高性能纤维增强水泥基复合材料的研究
植物纤维增强水泥基复合材料研究综述

l18】
、
椰
壳
纤
维
l】91、甘
蔗
渣
纤
维[201、龙
舌
兰
纤
维l 2ll、玉
米秸
秆
纤
维
等 ;④竹筋 24]。研究工作主要 围绕三个方面进行 。
1植物 纤维 增 强水泥 基复 合材料 力 学性 能
人 们 在 植 物 纤 维 增 强 水 泥 基 材 料 力 学 性 能 方 面 的 研 究
较为全面深入 ,其 中以下研究 具有一定代表 胜:
关键 词 植 物 纤 维 ;水 泥基 复 合 材 料 ;界 面特 性 ;耐久 性 ;纤 维 改性
0引言 纤 维 增 强 水 泥 基 复 合 材 料 (Fiber-Reinforced Cement
Matrix Composites,FRCMC)是 以水泥净浆 、水 泥砂 浆或混凝土 做基材 ,以非连续的短纤维或连续 的长纤维作增强体组合成 的复合材料 。当所用水泥基材为水泥净浆或水泥砂浆 时 ,称 之 为纤 维增强水 泥 ;当采用混凝 土为基材时 ,称之 为纤维增 强 混 凝 土 【l_。
纤维对水泥基材料 的开裂有很好的控制作用 。大约 3500 年 以前 ,国外就有 用纤维来加 强脆性基质 的案例 ,例如利用 稻 草和马鬃 与黏土混合起来制作砖 和地板12]。我 国古代建筑 也 有把植 物纤维加入粘土的做 法_lJ。纤维加 固的概念在 现代 有 了进 一步发展 ,1900年奥匈帝 国 的 Hatschek发 明用 圆网 抄取机 制造石棉水泥板的工艺方法_】1。
的断裂和冲击性能 ,通过双参数断裂模 型对试验结果进行表
述 ,其抗压 、抗 弯和劈裂拉伸强度均满足相关 的欧洲标准 。
纤维增强水泥基复合材料的研究进展

第36卷第10期 娃 酸盐 通 报Vol.36 No.10 2017 年 10 月________________BULLETIN OF THE CHINESE CERAMIC SOCIETY_________________October,2017纤维增强水泥基复合材料的研究进展关国英\赵文杰2(1.吉林建筑大学材料科学与工程学院,长春13〇118;2.长春工业大学化学工程学院,长春130012)摘要:综述了纤维增强水泥基复合材料(f i b e r r e i n f o r c e d cem e n t i t i o u s composites,FRCC)目前在国内外的研究进展。
简要介绍了F R C C的概念及其基本性能,详细介绍了超高性能F R C C的国内外研究进展,重点介绍了 F R C C的纤维 间距、复合材料以及多重裂缝等理论的研究情况以及F R C C工程应用情况,在此基础上,提出了当前F R C C研究中 存在的问题和今后需要进一步研究的方向。
关键词:纤维;增强;水泥基;复合材料;机理中图分类号:TU529.41 文献标识码:A 文章编号:1001-1625 (2017)10-3342-05 Research Development of Fiber Reinforced Cementitious MaterialsGUAN Guo-ying1,ZHA0 Wen-jie2(1. School of Materials Science and Engineering, Jilin Jianzhu University,Changchun 130118 ,China;2. Institute of Chemical Engineering,Changchun University of Technology,Changchun 130012,China)Abstract:The current research progress of the fiber reinforced cementitious composites(FRCC)at home and abroad is summarized.The concept and the related properties of FRCC are introduced briefly.The research progress of ultra-high performance of FRCC are especially introduced domestic and overseas.The engineering application of FRCC and the current theoretical research of the theory of composite,fiber spacing theory and multiple fracture theory are recommended emphatically.On the basis of,the existing problems of researching FRCC are putted forward in the current and to come up with the direction for further study of FRCC in the future.Key words :fiber;reinforced;cementitious;composite material;mechanism1引言在现代的建筑行业中,水泥基材料是一种应用范围广、用量大的建筑材料,它具有来源广泛、价格便宜、强度可控、及外形可塑等优点,但也存在抗裂性差、脆性大、抗拉强度低、极限延伸率小等不足之处。
ECC研究进展与应用:综述

ECC研究进展与应用:综述摘要:ecc是engineered cementitious composites的简称,是一种具有超强韧性的乱向分布短纤维增强水泥基复合材料。
ecc不同于普通的纤维增强混凝(frc),它是一种经细观力学设计的先进材料,具有应变一硬化特性,在纤维体积掺量小于2%的情况下,其极限拉应变通常在3%—7%的范围内。
经过大量的试验与研究表明,ecc材料具有很多优良的性能,能够适用于土建工程中的很多领域。
关键字:ecc;韧性;应用一、引言近年来,我国国民经济得到了长足的发展,同时对公路事业的发展也提出了更高的要求,带动了高等级公路在我国的蓬勃发展。
水泥混凝土路面因具有强度高,稳定性好,持久耐用和养护费用低等优点而被广泛使用。
但是,水泥基材料在工程中还出现了诸多的问题,主要有两个方面:(1)极限荷载条件下的脆性破坏,如剥落、破碎等,均与混凝土低韧性密切相关;(2)正常工作状态下的破坏,如混凝土裂纹扩展导致有害离子引入,引发混凝土及钢筋的破坏。
因此,要发展绿色高性能甚至超高性能混凝土就要求混凝土既要有足够的强度,又要有良好的延性,以及必要的耐久性。
二、ecc发展概况新型的超强韧性纤维混凝土ecc( engineered cementitious composites)是以水泥、砂、水、矿物掺合料和化学外加剂构成基体,用纤维体积掺量低于 3% 高强高弹模短纤维做增韧材料,硬化后具有应变–硬化和多重稳定开裂特征的新型高性能纤维增韧水泥基复合材料。
该水泥基复合材料是基于微观物理力学原理优化设计的具有应变硬化特性和多缝开裂特征的一种新型工程用水泥基复合材料.这种复合材料是在二十世纪九十年代由美国密歇根大学的li.v.c提出来的。
试验研究已经证实它的应变能力可达几个百分点,最高可达6%,耗能能力是常规纤维混凝土的几倍,抗压强度在高强混凝土范围之内,是一种具有很大应变-硬化性能的复合材料。
目前美国与日本等国家已经对强韧性纤维混凝土ecc进行了大量的理论与试验研究工作,并已经在实际工程中得到了广泛的推广和应用。
纤维增强复合材料的制备与性能研究

纤维增强复合材料的制备与性能研究一、引言纤维增强复合材料是一种在结构和性能方面都具有优异特点的材料,因此在航空、航天、汽车、船舶和医疗领域等得到广泛应用。
本文将详细介绍纤维增强复合材料的制备和性能研究。
二、纤维增强复合材料的制备1.纤维的选择纤维是制备纤维增强复合材料的重要组成部分,其性能直接影响材料的性能。
常用的纤维有玻璃纤维、碳纤维和芳纶纤维等。
玻璃纤维具有低成本、良好的耐磨性和耐腐蚀性等优点,适合制备一些低强度要求的复合材料。
碳纤维具有良好的强度、刚度、疲劳寿命和高温稳定性,适合制备高强度、高刚度要求的复合材料。
芳纶纤维具有较高的强度和模量、优异的耐热性和耐化学品性,适合制备高性能的复合材料。
2.基体的选择基体是纤维增强复合材料的另一重要组成部分,其作用是固定和支撑纤维。
通常选择热固性树脂(如环氧树脂、酚醛树脂)作为基体。
这类树脂具有优异的粘接性能和化学稳定性,对纤维的保护效果良好。
同时,可以通过调整树脂的成分和添加剂来改变复合材料的性能。
3.制备方法(1)手工层叠法手工层叠法是制备纤维增强复合材料最基本也最常用的方法之一。
它的主要步骤是将预制好的纤维放置在模具中,再涂上树脂,反复重复这个过程,直到达到所需厚度。
(2)预浸法预浸法是将纤维预先浸渍在树脂中,经过初步固化后再放入模具中进行二次加固。
这种方法可以提高纤维与基体之间的结合强度。
(3)重叠法重叠法是将多层预制好的带有树脂涂层的纤维片重叠在一起,压缩成所需形状,然后进行固化。
(4)自动化生产方法随着科技的发展,自动化生产方法也越来越流行。
其中最常见的方法是采用自动化织机进行生产,该方法具有速度快、质量稳定等优点。
三、纤维增强复合材料的性能研究1.力学性能纤维增强复合材料的强度、刚度和疲劳寿命等力学性能是其最重要的性能之一。
通过实验测试方法可以获得这些性能参数,一般采用拉伸试验、弯曲试验和剪切试验等方法测量不同方向的应力应变曲线,进而计算出复合材料的力学性能参数。
工程纤维增强水泥基复合材料(ECC)耐久性能研究进展及应用

高其 韧性 , 从而 有 效 地抑 制 裂 缝 的形 成 和 发展 。工 程 纤 维增 强水 泥基 复合材 料 ( E C C) 具有 较 高 的延 性
2 E C C耐 久 性 能试 验研 究
2 . 1 抗 收缩 性能试 验
和裂缝 控制 能力 , 大 大 改 善 了水 泥基 材 料 的抗 裂性 能¨ , 是有 望解 决工 程结 构 耐 久 性 问题 的一 种 新 型
Re s e a r c h & Ap pl i c a t i o n o f Bui l d i ng Ma t e r i a l s
性 和 良好 的裂 缝控 制 能 力 ¨ 3 J , 它 的韧性 与铝 合 金 非
・
8・
裂 作用 , 使 得 试 件 内部 应 力 能 稳 定 地 传 递 并 扩 散 。 另 一方 面 , 纤维 可 以挤压 甚 至阻塞 砂浆 内的毛 细管 , 使 砂浆 表 面失水 面 积减 少 , 水 分迁 移 困难 , 降低 毛 细
公司, 山西 太原
摘
4 5 4 0 0 3 ; 2 . 中化 二建 集 团有 限
0 3 0 0 2 1 )
要: 普通钢筋混凝 土结构存 在着严 重 的耐久性 问题 , 工
常相似 ] 。图 1 为P V A纤 维体 积掺 量 为 2 %的 E C C 在 单轴 拉伸 荷载 作用 下 的典型 应力 一应 变 曲线 。
ECC高性能纤维增强水泥基材料及其应用

ECC高性能纤维增强水泥基材料及其应用ECC 高性能纤维增强水泥基材料及其应用陈文永陈小兵丁一(中国京冶工程技术有限公司 ,北京 100088)摘要 : ECC 是 Engineered Cementitio us Co mpo site s 的简称 ,是一种具有超强韧性的乱向分布短纤维增强水泥基复合材料。
ECC 是一种经细观力学设计的先迕材料,具有应变 2 硬化特性 ,在纤维体积掺量为 2 %左右的情冴下,其极限拉应变通常能达到3 %以上。
ECC 具有的优良特性使其能广泛应用于土木工程的众多领域。
关键词 : ECC ; PV A ;应变 2 硬化 ;应用THE APPL ICATIO N OF ENGINEERED CEM ENTITIO US COMPOSITESChen Wenyo ng Chen Xiao bing Ding Yi( )Chi na J ingye Engi neering Co rpo ratio n L imit ed ,Beiji ng 100088 , China( ) Abstract :In t hi s p ap er , ECC engineered cementitio us co mpo site si s o ne of t he fi ber reinfo rced cementitio us co mpo site s , w hich sho w s p seudo st rai n ha r dening behavio r wit h several p ercent tensile st rain. When t he ECC co ntains a bo ut 2 % of PV A fi ber s , t he ultimate tensile st rain of ECC i s mo re t ha n 3 % , w hich i s 300 ti mes greater t ha n t hat of co ncrete . So , the ECC ha s been wildl y applied to a lot of fields in civil engineering.Key words :ECC ; PV A ; st rain2ha r dening ; applicatio n纨 90 年代早期率先开展了对 ECC 返种具有超高韧 0 前言性的水泥基复合材料的研究。
植物纤维增强水泥基复合材料面临的问题及相关改性研究现状

第43卷第2期2024年2月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.2February,2024植物纤维增强水泥基复合材料面临的问题及相关改性研究现状姜德民,徐浩东,康红龙,胡思宇(北方工业大学土木工程学院,北京㊀100144)摘要:作为一种新型绿色环保建筑材料,植物纤维增强水泥基复合材料受到了广大科研人员的青睐,但目前仍面临着众多问题㊂本文归纳总结了在植物纤维增强水泥基复合材料研究中的三大主要问题 植物纤维的高吸水率㊁植物纤维在水泥基复合材料中的劣化以及植物纤维对水泥基复合材料的阻凝作用,分析了造成这些问题的主要原因,列举了常见的改性方法并深入阐述了相应的改性机理及研究现状,最后展望了植物纤维增强水泥基复合材料的研究前景,以期为今后植物纤维资源化利用提供参考㊂关键词:水泥基复合材料;耐久性;植物纤维改性;力学性能;资源化中图分类号:TU528.572㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)02-0387-10Problems Faced by Plant Fiber Reinforced Cement-Based Composites and Research Status of Its Related ModificationJIANG Demin ,XU Haodong ,KANG Honglong ,HU Siyu(Faculty of Civil Engineering,North China University of Technology,Beijing 100144,China)Abstract :As a new type of green environmental protection building materials,plant fiber reinforced cement-based composites have been favored by many researchers,but there are still many problems.Three main problems in the study of plant fiber reinforced cement-based composites were summarized,namely,the high water absorption of plant fiber,the deterioration of plant fiber and the anticoagulation effect of plant fiber in cement-based composites.The main causes of these problems were analyzed.The common modification methods were listed and the corresponding modification mechanism and research status were described in detail.In the end,the research prospect of plant fiber reinforced cement-based composites was prospected,which provides reference for the resource utilization of plant fiber in the future.Key words :cement-based composite;durability;plant fiber modification;mechanical property;resource收稿日期:2023-09-21;修订日期:2023-11-20基金项目:北京市自然科学基金(2172021)作者简介:姜德民(1968 ),男,博士,教授㊂主要从事植物纤维保温混凝土的研究㊂E-mail:jdm2004@通信作者:徐浩东,硕士研究生㊂E-mail:1596186323@ 0㊀引㊀言水泥基材料是建筑行业的支柱型原材料,发展至今已经有200多年的历史,如今水泥行业的飞速发展造成的环境问题不容小觑㊂据统计[1],水泥生产㊁火力发电和冶金制造是我国三大大气污染主要来源,其中水泥生产所带来的污染占比最大,每生产1t 水泥将排放0.95t CO 2,整个水泥行业所排放的CO 2占全球总排放量的5%~8%[2]㊂因此,在建筑行业,环境友好的新型建材的研发越来越受到重视㊂纤维水泥制品是水泥制品行业的重要组成部分,纤维的加入能够提高水泥基材料的韧性㊁抗裂性以及耐久性等性能[3],纤维可分为天然纤维(棉纤维㊁麻纤维㊁毛纤维)和人造纤维(聚酯纤维㊁尼龙㊁钢纤维)[4]㊂植物纤维属于天然纤维,作为一种宝贵的可再生资源,植物纤维的应用前景广阔且潜力十足㊂有些植物纤维的抗拉强度要高于人造纤维(如聚丙烯纤维),毛竹纤维㊁洋麻纤维的单根抗拉强度甚至可达上千兆帕[5]㊂此388㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷外,在混凝土中添加植物纤维能在一定程度上抑制材料微裂缝的产生,使材料的抗渗㊁抗冻融性能增强,韧性得到提高[6]㊂近年来,不少科研人员都投入到植物纤维增强水泥基复合材料(plant fiber reinforced cement-based composite,PFRCC)的研究中㊂PFRCC 的研究意义在于:1)植物纤维复合材料有着一定的可降解性[7],将其应用在建筑材料上能够减轻建筑垃圾的回收处理负担;2)植物纤维有着优秀的抗拉性能,同时还是一种绿色可再生资源,其生产过程不会产生污染;3)在PFRCC 中加入植物纤维能够取代部分水泥,通过减少水泥的使用来减轻环境负担㊂但是从植物纤维的化学组成上来看,它并不适合直接添加到水泥基材料中㊂一方面,植物纤维中存在着大量羟基,与水泥进行拌和时,植物纤维会大量吸收自由水导致水灰比降低[8],影响材料的强度,甚至会导致混凝土内部缺陷增多[9]㊂另一方面,植物纤维会在碱性环境下发生降解行为,这大大损伤了植物纤维的物理机械性能[10]㊂另外,植物纤维中存在的半纤维素和木质素会在水溶液或碱性溶液中析出并发生水解,水解产物会阻碍水泥水化[11]㊂因此,如何更好地发挥植物纤维自身优势,提高植物纤维与水泥基材料的相容性,以及提高PFRCC 拌合物的和易性和硬化后的耐久性是推进植物纤维资源化利用的首要任务[12]㊂目前,大量研究[13-15]表明,对植物纤维进行改性处理可以有效提高PFRCC 的性能㊂常用的改性方法有碱处理㊁乙酰化处理㊁硅烷偶联剂处理㊁沸煮处理等方法,这些方法都是以提高植物纤维与水泥基材料之间的相容性㊁增强植物纤维抗碱性侵蚀能力等为目标㊂本文将从植物纤维基本的物理化学特性出发,详细阐述植物纤维在水泥基材料中的劣化机理以及针对植物纤维的不同改性方法,为今后植物纤维资源化利用提供参考㊂1㊀植物纤维的构造以及化学组成1.1㊀植物纤维的构造图1㊀植物纤维基本纤维束Fig.1㊀Plant fiber basic fiber bundle 一个单一的植物纤维是由多个(通常10~30个)基本纤维束通过胞间层的果胶物质连接构成,具体如图1所示[16],基本纤维束由外到内可分成三层:胞间层㊁初生壁㊁次生壁㊂最外层是胞间层,含有果胶㊁半纤维素和木质素;中间层是初生壁,含有纤维素和半纤维素;最内层是次生壁(包括S1㊁S2和S3),主要由纤维素构成[17],其中次生壁S2的厚度占整个细胞壁厚度的80%,对植物纤维的力学性能起主要作用[18]㊂图2和图3是植物纤维初生壁和次生壁的示意图[19]㊂初生壁很薄,厚度0.1~0.3μm,其纤维素的含量很低且较为分散,亲水性较强㊂次生壁是较厚并且完全分化的细胞壁,含有大量十分密集且相互平行的纤维素,纤维素不仅十分密集而且相互平行,为植物纤维突出的拉伸性能提供了有利条件[19]㊂图2㊀植物纤维初生壁示意图Fig.2㊀Schematic diagram of the primary wall of plantfiber 图3㊀植物纤维次生壁示意图Fig.3㊀Schematic diagram of the secondary wall of plant fiber㊀第2期姜德民等:植物纤维增强水泥基复合材料面临的问题及相关改性研究现状389 1.2㊀植物纤维的化学组成植物纤维的主要化学组成是纤维素㊁半纤维素和木质素,它们在不同种类的植物纤维中占比不同,也与植物生长所处的土壤和气候环境有关[20]㊂例如,椰壳纤维中纤维素含量约32%(文中均为质量分数),半纤维素含量约0.15%,木质素含量约40.45%[21]㊂而棉纤维纤维素的含量约85%(是椰壳纤维纤维素含量的2~3倍),半纤维含量约5.7%,木质素含量则极低[22]㊂纤维素是植物纤维中占比最多的成分㊂纤维素的化学分子式如图4[17]所示,它是由数千个葡萄糖分子组成的长链,含有44.4%的碳㊁6.2%的氢和49.4%的氧,相对半纤维素和木质素来说受碱和稀酸的影响较小[23]㊂植物纤维机械强度的高低与纤维素含量有关,也取决于纤维素微纤丝与纤维轴向的夹角(微原纤维角)[24]㊂图4㊀纤维素分子式Fig.4㊀Cellulose molecule半纤维素是植物纤维中第二大组成成分,化学分子式如图5[17]所示,它是由几种类型不同的单糖构成的异质多聚体㊂半纤维素有亲水性,吸水会润涨细胞壁,也可溶于碱性溶液并发生水解㊂半纤维素是充当纤维素微纤丝之间基质的物质[23],起到黏结并加强整体性的作用㊂图5㊀半纤维素分子式Fig.5㊀Hemicellulose molecule木质素的化学分子式如图6[17]所示,它是一类复杂的芳香烃聚合物,起到强化植物组织的作用㊂跟半纤维素类似,木质素也充当纤维内部和纤维之间的化学黏结剂㊂木质素不溶于水,可溶于碱性溶液并发生水解㊂图6㊀木质素分子式Fig.6㊀Lignin molecule2㊀PFRCC面临的问题2.1㊀植物纤维的高吸水率植物纤维的高吸水率及较差的尺寸稳定性对PFRCC的性能有负面影响㊂首先,在与水泥基材料拌和390㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷时,植物纤维会吸收大量水分并发生体积膨胀,在水泥水化后期时,伴随着植物纤维中水分的流失(部分被水泥基汲取参与水泥水化,部分蒸发[25]),纤维体积收缩,纤维-水泥基界面区产生应力,导致微裂缝出现,图7是Azwa等[26]对于上述行为的具体描述㊂当PFRCC暴露于潮湿环境中时,水分子渗透并附着在纤维亲水羟基上建立分子间氢键,这会使得纤维与水泥基界面黏结强度降低,复合材料中应力的传递被削弱[27]㊂图7㊀水对植物纤维-水泥基界面区的影响[26]Fig.7㊀Effect of water on plant fiber-cement base interface[26]造成植物纤维吸水率较高的主要原因是其分子结构中含有大量的羟基[28]㊂羟基是一种亲水基团,在纤维素㊁半纤维素的表面均含有不同数量的羟基㊂半纤维素(大部分是非晶态)的羟基含量最高,一般来说植物纤维中半纤维素含量越多,吸附水分子的能力越强[29]㊂对于纤维素,位于结晶部分(主要在微纤维的核心)的羟基被认为不参与吸附水分子,而存在于纤维素非晶态区表面的羟基能够与水分子发生相互作用[30]㊂值得注意的是,科研人员也发现了植物纤维高吸水率对复合材料内养护方面的积极影响㊂Jongvisuttisun 等[31]在关于植物纤维自养护的研究中发现,夹带在植物纤维管腔中的自由水很容易被周围的水泥基体吸收,当水化反应超过25h后,植物纤维细胞壁小孔隙中的自由水和部分结合水能够迁移出来并减缓水泥基体的自收缩㊂2.2㊀植物纤维在水泥基碱性环境下的水解与矿化植物纤维在碱性环境中会发生碱性水解,相比于纤维素,半纤维素和木质素这类非晶态组分更容易在碱性溶液中发生水解[32]㊂Toledo等[33]总结了植物纤维在水泥基中的碱性水解过程,如图8所示㊂在初始状态下的植物纤维中,纤维素微纤维被半纤维素和木质素包裹在一起形成一个整体㊂在碱性孔隙溶液的侵蚀下,木质素最先发生分解,部分半纤维素也被分解㊂随着侵蚀程度的加深,半纤维素发生分解,植物纤维细胞壁的完整性被破坏,最后随着纤维素微纤维发生脱落和断裂,纤维素最终被分解,植物纤维完全劣化㊂除了碱性水解,植物纤维在水泥基中还会有纤维矿化的情况发生㊂纤维矿化被定义为:在水泥水化过程中,Ca2+㊁Mg2+㊁Al3+和Si4-等离子对植物纤维细胞壁和开放孔隙的浸渍行为[34],或者说植物纤维的矿化是水泥水化产物(尤其是氢氧化钙)迁移沉淀到纤维的胞间层以及管腔等组织中导致纤维韧性降低的一种劣㊀第2期姜德民等:植物纤维增强水泥基复合材料面临的问题及相关改性研究现状391化形式㊂植物纤维复合材料的脆化主要与纤维矿化有关[18]㊂图8㊀植物纤维的碱性水解过程[33]Fig.8㊀Alkaline hydrolysis process of plant fibers[33]2.3㊀植物纤维延缓水泥凝结植物纤维的添加也会影响PFRCC中水泥的水化与凝结㊂植物纤维中的纤维素是一种多糖,在水泥基碱性环境下分解成葡萄糖㊂葡萄糖在碱性环境下生成酸,与水泥水化产生的OH-发生中和反应,由此产生的盐会附着在熟料和水化产物表面,延缓水泥水化反应的进行[35]㊂同样,半纤维素和木质素在水泥基碱性环境中的水解产物也对水泥水化有阻碍作用[6]㊂Sedan等[36]研究了麻纤维的掺入对水泥凝结时间的影响,通过扫描电子显微镜和能量色散X射线光谱分析发现纤维表面果胶的存在会导致纤维周围存在较多的Ca2+,这也是导致水泥凝结缓慢的原因之一㊂另外,对于PFRCC凝结时间的测定,纤维的存在会阻碍维卡仪探针的插入,因此需要一种无损的精确方法来测定其凝结时间㊂Choi等[37]通过超声脉冲波来分析PFRCC的凝结时间,其试验结果表明植物纤维延缓了水泥水化,并且纤维含量越高,水化延迟越长,这样的测试结果是符合预期的㊂3㊀植物纤维的改性方法3.1㊀角质化处理植物纤维角质化是指不可逆地从纤维细胞壁中去除水分的机制[25],可以通过对其进行多次干湿循环完成[7]㊂当浸泡在水中的植物纤维达到吸水饱和后,将其放置在中等温度(60~80ħ)[38]的烘干箱内进行干燥,这时纤维的多糖纤维素链发生重排,其中纤维素微纤维由于水分的流失而彼此靠近,相互之间形成不可逆或部分不可逆的氢键,其中大多数氢键不会再重新打开㊂持续的干湿循环也会使得植物纤维管腔会发生坍塌,细胞壁层状结构中的大部分毛细孔会关闭,植物纤维结构将变得更加密实[39]㊂Claramunt等[40]对针叶木纤维和棉绒纤维进行了角质化处理,并证明了角质化过程会使这些纤维(尤其是针叶木纤维)的保水性大幅下降,尺寸稳定性提高,纤维-基体界面强度也得到了提高㊂Ferreira等[41]通过拉拔试验评价了植物纤维角质化处理对基体附着力的影响,从得到的力与滑移曲线中发现,复合材料经过加速老化后,处理过的纤维与基体的最大黏结应力和摩擦应力分别提高了40%和50%㊂3.2㊀热液处理热液处理最早应用于木材的改性,一般可分为超临界水处理㊁亚临界水处理和环境液态水处理三类,这些方法的主要区别在于处理过程中施加的温度不同[42]㊂热液处理通过对植物纤维高温沸煮来提取纤维中的可溶性糖分,这类组分是延缓水泥凝结的主要原因㊂热液处理还能够将纤维的亲水 OH基转化为疏水基团来提高纤维的尺寸稳定性,但是随着处理时间和处理温度的提高,纤维的吸水率会变高[43]㊂Sellami等[44]为了克服植物纤维与水泥基材之间相容性较差的问题,采用热液处理对纤维进行改性,通过SEM观察发现,沸煮4h后的纤维部分表面组分消失,这说明热液处理能够溶解纤维表面的可溶性物质㊂经过热液处理后,虽然纤维表面的一些物质(木质素㊁蜡㊁油脂)被去除,但是纤维表面结构没有明显变化且纤维的抗拉强度和弹性模量均有增加[45]㊂392㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷3.3㊀碱处理碱处理(采用NaOH溶液浸泡处理)是最常用于处理植物纤维的方法之一㊂植物纤维表面的蜡㊁果胶以及半纤维素和木质素对碱性溶液敏感,通过碱处理可以去除这些物质[46]㊂碱处理后的植物纤维表面变得粗糙,纤维直径变小带来的纵横比(长/直径)增加使得纤维的有效表面积增大,利于与基体的黏结[47]㊂碱处理去除了植物纤维中部分无定形区(半纤维素和木质素),提高了纤维的结晶度和抗拉强度[48]㊂但是碱处理浓度过大或者处理时间过长会破坏植物纤维的纤维素结构,导致纤维强度下降[49]㊂图9㊀不同浓度NaOH溶液处理后的植物纤维的SEM照片[50]Fig.9㊀SEM images of plant fibers treated with different concentrations of NaOH solution[50]De-Souza等[50]在碱处理对剑麻纤维性能影响的研究中重点关注了碱浓度变化对纤维的影响㊂不同浓度NaOH溶液处理后的植物纤维的SEM照片如图9所示,随着碱浓度的提高,纤维表面变得越来越粗糙㊂第2期姜德民等:植物纤维增强水泥基复合材料面临的问题及相关改性研究现状393㊀与未改性纤维相比,碱处理后的纤维抗拉强度和弹性模量分别提高了42%和237%,且抗拉强度随着碱浓度提高而提高,碱浓度为10%时抗拉强度下降,但仍高于未改性纤维㊂3.4㊀乙酰化处理植物纤维的亲水性主要由纤维内富含的羟基所决定㊂利用乙酰基与植物纤维的亲水性羟基发生酯化反应,可以降低植物纤维的亲水性[51]㊂植物纤维经过乙酰化后,疏水性增强的同时尺寸稳定性也得到了改善㊂由于植物纤维细胞壁的结构致密,酯化剂很难与内部羟基充分接触发生取代反应,可以先采用碱处理法对纤维进行预处理[7]㊂Zaman 等[52]在香蕉束纤维/聚合物的研究中发现碱处理和乙酰化相结合的处理方式能够有效降低纤维的吸水率,对比未改性纤维,改性后的纤维吸水率降低了42%㊂Bledzki 等[53]发现亚麻纤维经过乙酰化后纤维表面变得更加光滑并能观察到细小微纤维的出现,随着乙酰化程度越高,纤维的损伤和开裂也越明显㊂Oladele 等[54]的研究表明植物纤维经过乙酰化处理后抗拉强度提高,但是当乙酰化处理浓度超过4%时,纤维的抗拉强度发生了下降㊂所以对于PFRCC 来说,对纤维进行一定程度的乙酰化处理能够提高复合材料的抗压㊁抗折强度[55-56]㊂3.5㊀硅烷偶联剂处理硅烷作为公认的高效偶联剂已经被广泛应用于复合材料和黏合剂的配方中[57]㊂硅烷分子具有双官能团,可以分别与两相发生反应,因此它们能很好地耦合植物纤维与水泥基材,并在它们之间架起桥梁[58]㊂但是植物纤维中的羟基具有非常低的可及性,与许多化学物质不发生反应㊂在对纤维进行改性处理时,需要先将硅烷放入调节至弱酸性(pH =4~5)的水与乙醇的混合溶液[59]中进行水解以产生更活泼的硅醇基[60],然后再将纤维放入混合溶液中使纤维的羟基与硅醇基发生反应来达到改性目的㊂Koohestani 等[61]指出适合对图10㊀98%硅烷偶联剂喷涂植物纤维的SEM 照片[62]Fig.10㊀SEM images of plant fiber sprayed with 98%silane coupling agent [62]植物纤维改性的硅烷偶联剂用量在1%~5%(占纤维质量),硅烷偶联剂的水解时间㊁硅烷水解溶液的温度和pH 值以及硅烷偶联剂自身的化学性质是影响硅烷处理效果的主要因素㊂硅烷偶联剂也可以直接进行喷涂处理㊂Ban等[62]在对竹纤维改性时,在没有进行硅烷水解的情况下直接将98%(质量分数)的硅烷偶联剂喷涂到纤维上,纤维的SEM 照片如图10所示,所制备的复合材料的拉伸㊁抗压性能相比于未改性对照组均得到提升,但是纤维的吸水率升高,分析原因可能是过量的硅烷与水发生了水解反应㊂4㊀结语与展望1)植物纤维中存在着大量羟基,具有较强的亲水性,这种强吸水性能够导致复合材料发生劣化,影响纤维与水泥基界面的黏结强度㊂2)在水泥基碱性环境下,植物纤维的主要成分纤维素㊁半纤维素和木质素容易发生水解导致纤维发生劣化㊂植物纤维在水泥基碱性环境下还会发生矿化的现象,导致复合材料的脆化㊂3)植物纤维在水泥基碱性环境下的水解产物会阻碍水泥凝结,植物纤维含量越高水泥水化延长越久㊂4)对纤维进行改性处理能够提高复合材料的性能,常用的改性方法有角质化处理㊁热液处理㊁碱处理㊁乙酰化处理和硅烷偶联剂处理㊂5)不同的改性处理对纤维起到的作用不同,总体来说改性处理能够提高纤维密实程度㊁增加纤维表面粗糙度㊁提取纤维中的阻凝成分㊁降低纤维吸水率以及增强纤维与基体界面的黏结等㊂6)目前对于植物纤维的改性主要是使用单一的方法进行改性,采用多种方法复合改性处理的研究较少㊂从改性机理上看,各改性方法侧重的改性作用不同,研究不同改性方法间的协同作用是进一步提高植物纤维性能的关键㊂7)鉴于实际建设工程中环境的复杂性,针对特殊环境下的PFRCC 的研究也应该得到重视以适应更广泛394㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷的施工要求㊂参考文献[1]㊀饶德梅.不同烧成温度和时间对水泥熟料矿物相组成的影响[D].绵阳:西南科技大学,2023.RAO D M.Effect of different sintering temperature and time on mineral phase composition of cement clinker[D].Mianyang:Southwest University of Science and Technology,2023(in Chinese).[2]㊀宋丁豹,蒲诃夫,胡海蓝,等.水平排水板真空预压-碱激发矿渣固化联合法处理高含水率淤泥的试验研究[J/OL].岩石力学与工程学报:1-11[2023-08-31].https:///10.13722/ki.jrme.2023.0040.SONG D B,PU K F,HU H L,et al.Experimental investigation on prefabricated horizontal drain-based vacuum preloading-alkali-activated GGBS solidification combined method for treatment of high-water-content mud slurry[J/OL].Chinese Journal of Rock Mechanics and Engineering:1-11 [2023-08-31]./10.13722/ki.jrme.2023.0044(in Chinese).[3]㊀李东升,吴国立,冯思超.纤维增强水泥基复合材料力学性能的研究进展[J].河南科技,2023,42(2):89-92.LI D S,WU G L,FENG S C.Research progress on mechanical properties of fiber reinforced cement-based composites[J].Henan Science and Technology,2023,42(2):89-92(in Chinese).[4]㊀TIAN H,ZHANG Y X.The influence of bagasse fibre and fly ash on the long-term properties of green cementitious composites[J].Constructionand Building Materials,2016,111:237-250.[5]㊀曹双平,王㊀戈,余㊀雁,等.几种植物单根纤维力学性能对比[J].南京林业大学学报(自然科学版),2010,34(5):87-90.CAO S P,WANG G,YU Y,et parison of mechanical properties of different single vegetable fibers[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2010,34(5):87-90(in Chinese).[6]㊀杨㊀玲.改性稻草秸秆水泥基复合材料的性能研究[D].武汉:武汉轻工大学,2020.YANG L.Study on properties of modified rice straw cement-based composites[D].Wuhan:Wuhan Polytechnic University,2020(in Chinese).[7]㊀PRAVEENA B A,BURADI A,SANTHOSH N,et al.Study on characterization of mechanical,thermal properties,machinability andbiodegradability of natural fiber reinforced polymer composites and its applications,recent developments and future potentials:a comprehensive review[J].Materials Today:Proceedings,2022,52:1255-1259.[8]㊀房㊀新.乙酰化稻草的制备及其力学性能研究[D].沈阳:东北大学,2010.FANG X.Preparation and mechanical properties of acetylated rice straw[D].Shenyang:Northeastern University,2010(in Chinese). [9]㊀JIANG D M,AN P H,CUI S P,et al.Effect of modification methods of wheat straw fibers on water absorbency and mechanical properties ofwheat straw fiber cement-based composites[J].Advances in Materials Science and Engineering,2020,2020:1-14.[10]㊀CAMARGO M,ADEFRS T E,ROETHER J,et al.A review on natural fiber-reinforced geopolymer and cement-based composites[J].Materials,2020,13(20):4603.[11]㊀姜㊀欢.稻草纤维生产水泥基泡沫保温墙体材料的研究[D].大连:大连理工大学,2008.JIANG H.Study on the production of cement-based foam thermal insulation wall material with straw fiber[D].Dalian:Dalian University of Technology,2008(in Chinese).[12]㊀杨政险,李㊀慷,张㊀勇,等.天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J].硅酸盐学报,2022,50(2):522-532.YANG Z X,LI K,ZHANG Y,et al.Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J].Journal of the Chinese Ceramic Society,2022,50(2):522-532(in Chinese).[13]㊀ALI-BOUCETTA T,AYAT A,LAIFA W,et al.Treatment of date palm fibres mesh:influence on the rheological and mechanical properties offibre-cement composites[J].Construction and Building Materials,2021,273:121056.[14]㊀ROCHA D L,AZEVEDO A R G,MARVILA M T,et al.Influence of different methods of treating natural açai fibre for mortar in ruralconstruction[J].2021.[15]㊀PAGE J,KHADRAOUI F,GOMINA M,et al.Influence of different surface treatments on the water absorption capacity of flax fibres:rheologyof fresh reinforced-mortars and mechanical properties in the hardened state[J].Construction and Building Materials,2019,199:424-434.[16]㊀CHOKSHI S,PARMAR V,GOHIL P,et al.Chemical composition and mechanical properties of natural fibers[J].Journal of Natural Fibers,2022,19(10):3942-3953.[17]㊀WEI J Q,MEYER C.Degradation mechanisms of natural fiber in the matrix of cement composites[J].Cement and Concrete Research,2015,73:1-16.[18]㊀TOLÊDO F R D,SCRIVENER K,ENGLAND G L,et al.Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites[J].Cement and Concrete Composites,2000,22(2):127-143.[19]㊀BURGERT I,KEPLINGER T.Plant micro-and nanomechanics:experimental techniques for plant cell-wall analysis[J].Journal of ExperimentalBotany,2013,64(15):4635-4649.[20]㊀BAKAR N,CHIN S C,SIREGAR J P,et al.A review on physical,mechanical,thermal properties and chemical composition of plant fibers[J].㊀第2期姜德民等:植物纤维增强水泥基复合材料面临的问题及相关改性研究现状395 IOP Conference Series:Materials Science and Engineering,2020,736(5):052017.[21]㊀ABU G M,ABDELRASOUL pressive and fracture toughness of natural and synthetic fiber-reinforced polymer[M]//Mechanical andPhysical Testing of Biocomposites,Fibre-Reinforced Composites and Hybrid Composites.Amsterdam:Elsevier,2019:123-140. [22]㊀YE Z L,BERSON R E.Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes[J].Bioresource Technology,2014,167:582-586.[23]㊀DJAFARI P S R.Physical and mechanical properties of natural fibers[M]//Advanced High Strength Natural Fibre Composites in Construction.Amsterdam:Elsevier,2017:59-83.[24]㊀MWAIKAMBO L Y,ANSELL M P.Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II.Sisalfibres[J].Journal of Materials Science,2006,41(8):2497-2508.[25]㊀DRIDI M,HACHEMI S,BELKADI A A.Influence of styrene-butadiene rubber and pretreated hemp fibers on the properties of cement-basedrepair mortars[J].European Journal of Environmental and Civil Engineering,2023,27(1):538-557.[26]㊀AZWA Z N,YOUSIF B F,MANALO A C,et al.A review on the degradability of polymeric composites based on natural fibres[J].Materials&Design,2013,47:424-442.[27]㊀ZHOU J W,LIN S T,ZENG H X,et al.Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction inhydrogels[J].Materials Horizons,2020,7(11):2936-2943.[28]㊀MOHAMMED M,JAWAD A J M,MOHAMMED A M,et al.Challenges and advancement in water absorption of natural fiber-reinforced polymercomposites[J].Polymer Testing,2023,124:108083.[29]㊀METHACANON P,WEERAWATSOPHON U,SUMRANSIN N,et al.Properties and potential application of the selected natural fibers as limitedlife geotextiles[J].Carbohydrate Polymers,2010,82(4):1090-1096.[30]㊀ETALE A,ONYIANTA A J,TURNER S R,et al.Cellulose:a review of water interactions,applications in composites,and water treatment[J].Chemical Reviews,2023,123(5):2016-2048.[31]㊀JONGVISUTTISUN P,LEISEN J,KURTIS K E.Key mechanisms controlling internal curing performance of natural fibers[J].Cement andConcrete Research,2018,107:206-220.[32]㊀BUI H,LEVACHER D,BOUTOUIL M,et al.Effects of wetting and drying cycles on microstructure change and mechanical properties of coconutfibre-reinforced mortar[J].Journal of Composites Science,2022,6(4):102.[33]㊀TOLEDO F R D,DE-ANDRADE S F,FAIRBAIRN E M R,et al.Durability of compression molded sisal fiber reinforced mortar laminates[J].Construction and Building Materials,2009,23(6):2409-2420.[34]㊀JOHN V M,CINCOTTO M A,SJÖSTRÖM C,et al.Durability of slag mortar reinforced with coconut fibre[J].Cement and ConcreteComposites,2005,27(5):565-574.[35]㊀CHOI Y C.Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites[J].Case Studies in ConstructionMaterials,2022,17:e01690.[36]㊀SEDAN D,PAGNOUX C,SMITH A,et al.Mechanical properties of hemp fibre reinforced cement:influence of the fibre/matrix interaction[J].Journal of the European Ceramic Society,2008,28(1):183-192.[37]㊀CHOI H,CHOI Y C.Setting characteristics of natural cellulose fiber reinforced cement composite[J].Construction and Building Materials,2021,271:121910.[38]㊀CLARAMUNT J,ARDANUY M,GARCÍA H J A.Effect of drying and rewetting cycles on the structure and physicochemical characteristics ofsoftwood fibres for reinforcement of cementitious composites[J].Carbohydrate Polymers,2010,79(1):200-205.[39]㊀ARIVENDAN A,JAPPES W,IRULAPASAMY S,et al.Extraction and characterization of natural aquatic plant fiber,powder and ash from waterhyacinth(eichhornia crassipes)as reinforcement of fiber,powder,and ash reinforced polymer composite[J].Journal of Natural Fibers,2022, 19(14):9589-9599.[40]㊀CLARAMUNT J,ARDANUY M,GARCÍA H J A,et al.The hornification of vegetable fibers to improve the durability of cement mortarcomposites[J].Cement and Concrete Composites,2011,33(5):586-595.[41]㊀FERREIRA S R,LIMA P R L,SILVA F A,et al.Effect of sisal fiber hornification on the fiber-matrix bonding characteristics and bendingbehavior of cement based composites[J].Key Engineering Materials,2014,600:421-432.[42]㊀ALI M R,ABDULLAH U H,ASHAARI Z,et al.Hydrothermal modification of wood:a review[J].Polymers,2021,13(16):2612.[43]㊀REZAYATI C P,MOHAMMADI R J,Mohebi B,et al.Influence of hydrothermal treatment on the dimensional stability of beech wood[J].2007,2:125-131.[44]㊀SELLAMI A,MERZOUD M,AMZIANE S.Improvement of mechanical properties of green concrete by treatment of the vegetals fibers[J].Construction and Building Materials,2013,47:1117-1124.[45]㊀NORUL I M A,PARIDAH M T,ANWAR U M K,et al.Effects of fiber treatment on morphology,tensile and thermogravimetric analysis of oilpalm empty fruit bunches fibers[J].Composites Part B:Engineering,2013,45(1):1251-1257.[46]㊀KABIR M M,WANG H,LAU K T,et al.Chemical treatments on plant-based natural fibre reinforced polymer composites:an overview[J].。
聚乙烯醇纤维增强水泥基复合材料力学性能试验研究

中 图分 类 号 : T U 5 2 8 . 5 7 2
文 献标 识 码 : A
文 章编 号 : 1 0 0 0 — 4 6 3 7 ( 2 0 1 3 ) 1 1 — 4 8 — 0 4
0
前 言
价值 。
1 试 验 设 计
聚乙烯醇纤 维增 强水 泥基复合 材料 ( P V A— E C C) 是一 种新 型复合 材料 , 该 材料 以水 泥或 水泥 加 填料 , 再 掺 加 小粒 径细 骨 料 作为 基 体 , 用P V A纤 维 作增 强材 料 , 具 有高 韧性 、 高 抗 拉强 度 、 高 抗 断裂 能 力, 不 易 开 裂 等 特点 . 且 具 有 应 变硬 化 特 性 和 很 大 的延 展性 f l - 2 ] , 将 其用 于机场 道 面 的修补 与 补强 可 以 有效 弥补 普 通混 凝 土 的不足 , 延 长 机场 道 面使 用 寿
水 泥 基 体 中起 到 了很 好 的 增 韧 效 果 。
关键 词 : 聚 乙烯 醇 纤 维增 强水 泥 基 复 合 材料 ; 抗压强度 : 抗 折 强 度
Ab s t r a c t : T h e b e n d i n g t e s t s We r e c a r r i e d o u t o n t h e p r i s m s p e c i me n s o f P VA i f b e r r e i n f o r c e d c e me n t b a s e d c o mp o s i t e ma t e ia r l s ,a n d t h e c o mp r e s s i v e t e s t s w e r e c a ri e d o u t o n t h e h a l f o f t h e b e n d i n g t e s t s p e c i me n s . T h e t e s t r e s u l t s s h o w t h a t w i t h t h e i n c r e a s i n g o f P VA f i b e r c o n t e n t ,t h e b e n d i n g s t r e n g t h o f t h e s p e c i me n h a s a n o b v i o u s i n c r e a s i n g ,b u t t h e c o n— p r e s s i v e s t r e n g t h o f t h e s p e c i me n i n c r e a s e s l i g h t l y i f r s t a n d t h e n d e c r e a s e . T h e f i b e r s i n t h e c e me n t ma t i r x p l a y a t o u g h e n —
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第24卷 第6期2002年6月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGYV ol.24 No.6 Jun.2002文章编号:1671-4431(2002)06-0015-04高性能纤维增强水泥基复合材料的研究王悦辉 谢永贤 林宗寿 涂成厚(武汉理工大学)摘 要: 介绍了在高性能蒸养水泥中掺入钢纤维制备出高性能水泥基复合材料的研究结果。
研究了水灰比(W/C)、砂灰比(S/C)、钢纤维掺量对水泥基复合材料性能的影响;并用XRD 、SEM 分析其微观结构和形貌。
试验结果表明:将钢纤维掺入到高性能蒸养水泥中并采用适当的工艺,可制备出抗压强度达133M Pa ,抗折强度达24.5M Pa 的高性能水泥基复合材料。
关键词: 高性能蒸养水泥; 钢纤维; 复合材料中图分类号: T U 5文献标识码: A收稿日期:2001-11-20.作者简介:王悦辉(1974-),女,硕士;武汉,武汉理工大学材料学院(430070).高性能混凝土是当今混凝土材料的发展趋势,降低混凝土结构物能源、资源的消耗,减少污染以获得可持续发展的环境,也正成为混凝土界关注的热点。
虽然高性能混凝土的抗压强度比普通混凝土成倍提高,但抗折强度却提高很少,表现为脆性显著增大。
为了改善混凝土的脆性,通常在混凝土中掺入钢纤维,制成钢纤维混凝土,改善混凝土的脆性。
钢纤维混凝土具有抗拉、抗折强度高,弯曲韧性、抗冲击耐疲劳、阻裂限缩能力优异等特点,在工程中得到广泛的应用,取得了良好的技术经济效果。
钢纤维混凝土是以混凝土为基体,非连续的短纤维作为增强材料所构成的水泥基复合材料,钢纤维在混凝土中各向随机分布,跨越混凝土中存在的微细裂隙,并对裂隙产生约束作用,阻止裂隙扩展,从而达到增强的作用。
其增强效果主要取决于钢纤维的尺寸,基体的粘结强度及掺量。
前两者可由选用的钢纤维原材料来确定,钢纤维的掺量太小增强效果不明显,太大则不易搅拌分散。
钢纤维虽然能大大提高混凝土的抗拉强度和韧性,但对混凝土的抗压强度影响较小。
而由本试验制得的高性能水泥基材料,在水泥中掺入超细矿渣,具有良好的火山灰效应和微粒充填效应,能改善混凝土的密实性,提高抗压强度和抗渗性。
在实验中应用以下基本原理配制超高性能混凝土:(1)去除混凝土中原有的粗骨料,从而消除粗骨料和水泥浆体之间的薄弱界面,增加了整个基体的均质性;(2)以多元粉体细颗粒优化级配,提高整个基体的堆积密度;(3)通过掺加微细的钢纤维,增强韧性;(4)优化搅拌、成型和养护制度;(5)采用外掺硬石膏的蒸养水泥,进一步提高制品强度。
1 试验研究1.1 试验原材料(1)水泥 试验用水泥采用作者已研究开发的高性能蒸养水泥[1]。
其最佳配比如表1所示。
(2)细集料 标准砂,粒径0.25~0.65mm 。
(3)减水剂 采用UNF5高效减水剂,掺量为1.0%。
(4)钢纤维 选用东洲钢纤维发展公司生产的冷板型钢纤维,见表2。
试验用配比见表3、表4、表5、表6。
1.2 试件制备钢纤维在水泥砂浆中的分散、搅拌工艺:采用先干后湿的搅拌工艺,水和高效减水剂混合均匀,按配比将水泥、砂、钢纤维加入到水泥胶砂搅拌机内干搅2min;加入水和高效减水剂湿拌10min,达到钢纤维在水泥砂浆中均匀分散的目的。
这种方法可避免钢纤维尚未分散即被水泥砂浆包裹成钢纤球现象。
表1 高性能蒸养水泥配比 %水泥矿渣硬石膏39556表2 钢纤维的性能名称规格杨氏模量/G Pa抗压强度/GPa 冷板切削异型0.5×0.7×3043.1≥550表3 空白试验配比编号水泥U NF5/%砂灰比水灰比钢纤维/% K11 1.0 1.20.20——K21 1.0 1.50.20——K31 1.0 1.20.22——K41 1.0 1.50.22——表4 砂灰比试验配比编号水泥U N F5/%砂灰比水灰比钢纤维/% S11 1.0 1.00.22 1.8S21 1.0 1.20.22 1.8S31 1.0 1.50.22 1.8S41 1.0 1.80.22 1.8S51 1.0 2.00.22 1.8表5 钢纤维掺量试验配比编号水泥U NF5/%砂灰比水灰比钢纤维/% G11 1.0 1.50.22 1.2G21 1.0 1.50.22 1.5G31 1.0 1.50.22 1.8G41 1.0 1.50.22 2.0表6 水灰比试验配比编号水泥U N F/%砂灰比水灰比钢纤维/% W11 1.0 1.50.20 1.8W21 1.0 1.50.22 1.8W31 1.0 1.50.24 1.8W41 1.0 1.50.25 1.8 注:钢纤维掺量为钢纤维体积分数。
成型工艺:水泥砂浆搅拌完毕,立即在振动台上振动成型,成型4cm×4cm×16cm试件,以测定抗压强度和抗折强度。
养护工艺:试件成型后先在空气中预养7h,然后通蒸汽以15℃・h-1的升温速度至65℃,保温4h,后自然冷却至室温20℃,脱模,再放入20℃水中养护至规定龄期。
1.3 试验方法1)流动度试验:按GB3419-81《水泥胶砂流动度测定方法》进行;2)抗压强度试验:按GB177-85《水泥胶砂强度检验方法》进行;3)抗折强度试验:按GB177-85《水泥胶砂强度检验方法》进行。
2 试验结果及分析2.1 强度试验试件的强度见表7。
2.2 结果分析1)砂灰比的影响 由表7可见,当水灰比和钢纤维含量不变时,随着砂灰比增加,钢纤维水泥砂浆的流动度减小。
但在砂灰比小于1.5时,砂灰比增加对流动度影响不大;在砂灰比大于1.5时,砂灰比增加,流动表7 蒸养钢纤维水泥砂浆各龄期强度编号流动度/mm抗压强度/M Pa抗折强度/M Pa3d28d3d28d K11759810517.819.8 K216210511418.720.1 K3187859715.117.4 K41719010216.918.8 S116011513322.924.5 S215711413022.723.6 S315011012822.023.0 S412910812020.521.4 S511210611420.519.9 G116711012320.821.4 G216011112621.722.0 G315011312822.023.0 G413911412822.523.3 W114110711921.322.4 W215011012622.023.0 W316910912021.022.4 W418210511420.422.1度迅速减小,砂灰比对流动度的影响较大。
随砂灰比增加,钢纤维水泥砂浆的抗压强度、抗折强度减小。
在砂灰比小于1.8时,减小的幅度不大。
但砂灰比大于1.8时,钢纤维砂浆的强度减小幅度较大,尤其是28d抗折强度。
2)钢纤维掺量的影响 由表7可见,随着钢纤维掺量的增加,水泥砂浆的流动度减小;水泥砂浆的抗折强度和抗压强度均增加,但抗压强度增长幅度不大。
16 武 汉 理 工 大 学 学 报 2002年6月3)水灰比的影响 由表7可见,随着水灰比增加,水泥砂浆的流动度增加。
当水灰比大于0.24时,流动度急剧增加,而水泥砂浆的抗压强度和抗折强度均随水灰比的增加而减小。
图1 掺入钢纤维的蒸养水泥砂浆XRD 图▲—Aft ■—Ca(OH)2 △—C 3S ○—SiO 2 □—C 4A 13H图2 掺入钢纤维的蒸养水泥砂浆的SEM 图象2.3 钢纤维增强水泥砂浆机理分析从表7中见到与未掺入钢纤维的蒸养水泥砂浆相比,掺入钢纤维的水泥砂浆的力学性能有明显提高,尤其抗折强度增长幅度较大。
由于钢纤维的阻裂效应和抵抗变形的能力,在一定范围内使钢纤维水泥砂浆抗压强度和抗折强度随钢纤维掺量的增加而提高。
充分反映了钢纤维对水泥砂浆的增强作用。
在水泥基复合材料中界面粘结是关键问题。
现在认为集料——水泥石界面粘结是其最薄弱的环节,这是由于在界面区水灰比局部升高,因而使Ca (OH )2晶体和钙钒石晶体密集,两者形成的晶体都较大,Ca (OH )2晶体有取向性,致使孔隙率较大和结构疏松,使裂缝容易形成并扩展。
而在试验中,开发研究的高性能蒸养水17第24卷 第6期 王悦辉等:高性能纤维增强水泥基复合材料的研究 18 武 汉 理 工 大 学 学 报 2002年6月泥利用超细矿渣替代部分水泥,并用硬石膏做硫酸盐激发剂,在水化过程中,矿渣与水泥空隙中的离子起化学反应,使C-S-H凝胶增加,导致水泥石中大孔减少,凝胶孔和过渡孔增加,结构变得致密。
同时超细矿渣的掺入,改善了钢纤维水泥浆体与集料、钢纤维界面区的结构,使界面区的Ca(OH)2取向性明显降低,数量减少,晶粒细化,从而使界面过渡区弱点变浅,加强了界面粘结,提高了钢纤维水泥砂浆的强度。
图1为几种不同配比的钢纤维蒸养水泥砂浆的X射线衍射图。
从图中可看到,Ca(OH)2衍射峰较弱,而钙钒石等晶相的量较多。
说明掺入超细矿渣消耗了大量Ca(OH)2,加速水泥石水化,减少Ca(OH)2晶体在界面的富集。
正是由于火山灰效应能够吸收大量Ca(OH)2,降低液相中Ca(OH)2浓度,使Ca(OH)2晶体减少变小,对改善界面区性能有一定的作用。
图2为与图1相应配比的钢纤维蒸养水泥砂浆的SEM图像。
从图像中见到水化产物中有大量的水化硅酸钙及其凝胶和钙钒石晶体,还有明显发育较好的类托贝莫来石晶体和针状、短柱状的钙钒石晶体。
这些结晶度较高的晶体穿插在水泥硅酸钙凝胶中,形成网络状的致密结构。
3 结 论通过试验,可得如下结论:a.采用在高性能蒸养水泥中掺入钢纤维,用振动成型方法,可制备出抗压强度达133MPa,抗折强度达24.5M Pa的高强抗冲击水泥基材料。
b.砂灰比、水灰比、钢纤维掺量均对钢纤维蒸养水泥砂浆的力学性能有显著的影响。
随砂灰比、水灰比掺量增加,其抗压强度和抗折强度均降低;随钢纤维掺量的增加,其抗压强度和抗折强度增加。
c.通过以上试验,认为通过优化水泥组成、选择优质集料、采用适当的工艺,改善钢纤维与水泥砂浆界面性质,能够制备出优质的水泥基复合材料。
参考文献[1] 解松善.水泥基复合材料中界面粘结的研究[J].硅酸盐学报,1983(4):489~497.[2] 邓宗才.高掺量钢纤维高强混凝土的试验研究[J].混凝土与水泥制品,1995(5):46~47.[3] 曹峰,覃维祖.超高性能纤维增强混凝土初步研究[J].工业建筑,1999(6):42~44.[4] 沈荣熹.新型纤维增强水泥复合材料研究的进展[J].硅酸盐学报,1993(4):356~363.[5] 黄政宇,沈蒲生,蔡松柏.200M P a超高强钢纤维混凝土试验研究[J].混凝土,1993(3):3~7.Study of High Performance Fiber Reinforced C ement-based CompositesW ang Yuehui X ie Yongx ian L in Zongshou T u ChenghouAbstract: A ser ies of r esearch results were presented on hig h perfor mance cement-based compo sites w ith adding steel fiber in high per formance steam cur ing cement.T he effect of w ater binder ratio(W/C),slag binder r atio(S/C)as w ell as the adding quantity of steel fiber on cement-based com posite w as studied;T he microst rutur e has been analysed by XRD、SEM.It show ed that the high per fomance cement-based composites can be made by adding steel fiber and using pro per process.T hey hav e co m-pr essiv e strengt h o f133M P a and flex ur al st reng th of24.5M P a.Key words: high per formance steam cured cement; steel fiber; compositeWang Yuehui: M.S.,Schoo l of M ater ials Science and Eng ineer ing,W U T,Wuhan430070,China.。