的小正方形组成的新图案仍然是轴对称图形,故选:C.小提示:本题考查了轴对称图形的概念,解题的关键是找到对称轴.10、如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若AB=5,AC=8,BC=10,则△AEF的周长为()A.5B.8C.10D.13答案:C分析:根据线段垂直平分线的性质得到EA=EB,FA=FC,根据三角形的周长公式计算,得到答案.解:∵EG是线段AB的垂直平分线,∴EA=EB,同理,FA=FC,∴△AEF的周长=EA+EF+FA=EB+EF+FC=BC=10,故选:C.小提示:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.填空题11、如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的一动点,则PA+PB 的最小值是 ___.答案:4分析:根据题意知点B关于直线EF的对称点为点C,故当点P为EF和AC的交点时,AP+BP值最小为AC的长为4.解:如图:连结BP,CP,∵EF垂直平分BC,∴B、C关于EF对称,∴BP=CP,∴AP+BP=AP+CP,根据两点之间相等最短AP+PC≥AC,∴当点P在AC与EF交点时,AP+BP最小=AC,最小值等于AC的长为4.故答案为4.小提示:本题考查轴对称——最短路线问题的应用,解决此题的关键是能根据想到垂直平分线的性质和两点之间线段最短找出P点的位置.12、如图,把一张长方形纸片ABCD沿EF折叠,点D与点C分别落在点D′和点C′的位置上,ED′与BC的交点为G,若∠EFG=55°,则∠1为______度.答案:70分析:由折叠的性质可以得∠EFC=∠EFC′,从而求出∠C′FG=∠EFC′−∠EFG=70∘,再由平行线的性质得到∠1=∠EGF=∠GFC′=70∘.解:由折叠的性质可知,∠EFC=∠EFC′,∵∠EFG=55°,∴∠EFC=∠EFC′=180∘−∠EFG=125∘,∴∠C′FG=∠EFC′−∠EFG=70∘,∵四边形ABCD是长方形∴AD∥BC,DE∥FC′,∴∠1=∠EGF=∠GFC′=70∘,所以答案是:70.小提示:本题主要考查了折叠的性质,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13、如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA 方向各剪一刀,则剪下的△DEF的周长是_____ .答案:6分析:先说明△DEF是等边三角形,再根据E,F是边BC上的三等分求出BC的长,最后求周长即可.解:∵等边三角形纸片ABC∴∠B=∠C=60°∵DE∥AB,DF∥AC∴∠DEF=∠DFE=60°∴△DEF是等边三角形∴DE=EF=DF∵E,F是边BC上的三等分点,BC=6∴EF=2∴DE=EF=DF=2∴△DEF= DE+EF+DF=6故答案为6.小提示:本题考查了等边三角形的判定和性质、三等分点的意义,灵活应用等边三角形的性质是正确解答本题的关键.14、如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,则∠ACB=__________.答案:100°分析:延长AD到M,使得DM=AD,连接BM,证△BDM≌△CDA(SAS),得BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再证△BFM是等腰三角形,求出∠MBF的度数,即可解决问题.解:如图,延长AD到M,使得DM=AD,连接BM,如图所示:在△BDM和△CDA中,{DM=DA∠BDM=∠CDABD=CD,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°-∠M-∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF-∠EBC=100°,∴∠C=∠DBM=100°,所以答案是:100°.小提示:本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15、如图,△ABC为等边三角形,若∠DBC=∠DAC=α(0°<α<60°),则∠BCD=__________(用含α的式子表示).答案:120°−α##−α+120°分析:在BD上截取BE=AD,连结CE,可证得△BEC≅△ADC,从而得到CE=CD,∠DCE=∠ACB=60°,从而得到△DCE是等边三角形,进而得到∠BDC=60°,则有∠BCE=60°−α,即可求解.解:如图,在BD上截取BE=AD,连结CE,∵△ABC为等边三角形,∴BC=AC,∠BAC=∠ABC=∠ACB=60°,∵∠DBC=∠DAC=α,BE=AD,∴△BEC≅△ADC,∴CE=CD,∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠DCE=∠ACB=60°,∵CE=CD,∴△DCE是等边三角形,∴∠BDC=60°,∴∠BCD=180°−60°−α=120°−α.所以答案是:120°−α小提示:本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,解题的关键是做出辅助线构造全等三角形是解题的关键.解答题16、如图,在△ABC中,BD平分∠ABC,E是BD上一点,EA⊥AB,且EB=EC,∠EBC=∠ECB.(1)如果∠ABC=40°,求∠DEC的度数;(2)求证:BC=2AB.答案:(1)40°(2)见解析分析:(1)根据角平分线的定义求出∠EBC,根据等腰三角形的性质得到∠ECB=∠EBC=20°,根据三角形的外角性质计算,得到答案;(2)作EF⊥BC于F,根据等腰三角形的性质得到BC=2BF,证明Rt△ABE≌Rt△FBE,根据全等三角形的性质证明结论.(1)解:∵∠ABC=40°,BD平分∠ABC,∴∠EBC=1∠ABC=20°,2∵EB=EC,∴∠ECB=∠EBC=20°,∵∠DEC是△EBC的一个外角,∴∠DEC=∠ECB+∠EBC=40°;(2)证明:过点E作EF⊥BC于点F,∵BD平分∠ABC,EA⊥AB,∴EA=EF,在Rt△AEB和Rt△FEB中,∵{EA=EF,EB=EB∴Rt△AEB≌Rt△FEB(HL),∴AB=FB(全等三角形的对应边相等),∵EB=EC,EF⊥BC,∴BC=2FB,∴BC=2AB.小提示:本题考查的是全等三角形的判定和性质,等腰三角形的性质,角平分线的性质等知识,掌握三角形全等的判定定理和性质定理是解题的关键.17、如图1,将长方形ABEF的一角向长方形内部折叠,使角的顶点A落在点A′处,OC为折痕,则OC平分∠AOA′.(1)若∠AOC=25°,求∠A′OB的度数;(2)若点D在线段BE上,角OBD沿着折痕OD折叠落在点B′处,且点B′在长方形内.①如果点B′刚好在线段A′O上,如图2所示,求∠COD的度数;②如果点B′不在线段A′O上,且∠A′OB′=40°,求∠AOC+∠BOD的度数.答案:(1)130°(2)①90°;②70°或110°分析:(1)根据折叠的性质,可得∠AOA′=2∠AOC=50°,即可求解;(2)①根据折叠的性质,可得∠A′OC=∠AOC=12∠AOA′,∠B′OD=∠BOD=12∠BOB′,从而得到∠COD=∠A′OC+∠B′OD=12(∠AOA′+∠BOB′),即可求解;②分两种情况:当OB′在OA′右侧时,当OB′在OA′左侧时,即可求解.(1)解:∵OC平分∠AOA′.∠AOC=25°,∴∠AOA′=2∠AOC=50°,∴∠A′OB=180°−∠AOA′=130°;(2)解:①根据题意得:∠A′OC=∠AOC=12∠AOA′,∠B′OD=∠BOD=12∠BOB′,∴∠COD=∠A′OC+∠B′OD=12(∠AOA′+∠BOB′)=12×180°=90°;②如图,当OB′在OA′右侧时,根据题意得:∠A′OC=∠AOC=12∠AOA′,∠B′OD=∠BOD=12∠BOB′,∵∠A′OB′=40°,∴∠AOA′+∠BOB′=180°−∠A′OB′=140°,∴∠AOC+∠BOD=12(∠AOA′+∠BOB′)=12×140°=70°;如图,当OB′在OA′左侧时,根据题意得:∠A′OC=∠AOC=12∠AOA′,∠B′OD=∠BOD=12∠BOB′,∵∠A′OB′=40°,∴∠AOA′+∠BOB′=180°+∠A′OB′=220°,∴∠AOC+∠BOD=12(∠AOA′+∠BOB′)=12×220°=110°;综上所述,∠AOC+∠BOD的度数70°或110°.小提示:本题主要考查了折叠的性质,有关角平分线的计算,熟练掌握图形折叠前后对应角相等,对应线段相等是解题的关键.18、如图,在△ABC中,AB=AC,D为BC边上一点,∠B=32°,∠BAD=42°,求∠DAC的度数.答案:∠DAC=74°分析:根据等边对等角可得∠C=∠B=32°,然后根据三角形的内角和定理,即可求出∠BAC,从而求出∠DAC 的度数.解:∵AB=AC,∠B=32°,∴∠C=∠B=32°,∴∠BAC=180°﹣32°﹣32°=116°,∵∠DAB=42°,∴∠DAC=∠BAC﹣∠DAB=116°﹣42°=74°.小提示:此题考查的是等腰三角形的性质和三角形的内角和定理,掌握等边对等角和三角形的内角和等于180°是解决此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10题 一、 选择题1.已知两条互不平行的线段AB 和A ′B ′关于直线1对称,AB 和A ′B ′所在的直线交于点P ,下面四个结论:①AB=A ′B ′;②点P 在直线1上;③若A 、A ′是对应点,•则直线1垂直平分线段AA ′;④若B 、B ′是对应点,则PB=PB ′,其中正确的是( )A .①③④B .③④C .①②D .①②③④ 2.将两块全等的直角三角形(有一锐角为30 )拼成一个四边形,其中轴对称图形的四边形有多少个( )A 、1B 、2C 、3D 、43.如图所示,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在( ) A.在AC 、BC 两边高线的交点处 B.在AC 、BC 两边中线的交点处C.在AC 、BC 两边垂直平分线的交点处D.在A 、B 两内角平分线的交点处4.下列说法中错误的是( )A 成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B 关于某条直线对称的两个图形全等C 全等的三角形一定关于某条直线对称D 若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称 5.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm7.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30°6.等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80°7.已知:在△ABC 中,AB=AC ,O 为不同于A 的一点,且OB=OC ,则直线AO 与底边BC 的关系为( )A .平行 B.AO 垂直且平分BC C.斜交 D.AO 垂直但不平分BC8.如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是( )A . <1>和<2>B . <2>和<3>C . <2>和<4>D . <1>和<4>轴对称作图题专练1、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.CB AABMN2、如图1,在一条河的同一岸边有A 和B 两个村庄,要在河边修建码头M ,使M 到A 和B 的距离之和最短,试确定M 的位置;若A 与B 在河的两侧,其他条件不变,又该如何确定M 的位置?2.1如图,在一条河的同岸有两个村庄A 、B ,两村要在河上合修一座桥到对岸去,桥修在什么地方,可以使两个村庄到桥的距离之和最短?3、如图所示,P 和Q 为△ABC 边AB 与AC 上两点,在BC 上求作一点M ,使△PQM 的周长最小。
·B·A1A ··B2AQPB C4、如图,某城市有3个收购站A、B和C,现在要建一座中转站M,使中转站到三个收购站的距离相等,请你设计一下中转M应建在哪个地方合适?并说明理由。
A·B··C5、如图,OA,OB是两条笔直的交叉公路,M,N是两个实习点的同学参加劳动,现欲建一个茶水供应站,使得此茶水供应站到公路两边的距离相等,且离M,N 两个实习点的距离也相等,试问:此茶水供应站应建在何处?不妨说说A·N·MB6、如图7—114,∠XOY内有一点P,在射线OX上找出一点M,在射线OY 上找出一点N,使PM+MN+NP最短.二、 填空题9.如图所示,镜子里号码如图,则实际纸上的号码是____.10.一个汽车车牌在水中的倒影为 W 5236499 ,则该车的牌照号码是______.11.如图3,在△ABC 中BC=5cm ,BP 、CP 分别是∠ABC 和∠ACB 的角的平分线,且PD ∥AB ,PE ∥AC ,则△PDE 的周长是_______cm12.如图4,在△ABC 中,∠ACB=90°,∠BAC=30°,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有____个 13.已知等腰三角形的一个角为42°,则它的底角度数_______.14. 如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180形成的,若150BAC ∠=,则θ∠的度数是 .15. 如图,在ABC △中,AB AC =,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连结DN ,EM .若13cm AB =,10cm BC =,5cm DE =,则图中阴影部分的面积为2cm .三、解答题16.(6分)如图5,设点P 是∠AOB 内一个定点,分别画点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2交于点M ,交OB 于点N ,若P 1P 2=5cm ,则△PMN 的周长为多少?17.(6分)如图7,已知:△ABC 的∠B 、∠C 的外角平分线交于点D 。
求证:AD 是∠BAC 的平分线。
801 AB C图4C DA EB θ18.(10分)如图9,△ABC 是边长为1的等边三角形,BD=CD ,∠BDC=120°,E 、F 分别在AB 、AC 上,且∠EDF=60°,求△AEF 的周长.19.如图所示,△ABC 是等边三角形,延长BC 至E ,延长BA 至F ,使AF =BE ,连结CF 、EF ,过点F 作直线FD ⊥CE 于D ,试发现∠FCE 与∠FEC 的数量关系,并说明理由.20.已知:如图,△ABC 中,∠C =90°,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE ∥AB 交BC 于E ,求证CT =BE .21.如图,已知△ABC 中,AH ⊥BC 于H ,∠C =35°,且AB +BH =HC ,求∠B 度数.A C DFAC T EBM D CA BH22. (1)已知ABC △中,90A ∠=,67.5B ∠=,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(5分)已知AB =AC ,BD =DC ,AE 平分∠FAC ,问:AE 与AD 是否垂直?为什么?19.(5分)如图,已知:△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB于D ,交AC 于E ,AC =9 cm ,△BCE 的周长为15 cm ,求BC 的长.20.(5分)如图所示,已知△ABC 和直线MN .求作:△A ′B ′C ′,使△A ′ABC备用图①ABC备用图②ABC备用图③ABCDEFB′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .22.(5分)如图,在∆ABC中,AB=AC,∠A=92︒,延长AB到D,使BD=BC,连结DC.求∠D的度数,∠ACD的度数.AB C23.(5分)有一本书折了其中一页的一角,如图:测得AD =30cm,BE =20cm ,∠BEG =60°,求折痕EF 的长. 24.(8分)如图所示,在△ABC 中,CD是AB 上的中线,且DA =DB =DC . (1)已知∠A =︒30,求∠ACB 的度数; (2)已知∠A =︒40,求∠ACB 的度数; (3)已知∠A =︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.DB CA26.(7分)已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA的延长线于F,试说明△ADF是等腰三角形的理由.27.(7分)等边△ABC中,点P在△ABC内,点Q,BP=CQ,问△APQ28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.B(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l剪掉标有A的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.25.(14分)如下图,∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,垂足分别为D、E.(1)图1中,①证明:△ACE≌△CBD;②若AE=a,BD=b,计算△ACB的面积.(2)图2中,若AE=a,BD=b,(b>a)计算梯形ADBE的面积.。