大型伺服压力机的控制系统设计
伺服精压机控制系统研发及成形工艺库实现

伺服精压机控制系统研发及成形工艺库实现摘要:伴随生命周期的降低,客户需求的多元化,新型材料跟新科技的飞速发展,对加工设备的工作方式、动态性能制造工艺适应能力的需求不断提升。
但传统式生产设备工作方式单一化,制作工艺适应能力差,无法满足智能制造业对材料成型工艺操纵。
科学开发数据信息、信息内容智能化的加工设备则是发展的趋向。
关键词:伺服精压机;控制系统;成形工艺库1伺服压力机的国内外发展现状交流伺服电机具有输入信号控制、响应速度快、定位精度高、特性靠谱、响应速度快、负载能力高的特性。
额定扭矩还可以在额定值速度内导出来,这也是生产设备的绝佳推动源。
因而,交流伺服技术的发展生产设备中的运用是可持续的,冲压加工交流伺服技术的发展大大提升了其运行特性和加工工艺高效率。
直流伺服电机电机功率始终不大,这限制他在重型设备中的运用。
伴随着大空间伺服电机的提高,由于伺服驱动技术的众多优势,世界各国学界和生产商增强了对伺服驱动技术的探索。
1987年,美日互相交换100台伺服电机控制kn折弯机,这一行为下的伺服压机被称之为第一台商业伺服压机。
自20世纪90年代初之后,美国和日本致力于科学研究重型机械设备传动技术的巨变,俄亥俄州立高校工程实验室Yossifon和Shivpuri使用交流伺服电机控制滚珠丝杠或曲柄连杆,通过多杆机构将电机的回转运动转化成滚轴的直线运动),生产制造木模板设备及300kN双动力冲压机。
除此之外,直流伺服电机直接驱动曲柄滑块冲压机床,滚桶速率还可以根据五金模具设计方案而改变。
2伺服精压机控制系统方案设计2.1直流伺服电机精压力机工作原理和设备伴随交流伺服技术性的不断完善,直流伺服电机在生产设备中的运用越来越广,严重影响不可以调整生产设备运行特性的不足,使生产设备更高效,大大提升了其运行特性制造工艺适应能力;简化加工设备的机械系统,降低成本能源消耗,提高工作效率;推动组装省时省力,减少机器设备维护费用。
伺服控制系统(设计)

第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。
在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。
机械参数主要包括位移、角度、力、转矩、速度和加速度。
近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。
目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。
1.1伺服系统的基本概念1。
1.1伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止.伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。
1。
1。
2伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。
它由检测部分、误差放大部分、部分及被控对象组成。
1。
1.3伺服系统性能的基本要求1)精度高。
伺服系统的精度是指输出量能复现出输入量的精确程度。
2)稳定性好.稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。
3)快速响应。
响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度.4)调速范围宽。
调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。
5)低速大转矩。
在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率.6)能够频繁的启动、制动以及正反转切换。
伺服压力机数控系统的设计与实现分析

伺服压力机数控系统的设计与实现分析发布时间:2022-01-12T08:45:04.624Z 来源:《科学与技术》2021年28期9月作者:张成淋[导读] 对于伺服压力机来说,其内部数控系统属于核心部分张成淋固高派动(东莞)智能科技有限公司广东东莞 523000摘要:对于伺服压力机来说,其内部数控系统属于核心部分,对压力机总体运行稳定性有着直接影响,积极落实伺服压力机的数控系统设计实现工作较为重要。
故本文主要围绕着伺服压力机的数控系统设计及其实现开展深入的研究和探讨,期望可以为后续更多技术工作者和研究学者对此类课题的实践研究提供有价值的指导或者参考。
关键词:压力机;伺服;数控系统;设计;实现;前言伺服压力机内部数控系统设计极具复杂性,所涉及内容相对较多,对专业性要求也较高。
因而,综合分析伺服压力机内部数控系统设计及其实现,对今后更好地应用及优化伺服压力机内部数控系统来说现实意义较为突出。
1、总体架构伺服压力机的数控系统总体架构以上位机、数据交互及运动控制模块为主。
上位机,可实现系统图形化的界面设计,基本功能以显示系统状态、加工曲线及吨位管理、参数管理、模具保护、电子凸轮等为主;数据交互模块,主控芯片选定Cortex-M3式架构MCU,该模块借助DPRAM和运动控制单位实现数据交互,把运动控制模块数据经CAN通信及时传递至上位机,通过系统界面显示出来。
上位机所设参数数据可下载至运动控制模块[1]。
系统通讯主要选定CAN所自定义的通信协议,上位机与运动控制模块可实现实时化的数据交互;而运动控制模块,其主要借助DSP的高速化计算功能,以此为运动控制基本算法载体,促使数控系统脉冲高速输出及实时化信号反馈得以实现,将运动控制DSP+FPGA硬件平台构建起来。
2、系统设计及其实现2.1 功能设计及其实现2.1.1 在上位机层面伺服压力机的数控系统设计当中,上位机选定成熟化工控主板,借助工控主板内所预设XPE系统,促使上位机具备WINDOWS的图形界面、多线程化管理机制、硬软件成熟化、数据存储等功能得以实现。
大型伺服压力机的控制系统设计

大型伺服压力机的控制系统设计
一、概述
大型伺服压力机的控制系统通常由可编程控制器(PLC)、环路控制器、传感器和执行机构等组成。
PLC系统是一种实时微处理机,它具有很高的处理速度、容错能力强、性价比高、容量大、操作简单等优势,是工业控制系统的主要控制元件。
PLC采用预先编程,根据实际情况不断更新程序,使其有效地控制生产过程中的控制变量。
它可以灵活地控制各种设备,如蒸汽阀、空气控制阀、电磁阀、吊车、搬运机械等,从而实现不同的过程控制效果。
二、系统设计
1.首先,确定大型伺服压力机的功能需求,比如操作速度、压力值、升力比和加载能力等,然后分析可能出现的问题和风险,并给出相应的解决方案。
2.然后,根据大型伺服压力机的功能需求,确定所需的传感器,例如温度传感器、压力传感器、空气流量传感器、液位传感器等,以及配套系统,例如加热装置、冷却装置、水箱等。
3.接下来,确定大型伺服压力机的控制系统结构,首先安装可编程控制器,其输出控制信号控制传感器和执行器,而传感器和执行器的反馈信号则由PLC进行调整,以调整机器的操作参数,并实现相应的控制功能。
伺服电机控制系统毕业设计

由于直流伺服电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具有直流电动机的运行效率高、无励磁损耗以及调速性能好的特点,故在当今国民经济的各个领域,如医疗器械、仪表仪器、化工、轻纺以及家用电器等方面的应用日益普及。直流伺服电动机的应用主要分为以下几类:
定速驱动机械
一般不需要调速的领域以往大多是采用三相或单相交流异步和同步电机。随着电力电子技术的进步,在功率不大于 且连续运行的情况下,为了减少体积,节省材料,提高效率和降低能耗,越来越多的电机正被直流伺服电动机逐步取代,这类应用:有自动门、电梯、水泵、风机等。而在功率较大的场合,由于一次成本和投资较大,除了永磁电机外还要增加驱动器,因此目前较少有应用。
系统给定转速由键盘输入,并能实时显示转速;功率芯片选用性能价格比较高的快速MOSFET;功率驱动选用带保护电路和过流输出的集成芯片IR2130,可实现电机的高频快速起动;系统还设置了电流采样电路,与速度反馈电路组成双闭环系统,可以实现电机的快速起动并获得良好的带负载性能,达到了设计任务书的要求。
软件方面根据直流伺服电动机的组成、脉宽调制和工作原理,结合80C196MC的硬件部分和软件编程的特点,设计了无刷直流调速系统的软件。系统软件分为主程序和中断程序两大主块,主程序完成系统的初始化, LED显示器扫描和键盘功能处理程序等部分。
进入90年代以来,随着电力电子工业的飞速发展,许多高性能半导体功率器件,如GTR、MOSFET、IGBT、MCT等相继问世,以及微处理器、大规模集成电路技术的发展,逆变装置也发生了根本性的变化。这些开关器件本身向着高频化、大容量、智能化方向发展,并出现集半导体开关、信号处理、自我保护等功能为一体的智能功率模块(正M)和大功率集成电路,使直流伺服电动机的关键部件之一―逆变器的成本降低,且向高频化、小型化发展。同时,永磁材料的性能不断提高和完善,特别是钕、铁、硼永磁材体的热稳定性和耐腐蚀性的改善,加上永磁电机研究和开发经验的逐步成熟,稀土永磁直流伺服电动机的应用和开发进入一个新阶段,目前正朝着超高速、高转矩,高功能化、微型化方向发展[3]。
伺服控制系统设计

Wop (s)
s(Ts s
K 1)(T2 s
1)
3.2 单闭环位置伺服系统
伺服系统旳闭环传递函数
W cl
(s)
TsT2 s 3
(Ts
K T2 )s2
s
K
闭环传递函数旳特性方程式
TsT2s3 (Ts T2 )s2 s K 0
3.2 单闭环位置伺服系统
用Routh稳定判据,为保证系统稳定,
须使
K
Ts T2 TsT2
单位置环伺服系统开环传递函数对数幅频特性
3.3 双闭环伺服系统
在电流闭环控制旳基础上,设计位置 调整器,构成位置伺服系统,位置调整 器旳输出限幅是电流旳最大值。 以直流伺服系统为例,对于交流伺服 系统也合用,只须对伺服电动机和驱动 装置应作对应旳改动。
3.3 双闭环伺服系统
Tm
R J CT Ce
Tl
La R
3.2 单闭环位置伺服系统
驱动器
电机
直流伺服系统控制对象构造图
采用PD调整器,其传递函数为
减速器
WAPR (s) WPD (s) K p (1 d s)
3.2 单闭环位置伺服系统
伺服系统开环传递函数
Wop (s)
s(Ts s
K ( d s 1)
1)(TmTl s2 Tms
3.5 复合控制旳伺服系统
前馈控制器旳传递函数选为
G(s) 1 W2 (s)
得到
m (s) 1
* m
(
s)
3.5 复合控制旳伺服系统
理想旳复合控制随动系统旳输出量可以完 全复现给定输入量,其稳态和动态旳给定误 差都为零。 系统对给定输入实现了“完全不变性” 。 需要引入输入信号旳各阶导数作为前馈控 制信号,但同步会引入高频干扰信号,严重 时将破坏系统旳稳定性,这时不得不再加上 滤波环节。
大型多工位压力机的液压系统的优化设计

大型多工位压力机的液压系统的优化设计液压系统是大型多工位压力机的核心组成部分,其设计的优化对于提高压力机的工作效率和性能具有重要意义。
本文将针对大型多工位压力机的液压系统进行优化设计,以提高压力机的工作效率和性能。
一、液压系统的组成大型多工位压力机的液压系统主要由液压泵站、液压缸、阀组和管路等组成。
液压泵站负责提供压力机所需的液压动力,液压缸负责实现压力机的升降运动,阀组负责控制液压油的流入和流出,管路负责将液压油传递到各个液压缸。
二、优化设计方案1. 选用适当的液压泵站在大型多工位压力机的液压系统中,选用适当的液压泵站对于保证液压系统的工作效率和性能至关重要。
我们可以根据压力机的工作条件和要求来选择液压泵站的类型和参数,如柱塞泵、齿轮泵等,以提供足够的液压功率和压力。
2. 合理设计液压缸的尺寸和参数液压缸是大型多工位压力机的主要执行机构,其尺寸和参数的设计对于保证压力机的工作效率和性能具有重要影响。
在设计液压缸时,需考虑到液压缸所需的工作力和行程,并匹配合适的液压缸类型和参数,如活塞直径、行程长度等。
3. 合理布置阀组和管路阀组和管路在大型多工位压力机的液压系统中起到控制和传递液压油的作用,其布置的合理性对于液压系统的工作效率和性能有直接影响。
在布置阀组和管路时,需遵循最短路径和最小阻力原则,以减小液压油的压力损失和流量波动,提高液压系统的响应速度和稳定性。
4. 采用先进的液压控制技术随着科技的发展,液压控制技术也得到了迅速发展。
在大型多工位压力机的液压系统中,采用先进的液压控制技术可以提高压力机的工作效率和性能。
例如,采用比例阀或伺服阀等精确控制液压油的流量和压力,可以实现压力机的精确控制和优化调节。
5. 合理选用液压油液压油作为液压系统的工作介质,其选用的合理性对于液压系统的工作效率和寿命有重要影响。
在选择液压油时,需考虑液压系统的工作温度、工作压力和密封要求等因素,并根据压力机的工作条件和要求选用合适的液压油类型和品牌。
机电一体化第六章伺服驱动控制系统设计

钟。 F.体积小、自定位和价格低是步进电动机驱动控制的三大优势。 G. 步进电机控制系统抗干扰性好
上一页 下一页
二、 伺服驱动控制系统设计的基本要求
1. 高精度控制 2. 3. 调速范围宽、低速稳定性好 4. 快速的应变能力和过载能力强 5. 6.
闭环调节系统。
(4) ①
② 调节方法。
(5) ① 使用仪器。用整定电流环的仪器记录或观察转速实际值波形,电
② 调节方法。
上一页 下一页
六、 晶体管脉宽(PWN)直流调速系统
晶体管脉宽直流调速系统与用频率信号作开关的晶闸管系统相比,具 (1) 由于系统主电源采用整流滤波,因而对电网波形影响小,几乎不 (2) 由于晶体管开关工作频率很高(在2 kHz左右),因此系统的 (3) 电枢电流的脉动量小,容易连续,不必外加滤波电抗器也可平稳 (4) 系统的调速范围很宽,并使传动装置具有较好的线性,采用Z2
上一页 下一页
(2) ① A. 步进电动机型号:130BYG3100D (其他型号干扰大) B. 静转矩15 N·m C. 步距角0.3°/0 6°
D. 空载工作频率40 kHz E. 负载工作频率16 kHz ② A. 驱动器型号ZD-HB30810 B. 输出功率500 W C. 工作电压85~110 V D. 工作电流8 A E. 控制信号,方波电压5~9 V,正弦信号6~15 V ③ 控制信号源。
(3) ① 标准信号控制系统(如图6-16) ②检测信号控制系统 (如图6-17)
③ 计算机控制系统(如图6-18)
上一页 返 回
图6-16 标准信号控制系统图 图6-17 检测信号控制系统图 图6-18 计算机控制系统图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案二
该方案(图2)中伺服电机经同步带轮、齿轮两级减速后,由曲柄连杆机构 变转动为移动,再经肘杆机构增力,传动较复杂,但由于有二级减速和肘杆增 力机构, 因而降低了伺服电动机的容量。 典型产品:等长肘杆型,广东锻压机床厂有限 公司开发的GDKS系列产品, 最大公称力6300kN; 三角肘杆型,日本小松开发的H1F系列产品,最 大公称力2000kN。
理软件”,可以管理运动方式、模具、工件、外围装置、图像之类的数据。
1.1
伺服压力机国外现状
日本AIDA和日本FANUC公司共同开发了一种高效率生产小型冲压件的伺服 电机的压力成型机,这种成型设备可用于生产多种引线的引线框、手表机芯 的精密齿轮、精密汽车零件等小型精密品。日本小松公司90年初试制了数字
1.2
伺服压力机国内现状
陆永辉、卢宗武、张策等人分别采用了混合驱动机构,用伺服电机与常 规电机混合驱动压力机。在这种方案中,常规电机用来传递主要动力,而伺 服电机则通过调整五杆机构来控制滑块的位移,以此可以实现冲压工艺的调
节。
目前国内在从事相关研究机构有,广东锻压集团、扬力集团、浙锻集团、 徐锻集团、扬锻集团、清华大学、香港中文大学、南京航空航天大学、河海 大学、华中科大、西安交大、南京理工大学、浙江大学、东南大学、广东工
图2
方案二
采用肘杆机构后使压力机具有更好的运动特性和动力特性,因为肘杆( 尤 其是三角肘杆) 机构具有以下特点: (1)在滑块的下死点附近具有更好的低速运动特性,可以更好满足金属材料 最大拉伸速度的限制要求。 (2) 滑块上下行速度曲线不对称,且具有一定的急回特性,可以更好适应 “ 快- 慢- 更快”的成形工艺运动要求,进而降低伺服驱动系统的加(减) 速 要求。 (3)具有更优的增力特性,可以降低伺服电机的容量和成本。因而,该方案 在单点压力机上具有良好的发展前景。
图8 1 机架 2 曲柄 3 连杆 4伺服电机 5 滚珠丝杠 6 滑轨内调整滑块 7 三副构件 8 下连杆 9 滑块
2.2
杆系构型反演设计理论
拓扑理论创新设计方法
1 上梁 2 行星齿轮减速器 3 上肘杆 4 连接平衡块 5 盘式永磁同步伺服电机 6 联轴器 7 第一螺母 8 螺杆 9 上连杆 10 第二螺母 11 下连杆 12 下肘杆 13 滑块
图7
方案七
该传动系统,采用行星齿轮减速器、上梁和肘杆之间的对称摆杆增力机构、双 肘杆增力机构等三级增力机构,能提供大的放大倍数,增力效果明显,有效增 力行程大;单根左右旋丝杠水平放置,减小了压力机的高度,整体结构尺寸较 小;滑块行程大,工作行程具有快速进给,慢速成型的特点,空行程具有“急 回特性”,工作效率高;采用对称结构,消除了偏载。
方案八
该方案采用复合驱动,由大功率电机和小功率伺服电 机共同驱动,大功率电机提供冲压的能量,小功率伺服电 机实现滑块位置和速度的调整。曲柄与机架通过转动副连 接,大功率电机驱动曲柄旋转;小功率伺服电机通过丝杠 驱动滑轨内的调节滑块;在曲柄和调节滑块的共同作用, 三副构件以较复杂的轨迹运动,在此过程中,带动下连杆 运动,最后驱动滑块上下运动,完成冲压过程。 该传动系统利用大功率普通电机和小功率伺服电机混 合驱动,通过精确控制伺服电机的运动,实现对滑块的冲 压速度和位置的控制和调节,解决了大功率伺服电机成本 高,控制系统要求较高的难题,而且三副构件的引入,使 滑块的压力工作曲线能更为多样化,实现冲裁、落料、弯 曲、成型及精压等工艺。
AMADA、AMINO、TOYO等公司,先后推出了采用该技术的伺服压力机、 伺服折弯机、伺服注塑机等设备。在此期间,机械压力机的传动结构 发生了很大变化,最大的创新点在于伺服电机取代了传统的主驱动电 机、飞轮、离合器和制动器,国内外的研究学者和压力机制造公司在 直接驱动方式上做了不少的探索。lO多年前,在美、日、欧等工业发 达国家就已经兴起了交流伺服电动机直接驱动压力机的研究与开发。
都采用了集成化的模块,按照模块化结构制造,因此,Schuler股份公司可以 为用户提供性能更强大的板材冲压设备。产品TSD2.250的具体参数为:公称 力2500kN,滑块行程长度60~250mm和滑块行程次数3—70次/分。
1.1
伺服压力机国外现状
美国协易(SEYI)公司推出了门型单轴(SDl系列)和门型双轴(SD2系列)
方案一
该方案(图1)采用直线电机直接驱动滑块做直线运动,无齿轮、同步带 轮等减速机构,无曲柄连杆、螺旋副等运动形式转换机构,无肘杆、多连杆
等增力机构, 实现所谓“零传动”, 具有结构简单、柔性加工、精确定位、
高效生产、节能环保等优点。但由于受直线电机功率和成本的限制,伺服机 械压力机的公称力很小,只有几十千牛, 一般用在微小型压力机上。 典型产品有:日本会田公司开发的LSF 系列产品,最大公称力10kN;日本山田DOBBY 公司开发的同类产品, 具有示教功能, 最大 压力为24kN;浙江大学开发的5~ 100kN伺 服压力机。
业大学等, 部分单位已经开发出初步样机。
2
大型伺服压力机机械本体
2.1
伺服机械压力机传动方案分析
2.2
杆系构型反演设计理论
Page
11
2.1
伺服机械压力机传动方案分析
为了提高伺服机械压力机的吨位与电机容量的比值,开发出低成本大吨 位的伺服机械压力机,国内外不少高校和企业正在以下3个方向进行研究:一 是以增力功能为目标,对各种传动机构进行串联式或并联式组合设计,以降 低伺服电机所需的扭矩和容量,进而降低设备的成本,常用的传动机构有带 轮副、齿轮副、蜗轮蜗杆副、丝杠螺母副、差动轮系、曲柄连杆、肘杆、多
化机械驱动的数控回转头压力机,其传动原理为伺服电机加精密螺旋。2003
年,小松公司又开发出新型伺服压力机,利用2台伺服电机通过皮带减速,带 动滚珠丝杆运动,再通过肘杆机构带动滑块上下运动。该公司先后推出了H1F、 H2F、H2W和HCP系列复合型伺服压力机。其产品H2W200H的具体参数为:公称
力2000kN,滑块行程长度150mm,滑块行程次数85次/分,滑块调节量120mm。
大型伺服压力机 控制系统设计
1 2
伺服压力机国内外现状
伺服压力机机械本体研究
伺服压力机控制系统研究
3
状
1.1
伺服压力机国外现状
1.2
伺服压力机国内现状
1.1
伺服压力机国外现状
近年来,由于大功率伺服电机的研究开发成功,由大功率伺服电
机驱动的新型机械设备也相应出现,如世界著名的KOMATSU、AIDA、
图3
方案四
该方案(图4)采用两台( 多台) 交流伺服电机或开关磁阻电机,分别经同步 带轮减速后,再由滚动螺旋副后串联了肘杆机构,因而该方案也具有方案2的优 点,该方案一般用于公称力较大的双点伺服机械压力机,但由于采用了螺旋副, 该方案存在一些缺点。 该方案存在的问题有: (1) 重载滚珠丝杠价格高、承载能力有限。 (2) 工作时电机需频繁换向。 (3) 需要精确的同步控制。
图4
方案六
该机构采用单台伺服电机驱动,经螺杆螺母,再经三角肘杆式连杆机构,具 有很好的载荷放大功能。应用于日本网野公司开发的大吨位连杆式伺服压力机中。
图6
方案七
该方案(图7)中伺服电机通过行星齿轮 减速器降低转速,提高输出扭矩,经联轴器驱 动滚珠丝杠,丝杠转动时带动其上对称分布的 螺母沿丝杠同时向中间精确移动,经螺母的移 动使上连杆驱动连接平衡块向下移动,由于对 称摆杆输入式增力机构作用,水平作用力将放 大一定倍数后转化为作用在连接平衡块上的垂 直力,连接平衡块向下移动时带动下连杆,下 连杆再驱动双肘杆机构,驱动滑块向下运动。 成型完后,电机反转,可使滑块迅速向上运动 回到上死点。
方案三
该方案(图3) 采用单台伺服电机驱动,经一级齿轮减速后,采用两个互相 啮合的双边传动小齿轮,分别将运动和动力传递给两个大齿轮,实现大齿轮的 异向回转,大齿轮再分别驱动两个曲柄、两个肘杆,进而共同驱动滑块运动。 该方案适用于单台电机驱动的双点压力机,是 方案2在双点压力机上的变种之一。 典型产品:日本AMINO公司开发的双点伺 服压力机。
1.1
伺服压力机国外现状
日本会田(AIDA)公司采用了自己开发的伺服马达和CNC控制系统推出了
NSl.D型的伺服压力机。其产品NSI.3000(D)的具体参数为:公称力3000kN, 公称力行程6mm,正常模式下滑块行程长度400mm和滑块行程次数30次/分。 日本天田(AMADA) 通过将伺服电动机与曲轴构造巧妙结合,实现灵活的行 程动作及在加工区域可以进行精确动作控制的数字伺服直接驱动装置。并于 2007年推出电动伺服压力机“SDEW2025”和“SDEW3025”。公称压力分别为 2000kN和3000kN。具备“振子”、“整形”、“重复”等7种运动模式。根据加 工对象选择运动模式,可进行高精度、稳定的加。此外,可增加用于在总公司 与工厂间交换程序及各种数据的网络功能,还准备了收集生产数据的“运转管
连杆等; 二是利用交流异步电机的低成本和大容量, 通过多自由度合成机构,
实现异步电机与伺服电机混合驱动, 以降低伺服电机的容量; 三是采用新型 电力拖动系统, 如利用直线电机、开关磁阻电机驱动伺服机械压力机,以降 低设备的成本。
2.1
伺服机械压力机传动方案分析
伺服机械压力机的冲压功能是由功能部件实现的,其功能部件主要由驱 动机构、传动机构和工作机构3 个子系统组成。表1 所示为国内外已经生产 的伺服机械压力机的功能分解与功能实现策略。
1.1
伺服压力机国外现状
德国舒勒(Schuler)股份公司最新研制开发了新一代压力机,该机采用了
适合于大批量或多品种生产的伺服驱动系统,大大提高了冲压设备的生产效 率和灵活性。推出了2500kN、3150kN、4000kN、5000kN和6300kN公称力的新
一代系列冲压设备,都配备了被称之为“PSE”的部件,而且所有的冲压设备