岩石与矿物学研究方法

合集下载

《矿物岩石学》课程笔记

《矿物岩石学》课程笔记

《矿物岩石学》课程笔记第一章:绪论第一节概念一、矿物岩石学的定义矿物岩石学是地球科学的一个重要分支,它涉及对地球物质的研究,特别是对构成地壳的矿物和岩石的组成、结构、性质、成因以及它们在地质历史中的演化过程的研究。

二、矿物的基本概念1. 矿物的定义:矿物是自然界中具有一定化学成分和晶体结构的均匀固体。

2. 矿物的特征:包括颜色、硬度、光泽、解理、比重等。

三、岩石的基本概念1. 岩石的定义:岩石是由一种或多种矿物组成的自然集合体。

2. 岩石的分类:根据成因,岩石可分为三大类——岩浆岩、沉积岩和变质岩。

第二节矿物岩石学的研究方法一、宏观研究方法1. 地质调查:通过野外实地考察,收集岩石和矿物的露头信息,进行地质填图和剖面测量。

2. 遥感技术:利用卫星或航空摄影获取地球表面的图像,分析岩石和矿物的分布特征。

3. 地球物理勘探:通过重力、磁法、电法等方法探测地下岩石和矿物的分布情况。

二、微观研究方法1. 显微镜观察:使用光学显微镜和电子显微镜观察矿物的形态、结构等特征。

2. X射线衍射分析:通过X射线衍射技术确定矿物的晶体结构。

3. 化学分析:采用原子吸收光谱、电感耦合等离子体质谱等方法分析矿物的化学成分。

4. 同位素分析:利用质谱仪等设备测定矿物的同位素组成,以研究矿物的来源和形成时代。

第三节矿物岩石学的发展简史一、古代矿物岩石学1. 古希腊和古罗马时期:人们对矿物和岩石有了初步的认识,如泰勒斯的水成论和普林尼的《自然史》。

2. 我国古代:古籍如《山海经》和《本草纲目》记载了丰富的矿物岩石知识。

二、近代矿物岩石学1. 17世纪:显微镜的发明使矿物学进入微观领域,矿物学家开始研究矿物的内部结构。

2. 18世纪:矿物分类学得到发展,如德国矿物学家亚伯拉罕·维尔纳提出的矿物分类体系。

3. 19世纪:地质学三大理论的建立,为矿物岩石学的发展提供了理论基础。

三、现代矿物岩石学1. 20世纪:矿物岩石学各分支学科的形成,如矿物物理学、岩石学、地球化学等。

岩石矿物鉴定方法综述

岩石矿物鉴定方法综述

岩石矿物鉴定方法综述岩石矿物鉴定是地质学、矿物学和材料科学研究的基础,也是地球科学的重要组成部分。

它是通过使用物理、化学、光学等方法对岩石矿物进行观察、实验和分析,根据其特征从而确认其类型和组成的过程。

本文将综述常见的岩石矿物鉴定方法,包括宏观鉴定方法、显微鉴定方法、化学鉴定方法、光学鉴定方法等。

一、宏观鉴定方法宏观鉴定方法是通过肉眼观察和手感辨别来鉴定岩石的外部特征、颜色、粘性、硬度、结构和断裂形态等特征,从而初步推断其类型和成因。

宏观鉴定的基本工具包括放大镜、锤子、拉索、刀子、手镐、万能钳等。

常用的宏观鉴定法包括:1、手观法:通过用手感受岩石的质地、硬度、形态、结构、颜色等特征,初步分辨出何种岩石类型。

2、锤观法:利用锤锤打石头的声音和打击石头后散发的碎屑,鉴别岩石的松散程度、结构和组成。

3、拉索法:利用木棍和绳子卡住岩石,拉动判断其天然裂缝和断裂面,进一步确认其构造和形成情况。

显微鉴定法是通过显微镜观察和分析岩石矿物的形态、成分、晶体结构、光学性质等特征进行岩石矿物鉴定。

常用的显微鉴定法包括:1、透镜显微镜法:在透过光线的条件下,通过调整透镜的位置和角度,观察矿物晶体的形态、成分、光学性质等,进行矿物鉴定。

2、偏光显微镜法:通过偏振片的作用,将光线分为快慢两种方向,进而观察和分析晶体的双折射性、消光性、吸收性等,进行矿物的鉴定。

3、电子显微镜法:利用电子束来观察和分析材料的形态、成分、结构等特征,是一种高分辨率的显微观察方法,可精准鉴定复杂形态且微小的矿物。

化学鉴定法是通过应用化学试剂对不同矿物进行化学反应,进而可推断矿物成分组成和反应类型的鉴定方法。

常见的化学鉴定法包括:1、硬度试验:通过利用硬度较低的矿物来擦拭硬度较高的矿物,从而推断硬度的差异和矿物的成份。

2、盐酸试验:通过加入盐酸对矿物进行酸碱反应和溶解,从而初步推测其成分组成。

3、荧光试验:通过加入荧光试剂,观察矿物发出的荧光颜色和强度,可初步推断矿物的成份和种类。

地质学的基本原理与研究方法

地质学的基本原理与研究方法

地质学的基本原理与研究方法【地质学的基本原理与研究方法】地质学是研究地球物质、地球内部构造、地质过程和地球演化历史的学科。

它的基本原理和研究方法为我们深入了解地球提供了重要的框架和工具。

本文将介绍地质学的基本原理和研究方法,帮助读者加深对地质学的理解。

一、地质学的基本原理1. 悠久的地质历史:地球已经存在数十亿年,地质学的基本原理之一就是认识到地球历史的悠久性。

通过探索地球科学家可以了解地球形成、演化和变化的过程,从而更好地理解自然界。

2. 岩石与矿物学:地质学研究的核心是岩石和矿物。

岩石是地壳的主要组成部分,矿物是岩石的化学元素组成。

通过研究岩石和矿物的形成过程,我们可以了解地球的物质构成、地质过程以及地球的变化。

3. 地质时间尺度:地质学通过研究地质时间尺度,可以划分地质历史的不同阶段。

地质时间尺度从大到小可以分为宏观地质时间尺度、介观地质时间尺度和微观地质时间尺度。

通过这些时间尺度的细分,我们可以更好地了解和研究地球历史。

二、地质学的研究方法1. 实地考察和野外研究:地质学的研究方法之一是实地考察和野外研究。

这意味着地质学家需要亲自走进田野,观察和记录地质现象、岩石和矿物的分布情况,收集样品并进行实地分析。

通常地质学家需要进行地质地图绘制和勘探工作,这些工作对于深入了解地球是至关重要的。

2. 实验室分析和测试:地质学的研究还涉及到实验室的分析和测试。

地质学家通过对野外采集的样品进行化学分析、物理性质测试以及显微镜观察,以揭示岩石和矿物的详细特征。

这些实验室的分析和测试工作为地质学家提供了重要的数据和信息。

3. 数字地球和模拟方法:随着信息技术的发展,地质学的研究方法也在不断变革。

数字地球和模拟方法成为了地质学研究的新手段。

地质模型可以通过计算机模拟和数值模拟得到,这使得地质学家可以更加准确地研究地球内部结构和地质过程。

4. 多学科交叉研究:地质学涉及到许多其他学科的知识和方法,如物理学、化学、生物学等。

浅谈岩石矿物分析的基本流程

浅谈岩石矿物分析的基本流程

浅谈岩石矿物分析的基本流程岩石矿物分析是地质学和矿物学研究的基础工作之一,也是矿床勘查和资源评价的重要手段。

岩石矿物分析的基本流程包括取样、制片、显微镜观察和化学分析等步骤。

本文将围绕这些步骤展开,详细介绍岩石矿物分析的基本流程及相关技术。

1. 取样取样是岩石矿物分析的第一步,取样的目的是获取代表性的样品,以进行后续的研究和分析。

在取样过程中,需要注意选择合适的位置和方式进行取样,保证样品的代表性和一致性。

同时还需要注意样品的标识和编号,以便于后续的实验和数据整理。

2. 制片制片是岩石矿物分析的重要步骤,主要是将取样的岩石样品进行切片或打薄,以获取透明或半透明的薄片,用于显微镜观察和分析。

制片的过程需要使用专业的设备和工具,例如切片机、研磨机等,并且需要掌握一定的制片技术,以确保制片的质量和薄片的代表性。

3. 显微镜观察显微镜观察是岩石矿物分析的核心步骤,通过显微镜观察可以获得岩石矿物的形态特征、颜色、透明度、晶体结构等信息,从而进行定性和定量的分析。

在显微镜观察中,需要使用各种显微镜和配套的附件,例如偏光显微镜、偏光镜片、偏光光源等,同时需要掌握显微镜的操作技巧和分析方法,以准确地观察和描述岩石矿物的特征。

4. 化学分析化学分析是岩石矿物分析的重要手段,通过化学分析可以确定岩石矿物的化学成分和元素含量,从而进行岩石矿物的定性和定量分析。

常用的化学分析方法包括X射线荧光光谱分析、电子探针分析、化学分析仪分析等,这些方法需要使用专业的设备和仪器,并且需要有一定的化学分析技术和经验以确保分析结果的准确性和可靠性。

5. 数据整理和分析数据整理和分析是岩石矿物分析的最后一步,通过对显微镜观察和化学分析的数据进行整理和分析,可以得到岩石矿物的特征和性质,从而进行岩石矿物的分类和识别。

同时还可以通过数据分析得到岩石矿物的成因和生成条件,为地质学和矿物学的研究提供重要的参考和依据。

岩石矿物分析是地质学和矿物学研究的重要工作之一,通过取样、制片、显微镜观察和化学分析等步骤,可以得到岩石矿物的形态特征、化学成分和性质,为地质学和矿物学的研究提供重要的数据和信息。

岩石学中的岩石矿物组合与岩浆成因分析

岩石学中的岩石矿物组合与岩浆成因分析

岩石学中的岩石矿物组合与岩浆成因分析岩石学是地质学的重要分支之一,它主要研究地球表层岩石的形成、演化和变质过程。

在岩石学中,岩石的矿物组合和岩浆成因分析是关键的研究内容之一。

本文将从岩石的矿物组合和岩浆成因分析两个方面进行探讨。

一、岩石的矿物组合岩石的矿物组合是指岩石中各种矿物的组成和结构特征。

岩石的矿物组合对于确定岩石的性质、成因和演化有着重要的意义。

不同岩石类型的矿物组合也会呈现出不同的特征。

1. 侵入岩的矿物组合侵入岩,即从地壳深部升华到地表的岩浆,具有不同的化学成分和矿物组合。

例如,对于花岗岩来说,其中常见的矿物有石英、长石和云母等。

而对于辉绿岩来说,其中的矿物组合则主要包括透辉石、斜长石等。

2. 火山岩的矿物组合火山岩是由火山喷发的岩浆在地表冷却凝固形成的岩石。

常见的火山岩有玄武岩、安山岩等。

这些火山岩的矿物组合通常包括斜长石、辉石、石英等。

3. 沉积岩的矿物组合沉积岩是由岩屑、有机碎屑或溶解物质在水体中沉积后形成的岩石。

各种沉积环境和成因条件下,沉积岩的矿物组合也会有所不同。

例如,碎屑岩中的矿物主要为石英、长石、云母等;在碳酸盐岩中,主要由方解石、方铅矿等组成。

二、岩浆成因分析岩浆成因分析是岩石学研究中的重要内容,它帮助我们了解岩浆的来源,揭示了岩石形成与演化的过程。

岩浆成因可以通过研究岩浆的矿物组合、岩石的地球化学特征和地壳构造环境等方面来进行。

1. 岩浆的来源岩浆来自地幔和地壳深部,形成的原因通常有下面几种:(1)岩石的部分熔融:一部分岩石在一定的温度和压力条件下,会发生部分熔融,形成岩浆。

(2)岩石的幔源:岩浆可以直接来自于地幔深部的熔融岩石。

(3)板块俯冲:当地壳板块俯冲到地幔深部时,会遇到高温和高压的环境,形成岩浆。

2. 岩浆成因类型根据地球化学特征和岩浆的形成条件,岩浆成因可以分为以下几种类型:(1)岛弧岩浆:形成于俯冲带上的岛弧区域,其特点是富含K、Rb等元素和富大离子亲石元素的花岗岩。

观察岩石的三种方法

观察岩石的三种方法

观察岩石的三种方法
观察岩石的三种方法分别为:
1. 直接观察法:这是最基本的一种方法,即直接用肉眼或放大镜等工具观察岩石的外部特征和内部结构。

可以观察岩石的颜色、纹理、晶体形态、断口等特征,以及是否存在矿物、化石等。

2. 化学试验法:这种方法是通过化学试验来检测岩石中是否含有某些特定的矿物或元素。

例如,用酸来检测碳酸盐类矿物,用火焰试验来检测金属元素等。

3. 物理实验法:这种方法是利用物理性质来研究岩石的性质,包括密度、硬度、磁性、热膨胀系数等。

例如,用锤子敲击岩石来测试岩石的硬度,用磁铁来检测岩石中的磁性等。

需要注意的是,观察岩石时需要遵守安全规范,不要随意捡拾路边的岩石进行观察。

同时,对于未知的岩石,应该先进行初步的观察和分类,然后再进行化学试验和物理实验,以确保实验安全性和有效性。

岩石学与矿物学

岩石学与矿物学

岩石学与矿物学岩石学与矿物学是地球科学中的两个主要分支领域。

它们研究地球上的矿物和岩石,探讨它们的成因、组成、性质和地质意义。

它们是研究地球的物质组成和构造演化的基础,对地质资源勘探、矿产开发和环境保护等方面具有重要价值。

1. 岩石学岩石学是研究岩石原理、分类、变质、岩浆和沉积作用以及其它相关的学科。

它的主要任务是通过发现现有岩石的信息,研究这些信息,分析岩石的组成和结构,以便对地壳的构造演化过程进行探讨。

岩石学的研究对象是岩石,根据岩石的类型不同,岩石学可以分为火成岩学、沉积岩学、变质岩学和岩石学方法等几种分支领域。

火成岩研究岩浆成因的产生和分布规律,帮助研究岩浆侵入并且覆盖下来的地区结构,并探讨岩浆作用对熔岩活动的影响。

沉积岩学是研究岩石是怎样形成的以及包括地质过程、地质条件和探索记录等各个方面的内容,其中包括火山碎屑、风化沉积物,还有各个沉积环境的沉积碎屑物的收集,探讨沉积岩的火山喷发历史。

变质岩学是研究岩石是怎样变成变质岩的以及涉及到的各个变化层次和内在的地质信息,其内容包括变质岩的组成、结构、形态和性质等,分析变质作用对其他岩石类型和构造演化的影响,从而推断地区的孤立性和历史构造动态。

2. 矿物学矿物学是针对地球上的各种矿物种类的研究领域,主要就是进行各个方面的分类、形成、物理性质、结构和化学特性等等的内容研究,对于地球化学以及生命与周围环境的关系都有着很大的帮助。

矿物学是石学的基础,其所研究的对象是矿物,它包括鉴定、描述、分类、形成原理和性质和性质变化等方面的内容。

矿物学的研究的应用领域非常广泛,主要应用在对于地产资源勘探、矿山开采、科学实验、冶炼工业以及矿物质的应用等方面。

此外,矿物学在地质学、材料学和环境科学等领域也有很大的应用价值。

结论岩石学和矿物学在研究地球内部构造和地球表面变化的方面起着重要作用。

两个分支互有协同性质,分别从不同角度研究矿物和岩石,相互制约,共同推动着地球科学的发展。

地质科学中的岩石矿物学

地质科学中的岩石矿物学

地质科学中的岩石矿物学地质科学是一门研究地球及其周边领域的学科,包括地球构造、地球历史、地球化学、地球物理学、地球生物学、地球环境等多个方面。

其中,岩石矿物学作为地质科学的重要分支,研究的是地球上各种岩石和矿物的成因、性质、分布和利用。

岩石矿物学的研究内容非常丰富,包括矿物形态学、成分分析、物理性质、化学性质、结晶学、岩石分类、岩石演化、岩浆、变质、沉积等多个方面。

岩石和矿物是地球的重要组成部分,通过对其进行深入研究,能够深入了解地球的内部结构和演化历史,为人类的资源开发和环境保护提供科学依据。

一、矿物形态学作为矿物学的重要内容之一,矿物形态学主要研究矿物外形、表面特征、颜色、光泽、透明度、硬度等性质。

通过对矿物的形态学特征进行观察和研究,可以初步了解矿物的结晶情况、成因、来源、地质时代等信息。

例如,石英是一种常见的硅酸盐矿物,其晶体通常呈六角柱状或六角板状。

在晶体的六个面上,会形成六个锋利的棱角,通常都十分光滑、亮泽。

通过研究石英的形态学特征,人们可以了解到石英在地壳中的产生条件和时代分布。

二、成分分析矿物的成分分析是矿物学研究的重要内容之一,通过分析矿物的成分组成,可以初步推断其成因和地质环境,为后续的研究提供基础。

矿物的成分分析可以采用多种方式进行,如X射线衍射分析、电子探针分析、质谱分析、原子吸收光谱法等。

例如,磷灰石是一种含磷的矿物,其成分组成主要为磷酸盐和氢氧化钙。

通过对磷灰石成分的分析,人们可以确定其形成的地质条件和地质时代,同时可以掌握其在磷肥制造、冶金、化工等方面的应用情况。

三、物理性质矿物的物理性质包括硬度、比重、磁性、光学性质等多个方面。

这些性质可以通过简单的实验或观察来确定,为矿物的识别和分类提供重要依据。

不同矿物的物理性质具有明显的差异,因此可以通过这些差异来区分并识别矿物。

例如,钠长石和钾长石是两种常见的长石矿物,它们的硬度、比重、颜色等性质不同,在实际工作中可以通过对这些物理性质的观察和测定来区分它们,以便在实际工作中得到正确的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程期末考试结课论文
课程名称:岩石与矿物学研究方法
任课教师:张招崇许虹刘翠
学号:1001111324
姓名:夏锦胜
学时:32 学时
开课院系:地球科学与资源学院
开课时间:10-18 周
黄铁矿矿物标型特征的找矿意义
学号:1001111324
姓名:夏锦胜
摘要:近年来,随着找矿矿物学在地质勘探行业中的应用,矿物标型特征作为
找矿矿物学的一个重要指标,其找矿的指导意义越来越受到人们的重视。

本文以黄铁矿矿物标型特征的找矿意义为例,系统分析并阐述了其在找矿生产实践中的指导意义。

关键词:找矿矿物学黄铁矿矿物标型特征找矿意义
0引言
矿物是找矿信息的载体,近年来,随着新技术、新方法在地质学领域的应用,研究矿物标型特征与矿床成因、矿化之间的关系,对地质找矿具有较大的现实意义。

黄铁矿理论组成(wB%)是:Fe 46.55,S 53.45。

常有Co、Ni类质同像代替Fe,形成FeS2—CoS2和FeS2—NiS2系列。

随Co、Ni代替Fe的含量增加,晶胞增大,硬度降低,颜色变浅。

As、Se、Te可代替S。

常含Sb、Cu、Au、Ag等的细分散混入物。

亦可有微量Ge、In等元素。

Au常以显微金、超显微金赋存于黄铁矿的解理面或晶格中。

黄铁矿在氧化带不稳定,易分解形成氢氧化铁如针铁矿,纤铁矿等,经脱水作用,可形成稳定的褐铁矿,且往往依黄铁矿成假象。

这种作用常在金属矿床氧化带的地表露头部分形成褐铁矿或针铁矿、纤铁矿等覆盖于矿体之上,故称铁帽。

在氧化带酸度较强的条件下,可形成黄钾铁矾,其分布量仅次于褐铁矿。

1理论基础
矿物标型特征属于找矿矿物学研究的范畴。

所谓找矿矿物学是指,在地质——找矿中运用矿物标型学说,应用成因矿物学理论进行找矿实践的新兴学说。

1.2矿物标型性
矿物标型性包括标型特征、标型矿物、标型组合等方面。

标型组合是指在特定形成条件下形成的矿物组合,可以标志一定温度、压力、介质条件等。

在每一种地质作用中,由于具体地质介质条件差异,可以形成其特有的矿物组合。

1.2标型矿物
标型矿物是指在特定形成条件下形成的矿物,可作为一定温度、压力、介质条件的标志。

主要强调矿物的单成因性,如斯石英只产生于陨石冲击坑中,是高压冲击变质成因的标志矿物。

1.3矿物标型特征
矿物标型特征是指在不同地质时期和地质作用条件下,形成在不同地质体中的
同一种矿物,其各种性质所表现出的差异,强调矿物的复成因性,大多数矿物属于贯通性矿物,可形成于多种成因条件,同一种矿物常具有几种成因类型和产状。

由于生成时的物理化学条件的差异,使矿物的许多性质也产生一系列有规律的变化。

1.4矿物标型特征
矿物标型特征包括颜色标型、形态标型、成分标型、结构标型、性质标型等。

1.4.1颜色标型特征
矿物颜色是矿物中直观且易于鉴别的一种性质,提供成因信息的主要原因是矿物中成分的变化以及晶体结构中的缺陷。

1.4.2形态标型特征
形态标型特征包括单体形态标型、微形貌标型、双晶标型、集合体形态标型等 1.4.3化学成分标型
1.4.3.1 主要成分和微量元素标型
①成因图解
②矿物组分温压标志
③变价元素氧化—还原标志
④氧逸度(fo2)
⑤氧化还原电位(eh)值与介质ph值
1.4.3.2稳定同位素标型
1.4.3.3包裹体成分标型
变价元素的氧化—还原标志:
含fe3+、mn4+、cu2+、sn4+、so2- 为氧化条件
含fe2+、v3+、cr3+、mn2+、s2- 为还原条件
氧化系数(fe2o3/ feo或fe3+/ fe2+):
fe3+/ fe2+1弱氧化环境
fe3+/ fe2+ >> 1氧化环境
1.4.4热发光标型
由于矿物中含有多种类质同象杂质和结构缺陷,将导致晶体能级结构中存在多种类型的陷阱能级,在外来能量激发下,可以造成矿物晶体具有发光性。

介质环境对矿物发光性能具有影响,矿物受热升温、遭受辐射,将矿物成分、离子价态及占位发生改变,矿物的热发光具有反映形成条件的标型意义。

1.4.5热电性标型
半导体矿物在一定的温度条件下,可以产生热电效应。

导电类型和热电系数可以表示矿物的电物理性质。

同种矿物的导电类型及热电系数随着介质条件的变化而改变。

矿物的热电效应能够灵敏的反映其形成时的地质条件,从而具有标型意义。

2应用实例
玲珑金矿床是胶东地区最大的石英脉型金矿床之一。

经过近50年的开采,资源量几近枯竭,因此开展深部资源量评价和找矿预测具有重要实际意义。

笔者基于成因矿物学与找矿矿物学理论,采用矿物学和矿物地球化学方法对主要载金矿物黄铁矿的标型特征进行了系统研究,结果表明黄铁矿标型特征具有如下重要找矿意
义1)细粒不规则五角十二面体或复杂聚形黄铁矿晶体含金性高;(2)黄铁矿S/Fe 比值随矿体延深有增高趋势;(3)黄铁矿微量元素总量高是富矿段的找矿标志,其中黄铁矿稀土元素特征显示成矿物质具深源特征;(4)西山矿区55号脉P型黄铁矿出现率多在60%以上、剥蚀度为36.67%~47.73%,指示该矿脉向下仍有良好的找矿前景;(5)东山矿区自上而下黄铁矿微量元素组合(As+Sb+Te)、(Cu+Pb+Zn)和(Co+Ni+Ti+Cr)沿垂向呈旋回震荡变化规律,同时P型黄铁矿平均出现率39.63%,剥蚀度为32.92%~75.40%,指示-770m标高以下仍具较好的找矿潜力;(6)东山大开头矿区47号脉黄铁矿热电性填图结果显示,-670m标高以下,第93至75勘探线之间及第72至63勘探线之间具有良好的找矿前景。

上述黄铁矿标型特征对于玲珑金矿床深部找矿评价具有重要指导意义。

近年来,在研究矿物的矿物学标型特征与矿床成因、矿化之间关系时,已有不少成果,以黄铁矿矿物特征的找矿意义为例,可归纳如下:
2.1 运用黄铁矿晶形特征,预测金矿化富集部位的矿物学信息
立方体黄铁矿(ⅱ{210}),往往是贫矿硫化物石英建造(м.в.波皮夫尼亚克,1976)。

在含金石英脉中,金往往集中在晚期五角十二面体晶形的黄铁矿和小粒径的脉状黄铁矿中(н.г.格拉日丹采夫,1973),如泰岭五角十二面体自形晶黄铁矿含金高达461.58g/t;陕西二台子金矿细粒五角十二面体自形晶黄铁矿含金高达70.2—149.3g/t;黑龙江团结沟金矿粉末状—脉状黄铁矿含金高达248.57g/t。

前苏联н.з.叶夫济科娃(1984)在研究远东金矿(火山岩型)金矿时,在含金脉范围内总结了如下规律:近矿交代岩(青盘岩)及其上部矿脉以平滑的粗晶黄铁矿为主。

石英脉附近,立方体黄铁矿晶面平滑度降低,代之以粗大的晶面条纹,出现五角十二面体晶面,石英脉本身,上部以八面体黄铁矿为主,中部以二十面体(八面体和五角十二面体同等发育的聚晶)黄铁矿为主,下部以五角十二面体黄铁矿为主。

黄铁矿晶体大小与含金量有关,浙江八宝山金矿细粒黄铁矿含金量723g/t,中粒36 g/t,粗粒几乎不含金。

2.2 运用黄铁矿物理特性找金信息
颜色:浅黄色、黄白色黄铁矿,一般不含或含金量很低;深黄绿色、深铜黄色黄铁矿往往与金矿(化)有关,本身含金也高。

硬度:含金黄铁矿硬度偏低,一般为430—1070kg/mm2,纯黄铁矿为192—1295kg/mm2。

比重:含金黄铁矿比重偏低,通常为4.59—4.85,纯黄铁矿为4.95—5.20。

晶格缺陷:单位晶胞较长a0= 5.4171-5.4220a0;纯黄铁矿为5.4170 a0,a0 越大进入黄铁矿中的金越多。

导电类型:与矿化有关的蚀变带(青盘岩化和细晶岩带)或矿化带上部的黄铁矿为空穴导电型(热电动势+270—+400mv/度),矿体中部为混合型,矿体下部为电子型(в.и克拉斯尼科夫,1973)。

2.3 运用黄铁矿微量元素指导找矿评价的信息
中亚西亚金矿:矿体外带(青盘岩化带)中的黄铁矿含cu、bi、co、ni最高;近矿交代岩中的黄铁矿中这些元素的含量急剧下降。

与金矿化不密切的高温黄铁矿含mn、sn、bi、as、co;与金矿化密切的低温黄铁矿(立方体、五角十二面体)中。

2.4 运用黄铁矿矿物晕判别矿化富集部位的信息
矿区阿尔泰塔洛夫多金属黄铁矿矿床:矿床容矿岩层中的黄铁矿矿化异常,宽200—500米。

1976年,l.a.洛里亚诺娃、b.m.切卡林,在矿区进行矿物填图,总结出如下规律:从多金属矿体向上,呈多金属矿体—黄铁矿矿体—强黄铁矿矿化带—中等黄铁矿矿化带—弱黄铁矿矿化带。

分散的多金属矿化,上下盘黄铁矿矿化范围窄,没有上述分带。

3 结论
随着新技术、新方法在地质勘查领域的应用,矿物标型特征在找矿工作中的应用会越来越广泛和普遍,发挥其重要作用。

但在运用上述成果时,要注意的问题是:这些特点往往与特定的地质成矿环境有关,是否能作为一种普遍可用的规律,要在实践中检验。

同时,要结合地质条件、矿床类型及其他地质信息来综合分析。

参考文献
[1] 找矿矿物学与矿床学填图,地质矿产部情报研究所,福建科学技术出版社,1987年;75-81;
[2] 陈光远,孙岱生,殷辉安,成因矿物学与找矿矿物学,重庆出版社,1987;650-815;
[3] 洪文兴,找矿矿物学,地质矿产部情报研究所,地球科学进展报,1992;86-88;。

相关文档
最新文档