智能仪器的典型数据处理功能
智能仪器复习资料

1.什么是智能仪器?其主要特点是什么?智能仪器是计算机技术和测试技术相结合的产物,是含有微计算机或微处理器的测量仪器。
由于它拥有对数据的存储、运算、逻辑判断及自动化操作等功能,具有一定智能的作用,因而被称为智能仪器。
特点:1操作自动化2具有自测功能3具有数据分析和处理能力4具有友好的人机对话功能5具有可程控操作能力。
简述内嵌式智能仪器的基本组成和各部分功能由硬件和软件组成。
硬件包括微处理器,存储器,输入/出通道,人机接口电路,通信接口电路等。
功能:微处理器仪器核心,存储器包括数据存储器和程序存储器,用来存储程序和数据。
输入通道主要包括传感器、信号调理电路和A/D转换器等,完成信号的滤波,放大,模数转换。
输出通道主要包括D/A转换器、放大驱动电路和模拟执行器等,将处理后的数字信号转换为模拟信号。
人机接口电路主要包括键盘和显示器,是操作者和仪器的通信桥梁。
操作者可通过键盘向仪器发出控制命令,仪器可通过显示器将处理结果显示出来。
通信接口可实现仪器与计算机和其它仪器的通信。
智能仪器常用放大器的种类和特点?程控放大器:为适应不同的工作条件,在整个测量范围内获得合适的分辨率,提高测量精度。
仪用放大器:输入阻抗和共模抑制比高、误差小、稳定性好。
隔离放大器:输入端和输出端各有不同的参考点。
可保护电子仪器设备和人生安全,提高共模抑制比,获得较精确的测量结果。
常见的A/D转换器有哪几种类型?其特点是什么?工作原理⑴并联比较型A/D转换器:转换速度快,但是随着输出位数的增加所需器件数增加速度很快⑵逐次逼近型A/D转换器:抗干扰能力差,所以在A/D转换器之前一般要加采样/保持器锁定电压。
⑶双积分型A/D转换器:能起到滤波作用提高了抗干扰能力。
由于转换速度依赖于积分时间,所以转换速度慢。
⑷Σ-△调制型A/D转换器:制作成本低,提高有效分辨率.采用逐次逼近法的A/D转换器是由一个比较器、D/A转换器、缓冲寄存器及控制逻辑电路组成,基本原理是从高位到低位逐位试探比较,好像用天平称物体,从重到轻逐级增减砝码进行试探。
智能仪器期末考试题及答案

智能仪器期末考试题及答案一、选择题(每题2分,共20分)1. 智能仪器的主要功能包括以下哪项?A. 数据采集B. 数据处理C. 数据存储D. 所有选项2. 在智能仪器中,传感器的作用是什么?A. 转换物理量为电信号B. 放大电信号C. 显示电信号D. 记录电信号3. 下列哪个不是智能仪器的数据处理方法?A. 滤波B. 积分C. 微分D. 存储4. 智能仪器的通信接口通常包括哪些类型?A. USBB. RS-232C. EthernetD. 所有选项5. 智能仪器的自诊断功能主要是指什么?A. 诊断仪器的硬件故障B. 诊断仪器的软件故障C. 诊断仪器的电源问题D. 诊断仪器的所有故障6. 智能仪器的校准功能主要目的是什么?A. 提高测量精度B. 延长仪器使用寿命C. 降低仪器成本D. 增加仪器的美观度7. 智能仪器的远程监控功能通常需要哪些技术?A. 无线通信技术B. 网络技术C. 数据加密技术D. 所有选项8. 在智能仪器中,模糊逻辑控制的主要用途是什么?A. 提高控制精度B. 简化控制算法C. 降低控制成本D. 实现非线性控制9. 智能仪器的自适应控制功能主要是指什么?A. 自动调整测量参数B. 自动调整控制参数C. 自动调整显示参数D. 自动调整存储参数10. 下列哪个不是智能仪器的发展趋势?A. 集成化B. 网络化C. 智能化D. 单一化二、简答题(每题10分,共30分)1. 简述智能仪器与传统仪器的主要区别。
2. 描述智能仪器在工业自动化中的应用。
3. 解释智能仪器的自诊断功能及其重要性。
三、计算题(每题15分,共30分)1. 假设一个智能仪器的传感器测量范围是0-100V,分辨率为0.01V,求该仪器测量的最大误差。
2. 给定一个智能仪器的信号处理算法,包含一个低通滤波器,其截止频率为5Hz,求在输入信号频率为10Hz时的输出信号幅度。
四、论述题(每题20分,共20分)1. 论述智能仪器在现代智能制造中的作用及其未来的发展趋势。
智能压力传感器的采集和处理数据功能

智能压力传感器的采集和处理数据功能智能压力传感器的采集数据功能主要是通过传感器内部的压阻和放大电路来实现的。
当物体施加压力时,传感器内部的压阻会发生变化,通过与电路连接的控制器将这一变化转化为电信号进行采集。
传感器还可以通过无线通信技术将采集到的数据传输给外部的设备,实现远程实时监测和数据采集。
智能压力传感器的处理数据功能包括数据清洗、数据转化和数据分析等多个环节。
首先,在数据采集过程中,传感器可能会受到噪声、干扰或漂移等因素的影响,导致采集数据存在一定的误差。
因此,需要对采集到的数据进行清洗和滤波,去除异常值和噪声,确保数据的准确性和可靠性。
接下来,采集到的数据通常是模拟信号,需要将其转化为数字信号进行处理。
这一过程称为数模转换(ADC),可以通过采样和量化的方式将模拟信号转化为数字形式的数据。
转化后的数据可以更方便地进行存储、处理和传输。
对于处理后的数据,可以进行多方面的分析和应用。
例如,可以通过数据可视化的方式将采集到的数据以图表或曲线的形式展示出来,帮助用户更直观地了解压力变化的趋势和规律。
同时,还可以通过数据统计和挖掘的方法,对大量数据进行分析,提取其中的关键特征和规律,为用户提供更多的信息和决策支持。
此外,智能压力传感器还可以与其他设备和系统进行集成,实现更复杂的功能和应用。
例如,在工业生产环境中,可以将智能压力传感器与自动控制系统连接,实现对压力变化的实时监测和调节。
在医疗卫生领域,可以将智能压力传感器与健康监测设备结合使用,帮助医生和护士监测患者的生命体征和疾病状态。
总而言之,智能压力传感器的采集和处理数据功能是其核心的技术特点之一、通过采集和处理数据,智能压力传感器可以实现对压力变化的准确监测和分析,为用户提供更全面的信息和决策支持,推动相关领域的发展和进步。
智能仪器课件5.1 键盘处理技术

前沿抖动
闭合稳定
后沿抖动 释放稳定
16
软件抗抖动的方法
软件方法是指编制一段时间大于100ms的延时程
序,在第一次检测到有键按下时,执行这段延时
子程序使键的前沿抖动消失后再检测该键状态,
如果该键仍保持闭合状态电平,则确认为该键已 稳定按下,否则无键按下,从而消除了抖动的影 响。同理,在检测到按键释放后,也同样要延迟 一段时间,以消除后沿抖动,然后转入对该按键
15
按键的抖动干扰
由于机械触点的弹性振动,按键在按下时不会马上稳定地 接通而在弹起时也不能一下子完全地断开,因而在按键闭 合和断开的瞬间均会出现一连串的抖动,这称为按键的抖 动干扰,波形如下图所示。 当按键按下时会产生前沿抖动,当按键弹起时会产生后沿 抖动。这是所有机械触点式按键的共性问题。 抖动的时间长短取决于按键的机械特性与操作状态,一般 为10~100ms,此为键处理设计时要考虑的一个重要参数。
18
R1
(Di) Vo
Vi R2
S
V1
(Di) V2
由基本R-S触发器构成的反弹跳电路
4 .7 k a
4 .7 k &
1
b
&
2
按键未按下时,a=0,b=1,输出Q=1。按 键按下时,因按键的机械弹性作用的影响, 使按键产生抖动。当开关没有稳定到达b 端时,因与非门2输出为0反馈到与非门1 的输入端,封锁了与非门1,双稳态电路 VCC 的状态不会改变,输出保持为1,输出Q (+5 V) 不会产生抖动的波形。当开关稳定到达b Q 端时,因a=1,b=0,使Q=0,双稳态电路 状态发生翻转。当释放按键时,在开关未 稳定到达a端时,因Q=0,封锁了与非门2, 双稳态电路的状态不变,输出Q保持不变, 消除了后沿的抖动波形。当开关稳定到达 a端时,因a=0,b=1,使Q=1,双稳ቤተ መጻሕፍቲ ባይዱ电 路状态发生翻转,输出Q重新返回原状态。 由此可见,键盘输出经双稳态电路之后, 输出已变为规范的矩形方波。
智能仪器及其特点

智能仪器及其特点1、智能仪器概述随着微电子技术的不断发展,以及超大规模集成电路芯片(即单片机)的出现,智能仪器得到了迅速发展。
智能仪器以微处理器或单片机为核心,具有信息采集、显示、处理、传输以及优化检测与控制等多种功能:有些甚至还具有专家推断、逻辑分析与决策的能力。
智能仪器的出现,极大地扩充了常规仪器的应用范围。
由于智能仪器一开始就显示它强大的生命力,目前已成为仪器仪表发展的一个主导方向。
并对自动控制、电子技术、国防工程、航天技术与科学试验等产生了极其深远的影响。
2、智能仪器的组成智能仪器主要由硬件和软件两部分组成。
(1)硬件硬件主要包括主机电路、模拟量输入输出通道、人机接口和标准通信接口电路等,如图1所示。
主机电路通常由微处理器、程序存储器以及输入输出I/O接口电路等组成,有时,主机电路本身就是个单片机。
主机电路主要用于存储程序与数据,进行系列的运算和处理,并参与各种功能控制。
模拟量输入输出通道主要由A/D转换器,D/A转换器和有关的模拟信号处理电路等组成。
主要用于输入和输出模拟信号,实现模数与数模转换。
人机接口主要由仪器而板上的键盘和显示器等组成,用来建立操作者与仪器之间的联系。
标准通信接口使仪器可以接受计算机的程控命令,用来实现仪器与计算机的联系。
一般情况下,智能仪器都配有GPIB等标准通信接口。
此外,智能仪器还可以与PC机组成分布式测控系统,由单片机作为下位机采集各种测量信号与数据,通过串行通信将信息传输给上位机—PC机,由PC机进行全局管理。
(2)软件软件即程序,主要包括监控程序、接口管理程序和数据处理程序三大部分。
监控程序而向仪器而板和显示器,负责完成如下工作:通过键盘操作,输入并存储所设置的功能、操作方式与工作参数:通过控制I/O接口电路进行数据采集,对仪器进行预定的设置:对数据存储器所记录的数据和状态进行各种处理:以数字、字符、图形等形式显示各种状态信息以及测量数据的处理结果。
接口管理程序主要而向通信接口,负责接收并分析来自通信接口总线的各种有关功能、操作方式与工作参数的程控操作码,并根据通信接口输出仪器的现行工作状态及测量数据的处理结果以及向应计算机远程控制命令。
智能仪器试题及答案

智能仪器设计基础试题一、判断题(每题 2 分,共 20 分)1. 因中值滤波满足比例不变性,所以是线性(de)滤波器.()2. 基准电压Vr (de)精度和稳定性影响零位误差、增益误差(de)校正效果.()3. 测量获得一组离散数据建立近似校正模型,非线性校正精度与离散数据精度无关,仅与建模方法有关.()4. RS232 通信采用(de)是TTL电平,因此它(de)传输距离比485 短.()5. USB协议为设备定义了2种供电模式:自供电和总线供电.在自供电模式下,USB设备不需要任何外接电源设备.()6. LCD显示器有静态驱动和叠加驱动两种驱动方式,这两种驱动方式可在使用时随时改变. ()7. 智能仪器中(de)噪声与干扰是因果关系,噪声是干扰之因,干扰是噪声之果. ( )8. 软件开发过程(de)三个典型阶段是定义、开发和测试.()9. RAM 测试方法中,谷值检测法无法检测“ 粘连” 及“ 连桥” 故障.()10.曲线拟合要求 y=f( x )(de)曲线通过所有离散点( x i , y i ).()二、选择题(每题 2 分,共 20 分)1. 多通道数据采集系统(de)框图如下图所示.其中( 1 )~( 4 )各部分(de)组成为:( )A. 放大器、A/D 转换器、D/A 转换器、计算机B. 多路开关、放大器、A/D 转换器、计算机C. 多路开关、放大器、D/A 转换器、计算机D. 放大器、多路开关、A/D 转换器、D/A 转换器2. 仪器采集数据中存在随机误差和系统误差,基本数据处理顺序是:( )A. 系统误差消除→数字滤波→标度变换B. 数字滤波→系统误差消除→标度变换C. 标度变换→系统误差消除→数字滤波D. 数字滤波→标度变换→系统误差消除3. 设采集数据由信号加噪声构成,应根据( )确定滤波算法A. 噪声统计规律B. 信号特征和噪声统计规律C. 信号特征D. 只能用多种滤波算法试验,由处理效果确定.4. 采样保持器(de)作用是( )A. 提高系统(de)采样速率B. 保持系统(de)数据稳定C. 保证在A/D转换期间ADC前(de)模拟信号保持不变D. 使A/D 转换器前信号能跟上模拟信号(de)变化5. 采集数据中含有脉冲性干扰,信号为直流,则应选择( )滤波算法.A. 算数平均法B. 加权平均法C. 限幅滤波法D. 去极值平均法6. 在开发USB系统(de)时候,首要(de)任务是利用( )实现设备(de)枚举过程,提供各种设备信息.A. 中断传输B. 控制传输C. 同步传输D. 批量传输7.若非编码矩阵键盘(de)列线外接下拉电阻,该矩阵(de)扫描码应是( ).A.行线输出高电平B.列线输出高电平C.行线输出低电平D.列线输出低电平8.在智能仪智中,A/D 转换(de)抗干扰技术包括( ).A. 对差模干扰(de)抑制B. 对共模干扰(de)抑制C. 采用软件方法提高A/D抗干扰能力D. 以上三种都包括9.在进行数字电路(de)可测试性设计时,下面说法错误(de)是( ). A.设计上应避免“线或”逻辑B.所有不同相位和频率(de)时钟都应来自单一主时钟C.数字电路应设计成主要以异步逻辑电路为基础(de)电路D.电路应初始化到一明确(de)状态,以便确定测试(de)方法10.下面( )调试方式在目标机不存在(de)情况下也可以进行代码(de)调试.A.ROM 仿真器B.在线仿真器C.片上调试D.JTAG三、填空(每空2分,共20分)1.假设一 12 位(de) A/D 转换器,其满量程电压为 10V ,则它(de)分辨率是_____ .2.某仪器(de)非线性采用分段线性插值法进行校正,设段数为4,最少需要_____对(X i ,Y i )已知实验数据.3.利用 8 片模拟多路开关 CD4051 设计 64 路(de)输入通道.已知CD4051 (de)漏电流为 20nA ,开关导通电阻300Ω ,设信号源内阻1000 Ω .则多路开关漏电流和导通电阻产生(de)误差大小为_____ .如果采用级连方式连接,则需要多路开关_____片.用级连方式连接电路产生(de)误差大小为_____ .4.某智能温度测量仪采用 8 位ADC ,测量范围为10 ~100 ℃,仪器采样数据经滤波和非线性校正后(de)数字量为0028H .A0=10 ℃,Am=100 ℃,Nm=FFH=255 ,Nx=28H=40 .则对应(de)实测温度是_____ .5. 设在某数据采集系统中,对正弦信号 U=(U msin ω t )/2 采样.采/保(de)孔径时间 tAP=20ns , A/D 转换器(de)位数为 12 位,求采样精度达到 1LSB (de)最高信号频率是_____ .若 S/H (de)捕捉时间tAC=3 μs ,稳定时间ts=2 μs , A/D 转换时间tCONV=40 μs ,输出时间tOUT=4 μs 则通道(de)吞吐率是_____ .6.检测直流电压信号由于50Hz 工频干扰使测量数据呈现周期性波动.设采样周期Ts=1ms ,采用算数平均滤波算法,消除工频干扰.选择平均点数 _____.7.某种仪器 100 台,工作 1000h ,假设有 2 台发生故障,则这种仪器(de)千小时(de)可靠率为_____ .四、简要回答下列问题( 25 分)1. 简述推动智能仪器发展(de)主要技术.2. 简述智能仪器设计(de)基本原则.3. 简述 USB 既插既用机制实现(de)原理.4. 可靠性是智能仪器中一个重要(de)技术指标.请写出智能仪器中常用(de)提高硬件和软件可靠性(de)方法.5. 什么是可测试性智能仪器设计中引入可测试性设计有什么优缺点五、设计题(15分)试设计一温度检测系统.要求系统能检测 8 路温度信号(假设温度传感器(de)输出信号幅度 0~25mV ),测试(de)温度范围为0~500 ℃,温度分辨率为℃.测试(de)最终结果用 LCD 显示器或 LED 显示器显示出来.对多通道(de)测量信号要有自动巡回检测(de)功能和选择某一通道进行单一测量(de)功能.若采用自动巡回检测方式,要求每一通道每秒钟检测 100 次.仪器要具有与其它仪器或微机进行通讯(de)能力.画出仪器(de)硬件框图,并说明每部分(de)参数及其选择原则.(1)根据设计要求,放大器(de)放大倍数至少应为多少(2) A/D 转换器至少应选择多少位(de)(3) A/D 转换器(de)速率至少为多少(4)根据设计要求,如果选用 LED 显示器,至少应用几位 LED 显示(5)测试系统与外界(de)通讯如选用串行通信,你准备选择哪种总线它(de)最远传输距离是多少(6)如果系统用 89C51 单片机做控制器,用字符式 LCD 显示模块做显示器,请画出图 2 中单片机与显示模块(de)三根控制线 RS 、 R/W 和 E (de)接口电路.这三根控制信号(de)时序图如图 1 ,它们(de)功能为:RS :寄存器选择输入线.当其为低电平时,选通指令寄存器;高电平时选通数据寄存器.R/W :读/ 写信号输入线.低电平为写入,高电平为读出.E :使能信号输入线.读状态下,高电平有效;写状态下,下降沿有效.图 1图 2答案:答案:一、否、是、否、否、否、否、是、否、否、否二、B 、 B 、 B 、 C 、 D 、 B 、 A 、 D 、 C、 B 三、1.2. 53. ,9,;4. 245.,;6. 207.四、1.传感器技术:信号检测是通过传感器实现(de),为适应智能仪器发展(de)需要,各种新型传感器不断涌现.A/D 等新器件(de)发展显着增强了仪器(de)功能与测量范围.DSP (de)广泛应用:由于 DSP 芯片是通过硬件来完成上述乘法和加法运算,因此,采用DSP 芯片可大大简化具有此类数字信号处理功能(de)智能仪器(de)结构并提高其相应(de)性能,极大地增强了智能仪器(de)信号处理能力.ASIC 、FPGA /CPLD 技术在智能仪器中(de)广泛使用:使仪器(de)可靠性、成本、速度等方面有提高.LabVlEW 等图形化软件技术.网络与通信技术:智能仪器要上网,完成数据传输、远程控制与故障诊断等;构建网络化测试系统,将分散(de)各种不同测试设备挂接在网络上,通过网络实现资源、信息共享,协调工作,共同完成大型复杂系统(de)测试任务.2.从整体到局部(自顶向下)(de)设计原则:这种设计原则(de)含义是,把复杂(de)、难处理(de)问题分为若干个较简单、容易处理(de)问题,然后在一个个地加以解决.较高(de)性能价格比原则:在满足性能指标(de)前提下,应尽可能采用简单(de)方案,因为方案简单意味着元器件少,开发、调试、方便,可靠性高.组合化与开放式设计原则:开放系统是指向未来(de) VLSI 开放,在技术上兼顾今天和明天,既从当前实际可能出发,又留下容纳未来新技术机会(de)余地;向系统(de)不同配套档次开放,为发挥各方面厂商(de)积极性创造条件;向用户不断变化(de)特殊要求开放,在服务上兼顾通用(de)基本设计和用户(de)专用要求等等. .3.即插即用技术包含 2 个技术层面,既热插拔和自动识别配置.热插拔(de)关键技术在于电路接插件插、拔期间强电流(de)处理.USB 在电缆以及接插件(de)设计上充分考虑了这一点,使得这个瞬时(de)强电流被安全地吸收,从而使 USB 设备实现了热插拔.系统设备(de)自动识别是通过在 USB 主机或 Hub (de)下行端口信号线上接有下拉电阻和在设备端(de)信号线上连接上拉电阻来实现(de).既当 USB 主机或 Hub (de)下行端口处于断开状态时,信号线电平将恒为 0 .当 USB 设备连接上(de)瞬间,会造成 USB 主机或 Hub 端信号线(de)上冲,这样当 USB 主机或 Hub 检测到这个上冲过程, USB 主机可认定有一设备接入.4.提高硬件可靠性:元器件(de)选择;筛选;降额使用;可靠电路(de)设计;冗余设计;环境设计;人为因素设计;仪器可靠性实验;提高软件可靠性:认真地进行规范设计;可靠(de)程序设计方法;程序验证技术;提高软件设计人员(de)素质;消除干扰;增加试运行时间.5.可测试性( Testability )是指产品能够及时准确地确定其自身状态(如可工作,不可工作,性能下降等)和隔离其内部故障(de)设计特性.智能仪器设计中引入可测试性设计(de)优点1.提高故障检测(de)覆盖率;2.缩短仪器(de)测试时间;3.可以对仪器进行层次化(de)逐级测试:芯片级、板级、系统级;4.降低仪器(de)维护费用;缺点:1.额外(de)软/硬件成本;2.系统设计时间增加.五、放大器(de)增益 200 ; ADC (de)分辨率 12 位;; 4 位。
GPIB接口学习教程

DUT
硬拷贝 (a)
12
1
24
13
(b)
图9.2 GPIB标准接口总线系统及GPIB24线总线插座
7
第8页/共73页
2. GPIB标准接口的总线结构
总线是一条24芯电缆,其中16条被用作信号线,其余 则被用作逻辑地线及屏蔽线。电缆两端是与图9.2(b)相似 的双列24芯叠式结构插头。
GPIB标准接口总线中的16条信号线按功能可分为以 下三组:
5
第6页/共73页
在一个GPIB标准接口总线系统中,要进行有效的通信 联络,至少有“讲者”、“听者”、“控者”三类仪器装 置。讲者是通过总线发送仪器消息的仪器装置,如测量仪 器、数据采集器、计算机等。听者是通过总线接收由讲者 发出消息的装置,如打印机等。控者是数据传输过程中的 组织者和控制者,通常由计算机担任。一个GPIB系统中, 可以设置多个讲者、听者和控者,不允许有两个或两个以 上的讲者或控者同时起作用,但允许多个听者同时工作。 控者、听者、讲者被称为系统功能的三要素,系统中的某 一个装置可以具有三要素中的一个、两个或全部功功能。 例如,系统中的计算机可以兼顾实现“讲者”、“听者” 与“控者”的功能 。
9.1 智能仪器概述
凡是具有人工智能化的测量仪器均可统称为智能仪器, 如无特别说明,书中的智能仪器特指为独立智能仪器(即 传统智能仪器)。独立智能仪器又称为灵巧仪器(Smart Instruments),它是自身带有微处理器能够独立进行测 试的电子仪器。除此之外,自动测试系统、个人仪器、虚 拟仪器等也是具有人工智能化的测量仪器。本章主要介绍 独立智能仪器。
接口功能包括:遇到故障等情况时,向系统控者提出 服务请求的服务请求功能;系统控者为快速查询请求服务 装置而设置的并行点名功能;用来选择远地工作状态或本 地工作状态的远控本控能力;使装置从总线接收到触发信 息,以便进行触发操作的装置触发功能;能使仪器装置接 收清除信息并返回到初始状态的装置清除功能等。
智能仪器原理及应用的认知和理解

智能仪器原理及应用的认知和理解1. 引言智能仪器是一种利用人工智能技术来实现数据分析、自动化控制和智能决策的仪器设备。
随着人工智能技术的不断进步和应用,智能仪器在各个领域的应用越来越广泛。
本文将介绍智能仪器的原理和应用,并对其进行认知和理解。
2. 智能仪器的原理智能仪器的原理主要包括数据采集、数据处理和智能决策三个方面。
2.1 数据采集智能仪器通过传感器等设备对所监测对象的数据进行采集。
传感器可以是温度传感器、压力传感器、光传感器等,用于感知环境中的各种物理量。
采集到的数据可以是数字信号或模拟信号。
2.2 数据处理采集到的数据需要经过处理才能得到有用的信息。
智能仪器使用各种数据处理算法对采集到的数据进行分析、处理和筛选,提取出其中的特征和规律。
数据处理可以包括数据滤波、数据降噪、数据压缩等。
2.3 智能决策根据经过处理的数据,智能仪器可以进行智能决策。
智能决策是指基于数据分析和算法模型,对采集到的数据进行判断、预测和控制。
智能仪器根据预设的算法和规则,对采集到的数据进行评估和决策,并输出相应的结果或指令。
3. 智能仪器的应用领域智能仪器在各个领域都有广泛的应用,以下是一些典型的应用领域。
3.1 工业自动化智能仪器在工业生产过程中的自动化控制和监测中起到了重要的作用。
通过对工业设备的监测和控制,可以实现生产过程的自动化和优化。
3.2 医疗健康智能仪器在医疗健康领域的应用也越来越广泛。
通过监测患者的生理参数,如心率、血压等,可以实现对患者的实时监测和智能预警。
3.3 环境监测智能仪器在环境监测领域的应用可以帮助人们了解环境质量和资源利用情况。
通过对大气、水质、噪音等环境参数的监测,可以及时预警和采取相应的措施。
3.4 交通运输智能仪器在交通运输领域的应用可以提高交通流量的效率和安全。
通过对交通信号、车流量等数据的实时监测和智能控制,可以优化交通运输系统的运行。
4. 智能仪器的优势和局限性智能仪器具有许多优势,但同时也存在一些局限性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回 上页 下页
在Keil c51编程环境下查表子程序清单如下:
unsigned char u1;
unsigned int var;
/*0~1300°C范围的 K分度表,每隔10°C对应一个电压值*/
unsigned char code K_TABLE[131]={0,397,798,1203,1611, 2022,2436,2850,3266,3681,4095,4508,4919,5327,5733,
特别是DSP器件的数值分析、FFT、语音、频谱分析
返回 上页 下页
5.2 测量结果的非数值处理
一、查表
查表法就是把事先计算或测得的数据按照一定 顺序编制成表格,根据被测参数的值或者中间结 果,查出最终所需要的结果。
顺序查表法
顺序查表法就是从头开始,按照顺序把 表中元素的关键项逐一地与给定的关键字进 行比较。若比较结果相同,所比较的元素就 是要查找的元素;若表中所有元素的比较结
返回 上页 下页
{ mid=(max+min)/2;
/*中心元素位置*/
if(K_TAB[mid]=da) var=mid*10;break;/*中心元素等于查表的 元素,计算相应温度*/
if(K_TAB[mid]>da) max=mid;
else
min=mid;
if((max-min)<=1
/*线性插值计算温度值*/
同理,第二轮比较需要进行(N一2)次比较,第二轮结束后,次 最大(或最小)的数据排在底部往上第二位置上。
重复上述过程,直至全部排完,从而实现这组数据由大到小 (或由小到大)的顺序排列。
例子见课本
返回 上页 下页
2. 希尔排序法 算法思路
希尔排序被称为“缩小增 量排序”,容易编程,运 行较快;
1. 先取一个正整数d1(d1<n,n为数据个数),把全部 记录分成d1个组,所有相距为dl的数据看成是一组, 然后在各组内分别进行插入排序,也就是在每组中将 一个待排序的数据按其大小插到这组已经排序的序列 中的适当位置,直到这组数据全部插入完毕为止;
因此数据需进行加工处理: 数字滤波、数值计算、逻辑判断、非线性补偿等;
返回 上页 下页
5.1 概
述
与常规的模拟电路相比,智能仪器的数据处理 具有如下优点:
(1)可用程序代替硬件电路,完成多种运算。 (2)能自动修正误差。 (3)能对被测参数进行较复杂的计算和处理。 (4)能进行逻辑判断。 (5)不但精度高,而且稳定可靠,抗干扰能力强。
{j=(K_TABLE[max]- K_TABLE[min])/10; /*表中相邻两值对应 温度相差10°C*/
j=(da- K_TABLE[min])/j;
var=10*min+j;
break;
}
}
}
返回 上页 下页
3. 计算查表法
智能仪器中经常使用的快速查表方法,仅适宜于 有序表格。这种方法不需要像上述两种方法那样 逐个比较表中的关键项,查出表中关键项的记录, 而是直接由关键项或经过简单计算,即可直接找 到所需数据。 如单片机的数显。数显的段码存放在固定的表格 中,实际应用时通过简单计算查找相应段码的地 址,找到段码送到段码驱动电路即完成显示。
返回 上页 下页
二、排序
1.冒泡排序法
在有N个数据的数列中依次比较两个相邻的一对数据,如果不符 合规定的递增(或递减)顺序,则交换两个数据的位置,接着比较第 二对(第二个和第三个数据),直到数列所有的数据依次比较完毕后, 第一轮比较结束,这时最大(或最小)的数据降到数列中最后的位置。 第一轮排序需要进行(N一1)次比较;
果都不相同,则该元素在表中查找不到。
顺序查表查找速度相对较慢。对于无序表,特别是在表中记
录不多的情况下,用顺序查找法是适宜的。
返回 上页 下页
2. 对半查表法 基本思想
排列成一定规律的有序表不必逐 个查表,可每次截取表的一半, 逐步细分缩小查找范围;
设置两个指针L0和Hi,分别保存表的下限值 和上限值的序号,开始查表时设置Lo=0,Hi=N1。设N个元素按照从小到大的顺序排列,则中心 元素的序号为:
6137,6539,6939,7338,7738,8137,8537…};
void ser2 (void)
/*查表子函数,由主函数调用,主函数略*/
{unsigned int da=0,max,min,mid;
da=u1*1000;
/*u1扩大1000倍 */
max=130;min=0;
while(1)
Mi [(L0 Hi) / 2]
由此将表分为前半部分和后半部分。然后计算中 心元素的地址:其中i为数据元素的字节数。
Addm 表首地址 Mi i
返回 上页 下页
根据中心元素的位置找出中心元素,并和查表的 元素进行比较,若中心元素大于查表的元素,则选取 表的前半部分,修改上限指针Hi :(下限指针Lo不变)
5.1 概
述
数据处理是指对智能仪器的测试数据进行加工 和处理,以便进行控制、显示与记录等;
1. 智能仪器系统中的数据通过自动测量获取,由于 数值范围的不同,精度要求不一致;
2. 参数可能与某个测量量相关,也可能与几个测量 量相关;
3. 输入与输出可能是线性的,也可能非线性; 4. 带有干扰信号,需要滤波;
Hi Mi
若中心元素小于查表的元素,则选取表的后半部 分,修改下限指针Lo:(上限指针Hi不变)
Lo Mi
若中心元素等于查表的元素,则查表成功。
返回 上页 下页
[例5.1] 单片机温度控制系统中,利用K分度号热电偶进 行温度检测,现假设热电偶输出信号经信号处理、单片机 采集并完成标度变换后的电压代码值为u1(mV),要求 利用对半查表法查K分度表并经计算获得相应的温度值, 将温度值存入变量var中。
• 接着取d2(d2<d1 ) ,重复上述分组和排序操作; 直到di=1 (i>=1),即所有记录成为一个组为止。
• 希尔排序对di的选择没有严格规定,一般选d1约为n /2,d2为d1/2,d3为d2/2,…,di=1。这样大大 减少了数据移动次数,提高了排序效率。
返回 上页 下页
[例5.2] 设有一数列(86,75,50,40,90,33,15, 70),n=8,将其按由小到大的顺序排序。