机器视觉检测系统

合集下载

基于机器视觉的自动外观缺陷检测系统设计

基于机器视觉的自动外观缺陷检测系统设计

基于机器视觉的自动外观缺陷检测系统设计自动外观缺陷检测系统是在现代工业制造中起着至关重要的作用。

机器视觉技术的应用使得自动化的外观缺陷检测成为可能,提高了产品质量和生产效率。

本文将详细介绍基于机器视觉的自动外观缺陷检测系统的设计原理和实施方法。

一、系统设计原理基于机器视觉的自动外观缺陷检测系统通过摄像头捕捉产品的图像,并利用计算机视觉算法进行分析和处理,最终识别和判断产品是否存在缺陷。

其设计原理如下:1. 图像采集:系统的第一步是通过摄像头采集产品的图像。

摄像头的选择应该考虑产品的尺寸、形状和检测速度等因素。

高分辨率和快速采集速度的摄像头通常能够提供更好的图像质量和检测精度。

2. 图像预处理:采集到的图像往往包含噪声和光线的干扰,因此需要进行预处理。

预处理的主要目标是降低噪声、增强图像的对比度和清晰度。

一些常用的图像预处理方法包括滤波、平滑和直方图均衡化等。

3. 特征提取:在预处理完图像后,需要提取图像中与缺陷相关的特征。

特征提取可以通过各种计算机视觉算法来实现,如边缘检测、角点检测和纹理分析等。

特征提取的目标是将图像中的关键信息提取出来,并用于缺陷检测和分类。

4. 缺陷检测:在特征提取的基础上,使用分类算法来实现缺陷检测。

常见的分类算法包括支持向量机(SVM)、人工神经网络(ANN)和卷积神经网络(CNN)等。

这些算法可以根据特征的不同组合进行训练,以实现对不同缺陷类别的识别。

5. 结果判断:根据分类算法的输出结果,判断产品是否存在缺陷。

如果系统检测到缺陷,则需要标记并通知操作员进行处理。

同时,系统还应具备故障检测和故障排除的功能,确保系统的稳定和可靠性。

二、系统实施方法基于机器视觉的自动外观缺陷检测系统的实施方法涉及到硬件和软件两方面的内容。

具体步骤如下:1. 硬件系统设计:根据产品的特点和生产环境的要求,设计合适的硬件系统。

这包括选择适当的摄像头、光源和图像处理设备等。

还需要考虑摄像头的布置位置和角度,以及光源的类型和亮度调节等。

基于机器视觉的自动化生产线检测系统设计与实现

基于机器视觉的自动化生产线检测系统设计与实现

基于机器视觉的自动化生产线检测系统设计与实现随着科技的不断发展,自动化生产线已经成为现代工业生产中的主要形式。

自动化生产线能够提高生产效率、降低劳动力成本,并且具有稳定、高效的特点。

在自动化生产线中,质量控制是一个非常重要的环节。

为了确保产品质量,并及时发现并纠正生产过程中的异常情况,现代工业往往利用机器视觉技术来进行自动化检测。

本文将讨论基于机器视觉的自动化生产线检测系统的设计与实现。

一、需求分析在设计与实现基于机器视觉的自动化生产线检测系统之前,首先需要对系统的需求进行详细分析。

该系统需要能够实现以下功能:1. 图像采集:系统需要能够实时采集传感器获得的图像数据。

2. 图像处理:系统需要能够对采集到的图像数据进行处理,包括图像滤波、边缘检测、形状匹配等。

3. 缺陷检测:系统需要能够检测产品表面的缺陷,如裂纹、划痕等。

4. 尺寸检测:系统需要能够测量产品的尺寸,确保其符合规定的标准。

5. 速度控制:系统需要能够调节生产线的速度,确保检测过程的稳定性和准确性。

6. 异常报警:系统需要能够及时发现并报警生产过程中的异常情况,以便工作人员及时处理。

二、系统设计基于上述需求,可以设计出以下系统框架:1. 图像采集模块:该模块负责采集传感器获得的图像数据,并将其传输给下一步的图像处理模块。

2. 图像处理模块:该模块负责对采集到的图像进行处理,滤除噪声、增强图像对比度等,以便后续的缺陷检测和尺寸检测。

3. 缺陷检测模块:该模块负责检测产品表面的缺陷,如裂纹、划痕等。

可以采用图像分割、边缘检测、纹理分析等方法来实现。

4. 尺寸检测模块:该模块负责测量产品的尺寸,确保其符合规定的标准。

可以采用图像中的标定物体进行几何校正,然后利用图像处理方法进行尺寸测量。

5. 速度控制模块:该模块负责根据缺陷检测和尺寸检测的结果,调节生产线的速度,确保检测过程的稳定性和准确性。

6. 异常报警模块:该模块负责及时发现并报警生产过程中的异常情况,以便工作人员及时处理。

基于机器视觉的自动检测系统设计与实现

基于机器视觉的自动检测系统设计与实现

基于机器视觉的自动检测系统设计与实现一、引言随着工业化生产的普及,自动化驱动生产方式已成为社会发展的趋势。

基于机器视觉的自动检测系统因其高效、可靠、灵敏等优点,逐渐成为自动检测的热门研究方向。

本文旨在介绍一个基于机器视觉的自动检测系统的设计与实现过程。

二、自动检测系统的设计与实现1.系统结构设计本系统采用了传统的客户端/服务器结构。

客户端(PC)用于控制和数据处理,而服务器(嵌入式系统)用于采集和处理实时图像数据。

2.硬件准备使用嵌入式计算平台和相机模块,本系统需要使用USB接口进行连接。

采用嵌入式计算平台是为了提高系统运行效率和稳定性,而相机模块则实现了对物品的高清拍摄。

3.图像采集系统需要采集图像数据,包括颜色、形状、大小等。

采集的图像数据会发送到PC客户端进行后续处理。

4.特征提取系统会根据物品的特征,如颜色、纹理、边缘等进行特征提取。

特征提取是实现自动检测的重要一步,提取特征的正确性影响着后续检测的准确性。

5.物品匹配系统会将特征信息与预设的模型进行匹配。

匹配成功表示物品通过了检测,匹配失败表示物品未通过检测。

6.结果反馈系统会将检测结果反馈给PC客户端。

系统会告知用户是否通过检测,检测时间等信息。

三、实验结果本文设计的自动检测系统的实验结果表明,系统具有很好的稳定性和实用性。

在涉及到大批量物品检测时,系统的速度也非常快,可适应不同尺寸、颜色和形状的物品。

同时,该系统能够自动分辨异常物品,充分实现了自动检测的功能。

四、总结与展望本文介绍了一个基于机器视觉的自动检测系统的设计与实现过程。

通过实验结果表明,本系统具有高效、可靠、灵敏等特点。

但是,由于技术的限制,系统仍有一定的改进空间。

未来,我们将继续不断优化理论模型和算法,不断完善软硬件配置,致力于打造更加智能和高效的自动检测系统。

基于机器视觉的PLC自动化皮带智能检测系统

基于机器视觉的PLC自动化皮带智能检测系统

基于机器视觉的PLC自动化皮带智能检测系统目录一、内容综述 (2)1. 研究背景和意义 (3)2. 研究现状和发展趋势 (4)3. 研究内容和方法 (5)二、系统概述 (6)1. 系统组成 (7)2. 系统功能 (9)3. 系统工作流程 (10)三、机器视觉技术 (11)1. 机器视觉技术原理 (13)2. 机器视觉技术特点 (13)3. 机器视觉技术在皮带检测中的应用 (14)四、PLC自动化技术 (15)1. PLC自动化技术概述 (17)2. PLC系统在皮带智能检测中的应用 (18)五、智能皮带检测系统硬件设计 (19)1. 传感器与数据采集模块设计 (20)2. 图像处理与识别模块设计 (22)3. 控制系统硬件设计 (23)六、智能皮带检测系统软件设计 (24)1. 软件系统架构设计 (26)2. 数据处理与分析模块软件设计 (27)3. 故障诊断与预警模块软件设计 (28)七、系统实现与测试 (29)1. 系统实现过程 (31)2. 系统测试方法与步骤 (31)3. 测试结果与性能分析 (33)八、系统应用与优化建议 (34)1. 系统应用场景分析 (36)2. 系统使用效果评价与优化建议方案制定与实施过程介绍及分析优化建议的可行性和实施计划37一、内容综述随着现代工业生产中自动化和智能化的需求日益增长,传统的生产线往往难以满足高效率、高精度的质量检测要求。

在这样的背景下,基于机器视觉的PLC自动化皮带智能检测系统应运而生,为生产线提供了一种高效、可靠的缺陷检测与控制解决方案。

该系统结合了先进的机器视觉技术、PLC控制系统以及精密的机械结构设计,能够实现对皮带传输过程中出现的各类缺陷(如裂缝、破损、偏移等)的快速、准确检测。

机器视觉技术通过高分辨率的摄像头捕捉皮带表面的图像,并利用图像处理算法对图像进行分析和处理,从而实现对皮带缺陷的自动识别和分类。

PLC控制系统则负责接收机器视觉系统输出的检测结果,并根据预设的逻辑和控制策略对皮带输送线进行实时调整和控制,以确保生产线的稳定运行和产品质量的一致性。

基于机器视觉的自动化检测系统设计与实现

基于机器视觉的自动化检测系统设计与实现

基于机器视觉的自动化检测系统设计与实现机器视觉技术的发展在工业制造等领域中起到了至关重要的作用。

基于机器视觉的自动化检测系统利用计算机视觉技术,通过对图像或视频的处理分析,实现对物体进行自动化检测和判断。

本文将介绍基于机器视觉的自动化检测系统的设计与实现。

一、引言随着工业生产的快速发展,传统的人工检测方式已经无法满足生产效率和质量要求。

基于机器视觉的自动化检测系统应运而生。

该系统可以准确、快速地对产品进行检测,大大提高了检测精度和效率。

二、系统设计1. 硬件设计基于机器视觉的自动化检测系统的核心设备是计算机和视觉检测设备。

计算机负责图像处理和算法运算,视觉检测设备负责图像采集和输入。

此外,根据具体需求,系统还可配备其他硬件设备,如运动控制系统、光照控制系统等。

2. 软件设计软件设计是基于机器视觉的自动化检测系统的关键部分。

在软件设计过程中,需要考虑图像处理算法的选择和优化,以及系统界面的设计等方面。

首先,根据实际需求选择合适的图像处理算法,如边缘检测、形状匹配、颜色识别等。

根据不同的应用场景,可能需要集成多种算法,以实现更精确的检测和判定。

其次,设计系统界面,使之简洁明了、易于操作。

用户可以通过界面设置检测参数,查看检测结果等。

三、系统实现1. 数据采集系统实现时,首先需要进行图像或视频的采集。

根据实际应用场景,可以选择合适的图像采集设备,如摄像头、工业相机等。

通过采集设备,将待检测的物体图像输入到计算机中。

2. 图像处理与特征提取采集到的图像需要进行预处理,并提取出适用于检测的特征。

预处理包括图像去噪、图像增强等操作,以提高后续处理的效果。

特征提取是基于机器视觉的自动化检测系统的核心步骤,通过选择合适的算法和参数,从图像中提取出目标物体的特征信息。

3. 检测与判断通过对特征提取的结果进行分析和处理,系统可以对目标物体进行自动化检测和判断。

根据具体需求,可以设置不同的检测标准和判定规则,以实现对不同缺陷或问题的检测和判断。

机器视觉检测系统【深度解读】

机器视觉检测系统【深度解读】

机器视觉检测系统现代工业自动化生产中涉及到各种各样的检验、生产监视和零件识别应用,如汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件自动定位、IC上的字符识别等。

通常这种带有高度重复性和智能性的工作是由肉眼来完成的,但在某些特殊情况下,如对微小尺寸的精确快速测量、形状匹配以及颜色辨识等,依靠肉眼根本无法连续稳定地进行,其它物理量传感器也难以胜任。

人们开始考虑用CCD照相机抓取图像后送入计算机或专用的图像处理模块,通过数字化处理,根据像素分布和亮度、颜色等信息来进行尺寸、形状、颜色等的判别。

这种方法是把计算机处理的快速性、可重复性与肉眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉检测技术的概念。

视觉检测技术是建立在计算机视觉研究基础上的一门新兴测试技术。

与计算机视觉研究的视觉模式识别、视觉理解等内容不同,视觉检测技术重点研究的是物体的几何尺寸及物体的位置测量,如轿车白车身三维尺寸的测量、模具等三维面形的快速测量、大型工件同轴度测量以及共面性测量等,它可以广泛应用于在线测量、逆向工程等主动、实时测量过程。

视觉检测技术在国外发展很快,早在20世纪80年代,美国国家标准局就曾预计未来90%的检测任务将由视觉检测系统来完成。

因此仅在80年代,美国就有100多家公司跻身于视觉检测系统的经营市场,可见视觉检测系统确实很有发展前途。

在近几届北京国际机床展览会上已经见到国外企业展出的应用视觉检测技术研制的先进仪器,如流动式光学三坐标测量机、高速高精度数字化扫描系统、非接触式光学三坐标测量机等。

2.机器视觉检测系统构成、分类及工作原理2.1 系统构成与工作原理(1)系统构成典型的视觉系统一般包括光源、镜头、CCD照相机、图像处理单元(或图像采集卡)、图像处理软件、监视器、通讯/输入输出单元等。

(2)工作原理视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如尺寸数据)。

通常,机器视觉检测就是用机器代替肉眼来做测量和判断。

基于机器视觉技术的车辆检测系统研究

基于机器视觉技术的车辆检测系统研究

基于机器视觉技术的车辆检测系统研究一、引言机器视觉技术是一项快速发展的技术,在各个领域都有广泛的应用,其中之一就是车辆检测。

车辆检测系统是指通过计算机视觉技术、传感器技术和图像处理技术等技术手段对道路上行驶的车辆性质、行驶轨迹及行驶状态进行监测、记录和分析的系统。

本文旨在探索基于机器视觉技术的车辆检测系统的研究。

二、机器视觉技术在车辆检测系统中的应用1. 图像处理技术图像处理技术是机器视觉技术的核心内容之一,也是车辆检测系统的关键技术之一。

该技术通过处理摄像机拍摄的图像,提取车辆的特征信息,并对其进行分类、分析、识别,完成车辆检测。

2. 目标检测技术目标检测技术是机器视觉技术的重要应用之一,在车辆检测系统中主要用于检测道路上行驶的车辆。

目标检测技术的关键是提取图像中的特征信息,根据特征信息进行目标的定位与识别。

常用的目标检测技术包括基于 Haar 特征的级联检测算法、基于卷积神经网络的检测算法等。

3. 行为分析技术行为分析技术是车辆检测系统的重要组成部分,主要是对车辆行驶轨迹及行驶状态进行监测、记录和分析,发现异常行驶行为,并对其进行预警和处理。

常用的行为分析技术包括目标跟踪、行驶速度测量、车距测量等。

三、车辆检测系统的应用及未来发展趋势1. 应用场景车辆检测系统广泛应用于交通监控、车辆安全、智能交通等领域。

在交通监控领域,车辆检测系统可以通过监测车辆道路上的规范行驶行为,减少交通事故的发生;在车辆安全领域,车辆检测系统可以通过检测车辆轨迹、车距等参数,发现异常行驶行为并进行预警和处理;在智能交通领域,车辆检测系统可以协助交通管理部门进行交通流量分析,优化城市交通运输布局。

2. 未来发展趋势随着机器视觉技术和人工智能技术的飞速发展,车辆检测系统也将迎来新一轮的发展。

未来的车辆检测系统将更加智能化、精准化,技术将更加成熟,应用场景将更加丰富和复杂。

四、结语基于机器视觉技术的车辆检测系统是一种新兴技术,广泛应用于各个领域。

机器视觉检测系统

机器视觉检测系统

工作原理:机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/ 不合格、有/ 无等,实现自动识别功能。

①工业相机与工业镜头——这部分属于成像器件,通常的视觉系统都是由一套或者多套这样的成像系统组成,如果有多路相机,可能由图像卡切换来获取图像数据,也可能由同步控制同时获取多相机通道的数据。

根据应用的需要相机可能是输出标准的单色视频(RS-170/CCIR)、复合信号(Y/C)、RGB信号,也可能是非标准的逐行扫描信号、线扫描信号、高分辨率信号等。

②光源——作为辅助成像器件,对成像质量的好坏往往能起到至关重要的作用,各种形状的LED灯、高频荧光灯、光纤卤素灯等都容易得到。

③传感器——通常以光纤开关、接近开关等的形式出现,用以判断被测对象的位置和状态,告知图像传感器进行正确的采集。

④图像采集卡——通常以插入卡的形式安装在PC中,图像采集卡的主要工作是把相机输出的图像输送给电脑主机。

它将来自相机的模拟或数字信号转换成一定格式的图像数据流,同时它可以控制相机的一些参数,比如触发信号,曝光/积分时间,快门速度等。

图像采集卡通常有不同的硬件结构以针对不同类型的相机,同时也有不同的总线形式,比如PCI、PCI64、Compact PCI,PC104,ISA等。

⑤PC平台——电脑是一个PC式视觉系统的核心,在这里完成图像数据的处理和绝大部分的控制逻辑,对于检测类型的应用,通常都需要较高频率的CPU,这样可以减少处理的时间。

同时,为了减少工业现场电磁、振动、灰尘、温度等的干扰,必须选择工业级的电脑。

⑥视觉处理软件——机器视觉软件用来完成输入的图像数据的处理,然后通过一定的运算得出结果,这个输出的结果可能是PASS/FAIL信号、坐标位置、字符串等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器视觉检测系统
1机器视觉检测的一般模式
机器视觉检测的对象千差万别,检测的目的也不尽相同。

农产品如柑橘、玉米等通常是检测其成熟度,大小,形态等,工业产品如工业零件,印刷电路板通常是检测其几何尺寸,表面缺陷等。

不同的应用场合,就需要采用不同的检测设备和检测方法。

如有的检测对精度要求高,就需要选择高分辨率的影像采集装置;有的检测需要产品的彩色信息,就需要采用彩色的影像采集装置。

正是由于不同检测环境的特殊性,目前世界上还没有一个适用于所有产品的通用机器视觉检测系统。

虽然各个检测系统采用的检测设备和检测方法差异很大,但其检测的一般模式却是相同的。

机器视觉检测的一般模式是首先通过光学成像和图像采集装置获得产品的数字化图像,再用计算机进行图像处理得到相关检测信息,形成对被测产品的判断决策,最后将该决策信息发送到分拣装置,完成被测产品的分拣。

机器视觉检测的一般模式如图1所示:
图1 机器视觉检测的一般模式
1.1图像获取
图像获取是机器视觉检测的第一步,它影响到系统应用的稳定性和可靠性。

图像的获取实际上就是将被测物体的可视化图像和内在特征转换成能被计算机处理的图像数据。

机器视觉检测系统一般利用光源,光学镜头,相机,图像采集卡等设备获取被测物体的数字化图像。

1.2视觉检测
视觉检测通过图像处理的方法从产品图像中提取需要的信息,做出决策并发送相应消息到分拣机构。

通常这部分功能由机器视觉软件来完成。

优秀的机器视觉软件可对图像中的目标特征进行快速准确地检测,并最大限度地减少对硬件系统的依赖性,而算法设计不够成熟的机器视觉软件则存在检测速度慢,误判率高,对硬件依赖性强等特点。

在机器视觉检测系统中视觉信息的处理主要依赖于图像处理方法,它包括图像增强,数据编码和传输,平滑,边缘锐化,分割,特征提取,目标识别与理解等内容。

1.3分拣
对于一个检测系统而言,最终是要实现次品(含不同种类的次品)与合格品的分离即分拣,这部分功能由分拣机构来完成。

分拣是机器视觉检测的最后一个也是最为关键的一个环节"对于不同的应用场合,分拣机构可以是机电系统!液压系统!气动系统中的某一种。

但无论是哪一种,除了其加工制造和装配精度要严格保证以外,其动态特性,特别是快速性和稳定性也十分重要,必须在设计时予以足够的重视。

2机器视觉检测系统的构成
一个典型的机器视觉检测系统主要包括光源、光学镜头、数字相机、图像采集卡、图像处理模块、分拣机构等部份。

其构成如图2所示。

图2 典型的机器视觉检测系统
3光源
在机器视觉应用系统中,合适的光源与照明方案往往是整个系统成败的关键,起着非常重要的作用,它并不是简单的照亮物体而已。

光源与照明方案的配合应尽可能地突出物体特征量,在物体需要检测的部分与那些不重要部分之间应尽可能地产生明显的区别,增加对比度;同时还应保证足够的整体亮度,物体位置的变化不应该影响成像的质量。

光源的选择必须符合所需的几何形状、照明亮度、均匀度、发光的光谱特性等,同时还要考虑光源的发光效率和使用寿命。

在机器视觉应用系统中一般使用透射光和反射光。

对于反射光情况应充分考虑光源和光学镜头的相对位置、物体表面的纹理,物体的几何形状、背景等要素。

3.1光源的分类及其特性
光源可分为自然光源和人造光源两类。

自然光源使用不方便且其发光特性不容易控制,一般不适合用作图像采集系统的照明光源。

机器视觉一般使用人造光源,常用的有:卤素灯(作为定向光源)、荧光灯(作为低成本的漫射光源)、LED灯、氛灯和电致发光管。

在外部条件不断变化(外部光噪声,目标的倾斜,材质和系统类型的变化)的情况下,持续获得对比鲜明的图像。

而LED光源则是满足这个条件的理想光源,这是因为LED光源具有以下的一些优点:1、形状自由;2、使用寿命长;3、响应时间短;4、颜色自由;5、综合成本低。

3.2光源的照射方式
光源的照射方式有前光照、背光照、分光反照三种方式。

4、光学镜头
相机的镜头相当于人眼的晶状体。

如果没有晶状体,人眼看不到任何物体;如果没有镜头,相机就无法输出图像。

在机器视觉系统中,镜头的主要作用是将成像目标聚焦在图像传感器的光敏面上。

镜头的质量直接影响到机器视觉系统的整体性能,合理选择并安装镜头,是机器视觉系统设计的重要环节。

一般情况下,机器视觉系统中的镜头可进行如下分类:
按焦距分类:广角镜头、标准镜头、长焦镜头等;
按调焦方式分类:手动调焦、自动调焦等;
按光圈分类:手动光圈、自动光圈。

4.1镜头的基本结构
机器视觉系统中采用的镜头一般由一组透镜和光阑组成。

4.2镜头的接口
在机器视觉中,光学镜头常用的接口为C型和CS型。

C型和CS型接口均是国际标准接口。

其旋合长度、制造精度、靠面尺寸及后截距(即安装基准面至像面的空气光程)公差均应符合相关要求。

4.3镜头的性能指标
镜头主要有以下几个性能指标:1、焦距2、分辨率3、视场角4、光谱特性
5、数字相机
目前数字相机所采用的传感器主要有两大类:CCD和CMOS"其中CMOS传感器由于存在成像质量差、像敏单元尺寸小、填充率低、反应速度慢等缺点,应用范围较窄。

目前在机器视觉检测系统中,CCD相机因其具有体积小巧、性能可靠、清晰度高等优点得到了广泛使用。

5.1、CCD相机的基本组成
典型的CCD相机主要由CCD、驱动电路、信号处理电路、电子接口电路、光学机械接口等构成。

5.2、CCD相机的相关特性参数
CCD相机的相关特性参数主要有以下几个:
1、最低照度
CCD相机的最低照度与所使用镜头的最大相对孔径有关,在提供相机最低照度的同时,应注明测试时所使用镜头的相对孔径。

2、固定图像噪声
当不采用曝光控制时,转移栅结构的非一致性将导致栅极点位的微小变化。

同时,栅极限制电阻也使栅极电位产生了微小变化,从而使光电二极管在每一积分周期的开始产生微小的电位差。

因为栅极结构的特性是固定的,因此这些微小的电位差称为/固定图像噪声,当采用曝光控制时,光电二极管的初始电位由复位管的基极决定。

如果基极电位较先前的电位有所提高,则将会引入一定量的电荷。

即使在零照度条件下,这些电荷也会通过转移栅传输于CCD寄存器。

这并不是主要问题,因为可以很容易地从输出信号中去除直流信号。

但是,转移栅的非一致性将会产生直流偏置,且这一偏置在像素与像素间并不相同,从而使固定图像噪声提高了。

固定图像噪声可通过非均匀性校正电路或采用软件方法进行校正。

3、分辨率
分辨率是CCD相机的最为重要的性能参数之一,主要用于衡量相机对物像中明暗细节的分辨能力。

5.3CCD相机的分类
按照不同的分类标准,CCD相机有着多种分类方式。

按成像色彩划分,可分为彩色相机和黑白相机。

按扫描制式划分,可分为线扫描和面扫描两种方式。

其中,面扫描CCD相机又可分为隔行扫描和逐行扫描。

按分辨率划分,像素数在38万以下的为普通型,像素数在38万以上的为高分辨率型;
按CCD光敏面尺寸大小划分,可分为1/4、1/3、12/、1英寸相机。

2.6图像采集卡
图像采集卡是机器视觉系统的重要组成部分,其主要功能是对相机所输出的视频数据进行实时的采集,并提供与PC的高速接口。

与用于多媒体领域的图像采集卡不同,适用于机器视觉系统的图像采集卡需实时完成高速、大数据量的图像数据处理,因而具有完全不同的结构。

在机器视觉系统中,图像采集卡必须与相机协调工作,才能完成特定的图像采集任务。

除完成常规的AD/转换任务以外,应用于机器视觉系统的图像采集卡还应具备以下功能:
接收来自数字相机的高速数据流,并通过PC总线高速传输至机器视觉系统的存储器;
为了提高数据率,许多相机具有多个输出通道,使几个像素可并行输出,此时需要图像采集卡对多通道输出的信号进行重新构造,恢复原始图像;。

相关文档
最新文档