第八章面板数据模型计量经济学陶长琪 ppt课件

合集下载

面板数据分析PPT课件

面板数据分析PPT课件
这正是时点固定效应模型形式。对于每个截面,回归函数的斜率
相同(都是1),t 却因截面(时点)不同而异。可见时点固定效应 模型中的截距项t 包括了那些随不同截面(时点)变化,但不随个 体变化的难以观测的变量的影响。t 是一个随机变量。
以家庭消费性支出与可支配收入关系为例,“全国零售物价指数” 就是这样的一个变量。对于不同时点,这是一个变化的量,但是对 于不同省份(个体),这是一个不变化的量。
变换上式: yi = + X i ' +( i - + i ), i = 1, 2, …, N
称作平均数模型。对上式应用 OLS 估计,则参数估计量称作平均数 OLS 估 计量。此条件下的样本容量为 N,(T=1)。
如果 X i 与( i - + i )相互独立,和的平均数 OLS 估计量是一致估计量。
yit = + Xit ' +it, i = 1, 2, …, N; t = 1, 2, …, T 如果模型是正确设定的,且解释变量与误差项不相关,即 Cov(Xit,it) = 0。 那么无论是 N,还是 T,模型参数的混合最小二乘估计量都具有 一致性。 对于经济序列每个个体 i 及其误差项来说通常是序列相关的。NT 个相关 观测值要比 NT 个相互独立的观测值包含的信息少。从而导致误差项的标 准差常常被低估,估计量的精度被虚假夸大。
为误差项(标量),满足通常假定条件。Xit 为 k 1 阶回归变量列
向量(包括 k 个回归变量),为 k 1 阶回归系数列向量,则称此
模型为时点固定效应模型。
第8页/共30页
2.2.2 时点固定效应模型(time fixed effects model)
设定时点固定效应模型的原因。假定有面板数据模型

面板数据模型PPT

面板数据模型PPT

(9) (10)
计算步骤:
计量经济学,面板数据模型,1王7 少平
▪ 引入虚拟变量:
▪ ▪
D i,i1,2,L,N
D i 1 表示第i个观测个体 D i 0 表示不是第i个观测个体。
则模型(10)可表述为:
Y i t0 1 D 1 N D N 1 X i tu it
(11)
▪ 为解决虚拟变量的完全多重共线性,可直接估计模型:
计量经济学,面板数据模型,1王9 少平
四、静态面板-随机效应GLS估计
Yit 12X2it LkXkit it it i t uit
i1,2,L,N t1,2,L,T
(14)
随机效应:个体效应或时间效应与模型中的解释变量不相关
OLS估计量:
无偏的,但估计量有较大的方差。
本质问题:
个体(或时间)效应导致了误差项自相关。
数协方差矩阵估计量; ˆ R ,ˆ R 分别为回归系数的GLS估计系数,估计系数
协方差矩阵估计量。
计量经济学,面板数据模型,2王3 少平
五、Hausman检验
若随机效应为真时,豪斯曼检验统计量:
H~2(K)
自由度K为模型中解释变量(不包括截距项)的个数。
计量经济学,面板数据模型,2王4 少平
(3)
计量经济学,面板数据模型,1王0 少平
三、面板数据模型及其分类
动态面板数据模型
Yit 1 X 2 2it LkXkit Yit1it it i t uit
i1,2,L,N t1,2,L,T
(4)
例如:
Iit12F it3 C itIit 1it u it (5)
i 1 ,2 ,L,N t 1 ,2 ,L,T

计量经济学课件PPT课件

计量经济学课件PPT课件

非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)

面板数据模型ppt课件

面板数据模型ppt课件

精选课件
计量经济学,面板数据模型,3王0 少平
六、动态面板-IV估计
IV估计量求解:如果只选择 Y i ,t 2 作为 Yi,t 1 的工具变量, 正交的约束条件:
E(Yi,t2it ) 0
基于一个给定的样本,通过求解:
1
N Ti t
Y i,t 2ˆ it N 1 Ti
Y i,t 2 (Y it ˆY i,t 1 ) 0
▪ OLS估计量:

有偏的,非一致的。
▪ 本质问题:

个体效应(或时间效应)的内生性。
▪ 其BLUE是最小二乘虚拟变量(LSDV)法。
精选课件
计量经济学,面板数据模型,1王5 少平
四、静态面板-固定效应LSDV估计
LSDV估计方法:
基本思想:
通过虚拟变量把个体效应(和时间效应)从误差
项中分离出来,使分离后剩余的误差项与解释变量不
协方差矩阵估计量。
精选课件
计量经济学,面板数据模型,2王3 少平
五、Hausman检验
若随机效应为真时,豪斯曼检验统计量:
H~2(K)
自由度K为模型中解释变量(不包括截距项)的个数。
精选课件
计量经济学,面板数据模型,2王4 少平
六、动态面板数据模型
▪ 动态面板模型:解释变量中包含被解释变量的滞后 项。
(11)
▪ 为解决虚拟变量的完全多重共线性,可直接估计模型:
Y it1 * D 1 N * D N 1 X it u it
(12)
如果 u it 是经典误差项,可以直接对(12)进行OLS估计。并 且
ˆ0
1 N
N i1
ˆi*
ˆi
ˆi*
1 N

计量经济学课件5

计量经济学课件5

8.5 应用
Enter键后,回归系数估计及标准误和残差保存于080101.dta中,stata结果显示 :
这里有一段被删除 由于目的是为了对各个体的残差平方进行计算求和,思路是现根据估计参数进 行计算拟合值,然后实际值减去拟合值,从而得到残差,最后对残差进行平方 求和。在Stata中的command窗口中输入如下命令: merge m:1 state using “D:\stata16\shuju\chap08\080101.dta” /*将分组回归的结 果合并到原始数据文件中,同时注意路径是英文下双引号*/ gen mhat=_b_cons+_b_beertax*beertax /*mhat是回归预测值,该步是进行拟 合值拟合*/ gen resid=mrall-mhat egen SSR=sum(resid^2) /*对所有残差平方和进行求和*/ Enter键后,可见数据编辑器中有S1(SSR)的求解结果:
df
MS Number of obs =
F(1, 334)
=
1 1.0169e-07 Prob > F
=
334 2.9565e-09 R-squared
=
Adj R-squared =
335 3.2512e-09 Root MSE
=
336 34.39 0.0000 0.0934 0.0906 5.4e-05
8.1 面板数据模型概述
对于情形1,称为无个体影响的不变系数模型,其在横截面上无个体影 响、无结构变化,可由普通最小二乘法估计给出a和b的一致有效估计, 即相当于多个时期的截面数据放在一起作为样本数据。对于情形2,称 为变截距模型,由于在横截面上存在个体影响,而不存在结构性的变化 ,同时又考虑到个体差异影响是否在模型中被忽略,因此还可将模型进 一步分为固定效应影响和随机效应影响两种情况。对于情形3,称为变 系数模型,除了存在个体影响外,在横截面上还存在结构变化,因此结 构参数在不同横截面单位上是不同的。

计量经济学第8章面板数据模型

计量经济学第8章面板数据模型

什么是面板数据
• 表8-1是一个简单面板数据结构的示意,它既有 横截面的维度(n个个体),又有时间维度(T 个时期,T=3)。
表8-1 面板数据结构示意
y
x1
x2
x3
Individual 1:t=1
Individual 1:t=2
Individual 1:t=3
……
Individual n:t=1
面板数据的主要优点如下:
• 1.样本容量更大,增加了自由度和估计的有效性
– 面板数据通常提供给研究者大量的观测数据,这就增加 了自由度,从而减少了解释变量之间的共线性,改进了 计量经济模型估计的有效性。
– 如果抽取一个容量为n的样本,对样本中每一个个体观测 了T个时间单位,就形成了一个样本容量为nT的面板数据。
8.2 面板数据模型的估计
• 本节主要内容: —固定效应模型 —随机效应模型 —固定效应还是随机效应——豪斯曼
(Hausman)检验
固定效应模型
• 在固定效应模型里,对于第i个被观测的人,我 们视 i 常数:
yit (0 i ) 1x1it 2 x2it L k xkit it
• 然后通过对同一个人多个时期的每个变量 取均值,将原方程修改为
yi (0 i ) 1x1i 2 x2i L k xki i
( 8-7)
固定效应模型
• 第二个方程仍包含着衡量个人特性的固定 效应的变量 ,这是因为一个常数的均值仍 然是常数。将方程(8-5)和(8-7)相减, 得
yit 0 i 1x1it 2 x2it L k xkit it
(8-4)
面板数据模型
• 最常见的两种面板数据模型是建立在 i 的不 同假设基础之上的。

第八章面板数据模型计量经济学陶长琪ppt课件

第八章面板数据模型计量经济学陶长琪ppt课件
第九章 面板数据模型
2019
1
第一节 面板数据
第二节 面板数据回归模型概述
第三节 混合回归模型
第四节 变截距回归模型
第五节 变系数回归模型 第六节 效应检验与模型形式设定检验 第七节 面板数据的单位根检验和协整检验 第八节 案例分析
2019 2
第一节 面板数据
面板数据(Panel Data):也叫平行数据,指 某一变量关于横截面和时间两个维度的数据,记为
K 1 xK 1T u1T
Y1 1eT X11 U1
11
y11 y Y1 12 y1T
1 ui1x 211 x111 1 x u x 1 112 1 e X i 2 212 U 1 T 1 1 i 1 1 x11T uiTx21T
2019
u11 11 Yi i eT X i i Ui i 1 ,2, ,N u 12 21 U 1 1 i i e u K1 1T i T xKi1 xi1 x1i1 x2i1 i x x x x 1i 2 2i 2 Ki 2 i2 Xi xKiT 12 x1iT x2iT xiT
2019 10
对于个体 i 在时期 t 的观测值; ki 是待估参数;uit
xK 11 x11 y11 1 x111 x211 1 y x x 1 x x 212 K 12 12 Y1 12 K 1 1 1eT X 1 112 ki xkituit i 1 yit i ,2 , ,N t 1,2,,T k 1 xK 1T x1T 1 y1T 1 x11T x21T

第八章面板数据模型计量经济学陶长琪 ppt课件

第八章面板数据模型计量经济学陶长琪 ppt课件

Y i i e T X ii U ii 1 , 2 , , N
假定在截面个体成员上截距项不同,而模
型的解释变量系数是相同的。
1
变截距回归模型的模型形式为
=
2
Y i i e T X i U ii 1 , 2 , , N
K
需要估计的参数个数:N+K个
Y i i e T X i U i( i 1 , 2 , , N )
3. 空间面板模型:
当考虑国家、地区、州、县等相关截面数据时, 这些总量个体可能表现出必须处理的截面相关 性。现在有大量运用空间数据的文献处理这种 相关性。这种空间相依模型在区域科学和城市 经济学中比较普遍。具体来说,这些模型使用 经济距离测度设定了面板数据的空间自相关性 和空间结构(空间异质性)。
第二节 面板数据回归模型概述 一、面板数据回归模型的一般形式
K
yit i x ki kit uit k1
其中,i=1, 2, …,N 表示个N个体; t =1, 2, …,T 表 示T个时期;yit为被解释变量, 表示第i个个体在 t 时 期的观测值;xkit 是解释变量, 表示第k个解释变量
xit ,其中 i1 ,2, ,N ,表示N个不同的对象(如
国家、省、县、行业、企业、个人), t1,2, T
,表示T个观测期。
• 平衡面板数据
• 非平衡面板数据
• 扩展的面板模型
1. 伪面板模型:
如果按照某种属性(例如,年龄、职业和身份等) 将各期调查对象分成不同的群;对于各个观测期, 选择各群内观测数据的均值(中位数或分位数), 即可构造以群为‘个体’单位的面板数据。我们 把这种以群为个体而构造的人工面板数据为伪面 板数据(Pseudo Panel Data)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/11/29
6
2. 轮换面板模型:
同一个个体可能不愿被一次又一次的被回访,为
了保持调查中个体数目相同,在第二期调查中退
出的部分个体,被相同数目的新的个体所替代,
这种允许研究者检验 “抽样时间”偏倚效应
(初次采访和随后的采访之间的回答有显著的改
变)的存在性叫轮换面板。对于轮换面板,每批
加到面板的新个体组提供了检验抽样时间偏倚效
i 1, t 1,2,,T
y11 1 11x111 21x211 y12 1 11x112 21x212
U 1
KK 1u1uxx11 21KK1112uu1112
1
u
1T
11
21
K
1
y1T 1 11x11T 21x21T K1xK1T u1T
2020/11/29 Y 11eTX1 1U 1
xit ,其中 i1 ,2, ,N ,表示N个不同的对象(如
国家、省、县、行业、企业、个人), t1,2, T
,表示T个观测期。
2020/11/29
3
• 平衡面板数据
2020/11/29
4
• 非平衡面板数据
2020/11/29
5
• 扩展的面板模型
1. 伪面板模型:
如果按照某种属性(例如,年龄、职业和身份等) 将各期调查对象分成不同的群;对于各个观测期, 选择各群内观测数据的均值(中位数或分位数), 即可构造以群为‘个体’单位的面板数据。我们 把这种以群为个体而构造的人工面板数据为伪面 板数据(Pseudo Panel Data)。
Bˆ=(ZZ)1ZY 量是线性、无偏、有效和一致的。
2020/11/29
16
若将假设3的同方差弱化为存在异方差,即
第九章 面板数据模型
2020/11/29
1
第一节 面板数据 第二节 面板数据回归模型概述 第三节 混合回归模型 第四节 变截距回归模型 第五节 变系数回归模型 第六节 效应检验与模型形式设定检验 第七节 面板数据的单位根检验和协整检验 第八节 案例分析
2020/11/29
2
第一节 面板数据
面板数据(Panel Data):也叫平行数据,指 某一变量关于横截面和时间两个维度的数据,记为
对于个体 i 在时期 t 的观测值; k i 是待估参数;uit
是随机干扰项。
2020/11/29
10
y 1 1 1 1
x111 x211
xK11 x11
Y 1y it yy 11 T2 i k K 1 11 k ix k 1it11 u it 1i e T X1 , 1 2 , xx1111T, 2 N xx2211T2 t 1 , x2 xKK, 11T2 , T xx11T2
Y1 eT X 1 U 1 Y i i e T X ii U ii 1 , 2 , , N
Y2 eT X 2 U 2
YZBU
1 Y N 2 eT X N N U N , 1 2 N
2020/11/29
14
一、混合回归模型假设
假设1:随机干扰项向量U的期望为零向量。
2020/11/29
8
4. 计数面板模型: 被解释变量是计数面板数据的例子很多。例如, 一段时间内一家公司的竟标次数、一个人去看 医生的次数、每天吸烟者的数量及一个研发机 构登记专利的数目。虽然可以运用传统面板回 归模型对计数面板数据建模,但鉴于被解释变 量具有0及非负离散取值的特征,运用泊松面 板回归模型建模更为合适。
2020/11/29
9
第二节 面板数据回归模型概述 一、面板数据回归模型的一般形式
K
yit i x ki kit uit k1
其中,i=1, 2, …,N 表示个N个体; t =1, 2, …,T 表
示T个时期;yit为被解释变量, 表示第i个个体在 t 时
期的观测值;xkit 是解释变量, 表示第k个解释变量
y i1
Yi
y
i2
y
iT
i
i
ie T
i
2020/11/29
Y i i e T UX 1 i i uu U 11 21 i i 1 , 12 , , 12 11 N
u
1T
K
1
x1i1 x2i1
Xi
x1i2
x2i2
x1iT x2iT
xKi1 xi1 11Fra bibliotek11 Y1
y
12
y
1T
1 1
1
1
1
1eT
1
1
x111 u i 1 x 211
X1
U i x112 u
i 2 x 212
x11T u i T x 21T
i
x K111 x K122
i i
x11 x12
xK1TK i
x1T
Y 11eTX11U 1
假设2:不同个体随机干扰项之间相互独立。
假设3:随机误差项方差为常数。
假设4:随机误差项与解释变量相互独立。
假设5:解释变量之间不存在多重共线性。
假设6:随机误差项向量服从正态分布,即
2020/11/29
U~N(0,2IT)
15
二、混合回归模型参数估计 混合回归模型与一般的回归模型无本质区别,只要 模型满足假设1 ~6,可用OLS法估计参数,且估计
应的方法。
2020/11/29
7
3. 空间面板模型:
当考虑国家、地区、州、县等相关截面数据时, 这些总量个体可能表现出必须处理的截面相关 性。现在有大量运用空间数据的文献处理这种 相关性。这种空间相依模型在区域科学和城市 经济学中比较普遍。具体来说,这些模型使用 经济距离测度设定了面板数据的空间自相关性 和空间结构(空间异质性)。
2020/11/29
13
Y1
U1
eT X1
第三节
Y混合Y2回 归U模型U2
Z eT
X2
B
从截面上看,Y不N同个体之U间N不存在显eT 著X性N差 异。
混合回归模NT型的1 模型N形T式1为 NT(K1) (K1)1
Y i e T X i U i( i 1 , 2 , , N )
xKi2
xi2
xKiT
12xiT
二、 面板数据回归模型的分类
根据对截距项和解释变量系数的不同假设,面板数 据回归模型常用:混合回归模型、变截距回归 模型和变系数回归模型3种类型。
Y i i e T X ii U ii 1 , 2 , , N
K
i 1 ,2,N
yiti
k 1
kixkitu it t 1 ,2,T
相关文档
最新文档