运动控制——伺服系统
伺服原理及运动控制介绍2017

伺服系统的实例
47
为什么用伺服
总体是说就是对运动控制特性的更高追求,促 使用户选用伺服系统
高精度的要求 响应速度的要求 平稳性的要求 …
48
伺服电机的主要技术参数(一)
功率:(单位:W,KW)100、200、 400、600、1KW…
持续电流Ic:(单位:A) 峰值电流Ip:(单位:A) 反电动势:(单位:V/千转/分钟) 相间电阻:(单位:Ω)
民用:自动封装、机械制造、航空航天、交通运输、石油 化工、家用电器;
军用:武器控制,如导弹火炮;
狭义地讲,就是伺服控制系统;
3
2、为什么会产生运动控制系统
现实需求:如减轻劳动强度、提高生产效率、 探索自然奥秘;
相关技术的进步:如电力电子、计算机、微 处理器;
3、控制方式
开环控制:控制过程只有顺向作用而没有反 向联系,如步进马达控制;
W ( s ) K e j
• 当相位延迟180度时,系统变成正反馈; • 对于正反馈系统,当K小于1时系统依然稳定; • 可见,K与1的关系对于系统的稳定性具有决定
性的作用; • 由此,引出了增益裕度和相位裕度的概念。
增益(dB)
20
10
0
-10
-21001
102
103
104
100
相位(度)
2、基本功能组成
3、发展历史
控制方式:由模拟控制到数字控制; 功率驱动:50年代后期的晶闸管、70年代后期的
门极可关断晶闸管(GTO)、电力双极型晶体管 (BJT)、电力场效应管(Power-Mosfet)、80 年代后期出现的绝缘栅极双极型晶体管(IGBT)、 目前开始广泛应用的IPM; 执行元件:从直流电机到交流电机
伺服系统

加减速时间设定
加减速用加减速时间的长短来设定,加减速时间越短,速度变化大, 系统易引起振荡;反之,系统的响应性变慢。加减速有线性加减速和指 数加减速。在线性加减速中,加速度有突变,应根据负载惯量核算最大 可达到的加速度,从而确定加速到最大速度所需要的时间;在指数加减 速中,加速度变化无突变,速度变化平稳,必须设定加减速总时间和加 减速升降速时间。
以移动部件的位置和速度作为控制量的 自动控制系统。
伺服系统
伺服系统组成
机电一体化技术
伺服系统组成
位置控制 + 位置控制 调节器 — 速度控制
+
—
--
位置 指令
速度控制 调节器
功率 驱动
机械传动机构
实际速度反馈 速度检测 电机 实际位置反馈 位置检测
伺服系统
伺服系统组成
机电一体化技术
基本工作原理
伺服系统
伺服系统参数
机电一体化技术
v、a v a
v、a
v
a
O t O
ta
t1
ta
t2
t
线性加减速
指数加减速
伺服系统
伺服系统参数
机电一体化技术
阻尼
运动中的机械部件易产生振动,其振幅取决于系统的阻尼和固有频率, 系统的阻尼越大,振幅越小,且衰减越快。运动副(特别是导轨)的摩擦阻 尼占主导地位,实际应用中一般将摩擦阻尼简化为粘性摩擦阻尼。系统的粘 性摩擦阻尼越大,系统的稳态误差越大,精度越低。对于质量大、刚度低的 机械系统,为了减小振幅,加速衰减。可增大粘性摩擦阻尼。
位置检测装置将检测到的移动部件的实 际位移量进行位置反馈,与位置指令信号进 行比较,将两者的差值进行位置调节,变换 成速度控制信号,控制驱动装置驱动伺服电 动机以给定的速度向着消除偏差的方向运动,
电力拖动自动控制系统:运动控制系统:第九章

图9-12 双环位置伺服系统结构图
§9.3伺服系统的设计
三.双环位置伺服系统
系统的开环传递函数为
W op (s)
系统的开环放大系数
K p ( i s 1) CT /( jJ ) K ( i s 1) 3 2 is s (Ti s 1) s (Ti s 1)
K
三.双环位置伺服系统
由Routh稳定判据求得系统稳定的条件
i d Ti ( i d ) K ( i d )( i d Ti ( i d )) 1
图9-13 采用PID控制的双环控制伺服系统开环传递函数对数幅频特性
§9.3伺服系统的设计
常用的调节器有比例-微分(PD)调节器、比例-积分(PI)调 节器以及比例-积分-微分(PID)调节器,设计中可根据实际 伺服系统的特征进行选择。
§9.3伺服系统的设计
一.调节器及其传递函数
在系统的前向通道上串联PD调节器校正装置,可以使相位超前, 以抵消惯性环节和积分环节使相位滞后而产生的不良后果。
机械传动机构的状态方程
d m dt j
§9.2伺服系统控制对象的数学模型
一.直流伺服系统控制对象的数学模型
驱动装置的近似等效传递函数
状态方程
Ks Ts s 1
dUd 0 Ks 1 Ud0 uc dt Ts Ts
§9.2伺服系统控制对象的数学模型
一.直流伺服系统控制对象的数学模型
图9-11 双环位置伺服系统
§9.3伺服系统的设计
三.双环位置伺服系统
忽略负载转矩时,带有电流闭环控制对象的传递函数为
Wobj ( s )
伺服控制器的运动控制算法介绍

伺服控制器的运动控制算法介绍伺服控制器是一种用于实现精确运动控制的设备,广泛应用于工业自动化、机械加工和机器人等领域。
它通过接收传感器反馈信号,对执行器施加控制,实现定位、速度和力控制等功能。
而伺服控制器在实现运动控制的过程中,依赖于各种算法来实现精确的位置反馈和稳定的控制。
1. 位置控制算法位置控制是伺服控制器最基本的功能之一。
位置控制算法通过接收传感器反馈的位置信号,并与预设的目标位置进行比较,计算出控制信号以驱动执行器运动到目标位置。
常用的位置控制算法有PID控制算法和模型预测控制算法。
PID控制算法是一种经典的控制算法,通过比较实际位置与目标位置之间的差异,并计算出控制信号。
PID算法包含三个参数:比例、积分和微分,可以根据实际应用进行调整,以实现更好的控制效果。
模型预测控制算法则基于数学模型对系统进行预测,并根据预测结果计算出控制信号。
这种算法可以提前对系统进行优化,从而实现更精确的位置控制。
2. 速度控制算法除了位置控制,伺服控制器还可以实现精确的速度控制。
速度控制算法通过接收传感器反馈的速度信号,并与预设的目标速度进行比较,计算出控制信号以控制执行器的运动速度。
常用的速度控制算法有PID控制算法和模型预测控制算法。
与位置控制算法类似,PID控制算法在速度控制中同样适用。
通过根据实际速度与目标速度之间的差异计算控制信号,PID算法能够实时调整控制信号,从而实现精确的速度控制。
而模型预测控制算法则通过对速度进行数学建模和预测,实现更精确的速度控制效果。
3. 力控制算法除了位置和速度控制,伺服控制器还可以实现精确的力控制。
力控制算法通过接收传感器反馈的力信号,并与预设的目标力进行比较,计算出控制信号以控制执行器施加的力。
常用的力控制算法有力矩控制算法和阻抗控制算法。
力矩控制算法是一种常用的力控制算法,通过根据实际力和目标力之间的差异计算控制信号,实现精确的力控制。
力矩控制算法能够根据实际应用需求进行调整,从而实现不同力度的控制。
伺服系统的概念与分类

伺服系统的分类
(3)按照控制方式分类——开环伺服系统
组成原理图如图所示:
伺服系统的分类
(3)按照控制方式分类——半闭环伺服系统
半闭环伺服系统不对控制对象的实际位置进 行检测,而是用安装在伺服电机轴端上的速度、 角位移测量元件测量伺服电机的转动,间接地测 量控制对象的位移,角位移测量元件测出的位移 量反馈回来,与输入指令比较,利用差值来校正 伺服电机的转动位置。
机电伺服系统
以电动机作为动力驱动元件的伺服系统。
02 伺服系统的分类
伺服系统的分类
分类方法
按照驱动方式分类 按照功能特征分类 按照控制方式分类
伺服系统的分类
(1)按照驱动方式分类
伺服系统的分类
(1)按照驱动方式分类
电气 伺服
直流伺服 系统
交流伺服 系统
小惯量直流伺服电动机 永磁直流伺服电动机 交流异步伺服电动机 永磁同步伺服电动机
伺服系统的分类
(3)按照控制方式分类——半闭环伺服系统
组成原理图如图所示:
伺服系统的分类
(3)按照控制方式分类——闭环伺服系统
闭环伺服系统带有检测装置,可以直接 对工作台的位移量进行检测。在闭环伺服系 统中,速度、位移测量元件不断地检测控制 对象的运动状态。
伺服系统的分类
(3)按照控制方式分类——闭环伺服系统
伺服系统的分类
(2)按照功能特征分类
伺服系统的分类
(3)按照控制方式分类
伺服系统的分类
(3)按照控制方式分类——开环伺服系统
开环伺服系统没有速度及位置测量元件,伺 服驱动元件为步进电机或电液脉冲马达。由于这 种控制方式对传动机构或控制对象的运动情况不 进行检测与反馈,输出量与输入量之间只有前向 作用,没有反向联系,故称为开环伺服系统。
基于PLC的伺服系统的运动控制系统设计

基于PLC的伺服系统的运动控制系统设计本文没有目录。
II引言本文介绍了一个运动控制系统,该系统可以实现对伺服电机的精确控制。
该系统由安装台面、XY伺服轴和旋转工作盘三部分组成。
通过个人计算机与PLC通讯输入运行程序,设定运行参数后,QD75P2系统模块控制伺服放大器的输出,之后伺服放大器给伺服电机输出信号,伺服电机反馈信号到伺服放大器,从而驱动跟踪圆盘上的磁珠转动。
III运动控制系统运动控制(nControl)通常是指在复杂条件下,将预定的控制方案、规划指令转变成期望的机械运动,实现机械运动精确的位置控制、速度控制加速度控制、转矩或力的控制。
电气运动控制是由电力拖动发展而来的,电力拖动或电气传动是对以电动机为对象的控制系统的通称。
从电力拖动开始,经历四十多年的发展过程,现代运动控制已成为一个以控制理论为基础,涵盖电机技术、电力电子技术、微电子技术、传感器检测技术、信息处理技术、自动控制技术、微计算机技术和计算机仿真和辅助制造技术等许多学科,且多种不同学科交叉应用的控制技术。
IV运动控制系统的构建该系统由两工位运动控制系统组成:2套伺服放大器及伺服电机、QD75系统模块、变频器、三菱可编程序控制器、触摸屏等组成。
构建“PLC+伺服放大器+伺服电机+触摸屏”的运动控制系统。
运动控制系统多种多样,但从基本结构上看,一个典型的现代运动控制系统的硬件主要由上位计算机、运动控制器、功率驱动装置、电动机、执行机构和传感器反馈检测装置等部分组成。
其中的运动控制器是指以中央逻辑控制单元为核心,以传感器为信号敏感元件,以电机或动力装置和执行单元为控制对象的一种控制装置。
它的主要任务是根据运动控制的逻辑、数学运算,为电机或其它动力和执行装置提供正确的控制信号。
V系统组成安装台面、XY伺服轴、旋转工作盘三大部分构成了运动控制模型。
图中上端为XY十字工作台(伺服电机控制),考虑到机械强度的问题,Y轴有两个平行轴固定,其中左侧的为主动驱动轴,右侧为从动轴;X轴平面装有霍尔传感器;上方为旋转工作台,工作盘由交流电机(电机的速度由变频器控制)带着转动工作时,在工作盘放入磁钢,当工作盘转动时,X轴上部安装的传感器须一直能够对应到磁钢(XY轴随动,传感器保持检测到磁钢而不脱开)。
伺服系统的组成和原理

伺服系统的组成和原理伺服系统是一种控制系统,用于控制机械系统或过程的运动和位置。
它通常由四个主要组成部分组成:传感器、执行器、控制器和电源。
1.传感器:传感器用于检测机械系统的位置和运动。
常见的传感器包括编码器、位置传感器和加速度传感器。
编码器用于测量转动运动的角度和速度,位置传感器用于测量直线运动的位置和速度,而加速度传感器则用于测量加速度。
2.执行器:执行器是伺服系统中的执行元件,用于实际控制机械系统的运动。
最常见的执行器是伺服电机,它由电动机和驱动器组成。
电动机将电能转化为机械能,而驱动器控制电动机的速度和位置。
3.控制器:控制器是伺服系统的“大脑”,用于处理传感器提供的反馈信号,并根据预设的控制算法生成相应的控制信号。
控制器通常使用微处理器或数字信号处理器来执行这些计算。
控制器还可以根据需要进行参数调整和系统校准。
4.电源:伺服系统需要稳定和可靠的电源来提供所需的电能。
电池、直流电源或交流电源都可以作为伺服系统的电源。
1.传感器通过测量机械系统的位置和运动并将其转换为电信号。
2.传感器的信号输入到控制器,在控制器中进行计算和处理。
控制器根据预设的控制算法,比较实际位置和期望位置之间的差异。
如果差异较大,控制器发出控制信号以调整机械系统的运动。
3.控制信号通过驱动器送至执行器。
驱动器根据控制信号控制伺服电机的速度和位置。
驱动器通常与电机直接连接,将电机转子的转动运动转换为线性或旋转的机械运动。
4.机械系统根据电机的控制运动。
反馈传感器不断监测机械系统的位置和运动,并将其反馈给控制器。
5.控制器使用反馈信号重新计算控制信号,并不断对机械系统进行调整,以使实际位置尽可能接近期望位置。
什么是伺服控制系统

什么是伺服控制系统
伺服控制系统是一种智能化电子控制系统,用于实现自动化机械、
设备等的精密控制。
该系统的主要功能是能够将机械、电子和控制技
术等多种技术手段结合起来,以实现对于电机或者其他设备的精准控制,从而达到更高效、更稳定的运转状态。
伺服控制系统的工作原理是利用传感器实时监测设备的运动状态,
并通过微处理器、控制器等计算机硬件设备,在此基础上对于设备的
运动状态进行实时控制,实现设备运动不受外界干扰,运动更加稳定、快速响应、运动路径更加精准。
伺服控制系统可以应用在多种领域,包括但不限于加工机床、自动
化装备、机器人、无人驾驶等。
在工业生产中,伺服控制系统可以提
高生产效率,改善产品质量,降低设备运行成本。
此外,随着技术的不断发展,伺服控制系统的功能从最初的位置控制、速度控制、扭矩控制逐渐向更高级的控制模式上发展,如自适应
控制、智能控制、模糊控制等,此类高级模式能够更好地满足现代工
业对于高精度、高速度、高效率生产的需求。
总结来看,伺服控制系统作为一种高精度、高效率、高可靠性的自
动化控制技术,已经成为了现代工业生产的核心竞争力之一,其应用
前景广阔,未来还将继续在工业生产和汽车工业、电子航空等领域中
得到广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、执行元件类型及特点
1. 电气执行元件 电气执行元件包括直流(DC)伺服电机、交流(AC) 伺服电机、步进电机以及电磁铁等,是最常用的执行元 件。对伺服电机除了要求运转平稳以外,一般还要求动态 性能好,适合于频繁使用,便于维修等 2.液压式执行元件 液压式执行元件主要包括往复运动油缸、回转油缸、 液压马达等,其中油缸最为常见。在同等输出功率的情况 下,液压元件具有重量轻、快速性好等特点 3.气压式执行元件 气压式执行元件除了用压缩空气作工作介质外,与液 压式执行元件没有区别。气压驱动虽可得到较大的驱动 力、行程和速度,但由于空气粘性差,具有可压缩 性,故不能在定位精度要求较高的场合使用。
二、伺服电机及其控制
在自动控制系统中,伺服电动机将电压信号转 换电动机的转速 和转向将快速、准确地跟着变化。目前常用的伺 服电动机有直流伺服电机、交流伺服电机和步进 电机。
二、伺服电机及其控制
1 直流伺服电动机
(1) 调速方式
二、伺服系统类型
从系统组成元件的性质来看,有电气伺服系统、 液压伺服系统和电气—液压伺服系统、电气—气 动伺服系统等;
从系统输出量的物理性质来看,有速度或加速 度伺服系统和位置伺服系统等;
从系统中所包含的元件特性和信号作用特点来 看,有模拟式伺服系统和数字式伺服系统;
从系统结构特点来看,有单回路伺服系统、多 回路伺服系统和开环伺服系统、闭环伺服系统。
二、伺服系统类型
例:数控机床伺服系统,
由图可以看出,它与一般的反馈控制系统一样, 也是由控制器、被控对象、反馈测量装置等部分 组成。
三、伺服系统的基本要求
对伺服系统的基本要求有稳定性、精度和快速 响应性。
稳定性是指作用在系统上的扰动消失后,系统 能够恢复到原来的稳定状态下运行或者在输入指 令信号作用下,系统能够达到新的稳定运行状态 的能力。
直流伺服电机的机械特性方程为:
n
Uc Ce
R CeCt2
T
式中,U c 一电枢控制电压; R 一电枢回路电
阻; —每极磁通;C
的结构常数。
e
、Ct
—分别为电动机
二、伺服电机及其控制
由上式知,直流伺服电机的控制方式如下: (1)调压调速(变电枢电压,恒转矩调速) (2)调磁调速(变励磁电流,恒功率调速) (3)改变电枢回路电阻调速
1、工作原理:
当第一个脉冲通入A相时,磁通企图沿着磁阻最小的 路径闭合,在此磁场力的作用下,转子的1、3齿要和A 级对齐。当下一个脉冲通入B相时,磁通同样要按磁阻最 小的路径闭合,即2、4齿要和B级对齐,则转子就顺逆 时针方向转动一定的角度。
画出系统的传递函数框图,可得到系统的开环传递 函数。
二、伺服电机及其控制
二、伺服电机及其控制
2. 交流伺服电动机
交流伺服电动机的接线图
杯形转子伺服电动机的结构图
1—励磁绕组 2—控制绕组 3—内定子 4—外定子 5—转子
二、伺服电机及其控制
(1) 原理: 励磁绕组WF接到电压为的交流电网上,控制
G6 (s)
式中:
s(Td
s2
Kd Tms
1)
Kd
Cm Rd B CeCm
Td
JLd Rd B CeCm
Tm
JRd BLd Rd B CeCm
Td Tm ——电磁时间常数和机电时间常数
Ld Rd——电枢绕组的电感和电阻 Ce Cm——反电动势常数和力矩常数 B J ——阻尼和电机轴转动惯量
二、伺服电机及其控制
5)直流电机 直流电机原理 见右图
二、伺服电机及其控制
设输入信号为Ud ,输出为电机转角 则其
传递函数:
Ld
did dt
Rdid
Ed Ced Ce
M d Cmid
Ud
d
dt
Ed
d 2 d
M d J dt 2 B dt
拉式变换,消去id(s)后可得电机的传递函
数G6(S)
二、伺服电机及其控制
1)校正环节:一般速度环调节器为比例环节 G1(S) =Kp
位置环为PI调节
G2
(
s)
K
v
(1
1 Ti s
)
2)检测环节:速度检测: G3 (s) K fv
位置检测: G4 (s) K fp
3)整流装置(惯性环节)G5
(s)
ks Ti1s
1
各种整流装置的时间常数见下表
二、伺服电机及其控制
第五章 伺服系统
5.1 概述 5.2 伺服系统的执行元件及控制 5.3 伺服系统设计
5.1 概述
一、伺服系统概念 二、伺服系统的类型 三、伺服系统的基本要求
一、伺服系统概念
伺服系统是自动控制系统的一类,它的输出变 量通常是机械或位置的运动,它的根本任务是实 现执行机构对给定指令的准确跟踪,即实现输出 变量的某种状态能够自动、连续、精确地复现输 入指令信号的变化规律。
二、伺服电机及其控制
(2) 控制:
幅值控制原理图
不同控制电压下的 机械特性曲线
由右图可知,在一定负载转矩下,控制电压越高,转差率 越小,电动机的转速就越高,不同的控制电压对应着不同的转 速。这种维持与相位差为90º,利用改变控制电压幅值大小来 改变转速的方法,称为幅值控制方法。
三、步进电动机及其控制
常用的是前面2种调速方式。
二、伺服电机及其控制
(2) 直流电机的功率驱动 直流电机的调速电路目前以脉冲宽度调制电路应
用最为广泛。
桥式(H形)PWM变换器主电路
二、伺服电机及其控制
作用在电机两端的 平均电压为:
UAB
( 2ton T
1)Us
二、伺服电机及其控制 (3) 直流伺服系统模型
绕组接到控制电压上,当有控制信号输入时,两 相绕组便产生旋转磁场。该磁场与转子中的感应 电流相互作用产生转矩,使转子跟着旋转磁场以 一定的转差率转动起来,其旋转速度为
n 60 f (1 s) p n0 (1 s)
式中,f为交流电源频率(Hz);p为磁极对数; n0为电动机旋转磁场转速(r/min);s为转差率 。
精度是伺服系统的一项重要的性能要求。它是 指其输出量复现输入指令信号的精确程度。
快速响应性是衡量伺服系统动态性能的另一项 重要指标。快速响应性有两方面含义,一是指动 态响应过程中,输出量跟随输入指令信号变化的 迅速程度,二是指动态响应过程结束的迅速程度。
5.2 伺服系统的执行元件及控制
一、执行元件类型及特点 二、伺服电机及其控制 三、步进电机及其控制