电气节能技术的现状及应用前景
2024年浅析电气节能技术与电力新能源的发展应用

2024年浅析电气节能技术与电力新能源的发展应用一、电气节能技术概览电气节能技术指的是一系列以减少电能消耗、提高能源利用效率为目的的技术措施和策略。
这些技术旨在从供、输、配、用等各个环节优化电力系统的运行,从而降低能源消耗和运营成本,减少对环境的影响。
随着全球能源危机和环境问题的日益突出,电气节能技术在全球范围内得到了广泛的关注和应用。
二、主要节能技术类型电气节能技术涵盖了多个领域和方面,主要包括以下几种类型:高效电机与电器技术:通过研发和应用高效电机、高效变压器、高效照明电器等,减少电能损耗,提高能源利用效率。
能源管理与控制技术:通过能源管理系统的建立和优化,实现对能源使用的实时监控和智能控制,进一步提高能源使用效率。
电力电子与变频技术:利用电力电子技术和变频技术,实现对电机和设备的精确控制,降低能源消耗。
无功补偿与谐波治理技术:通过无功补偿和谐波治理,减少电网的无功损耗和谐波污染,提高电网的供电质量。
三、电力新能源发展概况电力新能源主要指的是可再生能源和清洁能源,包括太阳能、风能、水能、生物质能等。
这些能源具有资源丰富、清洁环保、可持续利用等优点,是未来能源发展的重要方向。
随着技术的不断进步和政策的支持,电力新能源在全球范围内得到了快速的发展。
四、新能源技术应用领域新能源技术在多个领域得到了广泛的应用,主要包括:太阳能光伏发电:利用太阳能电池将太阳能转换为电能,广泛应用于户用光伏、光伏电站等领域。
风力发电:利用风力驱动风力发电机发电,是一种清洁、可再生的能源利用方式。
水力发电:利用水流驱动水轮机发电,具有清洁、可再生的特点,广泛应用于水电站等领域。
生物质能发电:利用生物质能燃烧发电,可以实现废物的资源化利用,具有环保和经济效益。
五、节能与新能源技术的融合发展电气节能技术与电力新能源技术的发展是相辅相成的。
一方面,电气节能技术的应用可以降低电力系统的能耗,为新能源技术的发展提供更多的空间;另一方面,新能源技术的应用可以进一步推动电力系统的清洁化和低碳化,为电气节能技术的应用提供更多的可能。
浅析电气控制技术应用现状及其发展趋势

浅析电气控制技术应用现状及其发展趋势电气控制技术是现代工业中的重要组成部分,它广泛应用于自动化生产过程中,能够有效地提高生产效率,降低能源消耗,提高产品质量。
随着科技的不断进步和工业的不断发展,电气控制技术也在不断创新和发展,为各行各业带来了许多新的机遇和挑战。
一、电气控制技术应用现状1. 工业自动化生产在工业生产中,电气控制技术得到了广泛应用。
在汽车制造行业中,生产线上的各个环节都需要电气控制技术来实现自动化生产,包括焊接、装配、喷涂等环节。
这些环节都离不开PLC控制、传感器检测和电机驱动等电气控制设备。
2. 智能家居系统随着人们对生活质量要求的提高,智能家居系统也逐渐成为了现实。
通过电气控制技术,可以实现家居设备的智能化控制,包括照明、空调、安防等。
人们可以通过手机、电脑等设备对家居设备进行远程控制,实现了智能化、便捷化的生活。
3. 能源管理系统电气控制技术在能源管理领域也有广泛应用。
通过对电力系统的监测和控制,可以实现对电力负荷的合理分配和调度,提高能源利用率,降低能源消耗。
电气控制技术也可以应用于可再生能源的开发和利用,如风力发电、太阳能发电等。
二、电气控制技术的发展趋势1. 智能化和网络化随着人工智能技术的不断发展,智能化已经成为了电气控制技术的重要发展趋势。
未来的电气控制系统将更加智能化,能够实现自主学习、自适应和自我优化。
电气控制系统也会更加网络化,通过互联网实现设备之间的协同工作,提高生产效率和管理水平。
2. 绿色环保和节能在未来的发展中,电气控制技术将更加注重环保和节能。
在工业生产中,通过对生产过程的精细控制和优化,减少能源消耗和排放,实现绿色生产。
电气控制技术也将更多地应用于可再生能源领域,提高可再生能源的利用率。
3. 高效、高速、高精度未来的电气控制技术将更加注重系统的高效、高速、高精度。
在工业自动化生产中,需要实现对生产过程的高速、高精度控制,以适应生产线的快速变化和产品的高要求。
电气工程技术在节能减排中的应用与前景

电气工程技术在节能减排中的应用与前景随着全球能源消耗和环境污染问题的日益凸显,节能减排成为了各个领域亟需解决的重要问题。
在这个背景下,电气工程技术的应用不仅成为了实现节能减排的重要手段,也为未来的节能技术发展带来了许多前景。
本文将探讨电气工程技术在节能减排中的应用与前景。
一、电气工程技术在建筑领域的节能应用(1)智能照明系统智能照明系统是电气工程技术在建筑领域的一项重要应用。
通过使用传感器和智能控制系统,可以实现根据室内光线情况自动调节灯光亮度和开启时间,以达到节能的目的。
(2)高效空调系统电气工程技术在空调系统中的应用同样能够实现节能效果。
利用变频技术和智能控制系统,可以实现按需调节室内温度和湿度,避免能源的浪费,提高空调系统的效能。
(3)建筑能源管理系统通过电气工程技术,在建筑能源管理系统中引入监测和控制设备,可以实时监测建筑物内能源的使用情况,及时发现能源浪费的问题,并通过智能控制系统进行调节,提高能源的利用效率,从而实现节能减排的目标。
二、电气工程技术在工业领域的节能应用(1)电机系统优化工业领域中的电机系统通常是能耗较大的设备之一。
通过采用高效的电机、变频器和智能控制系统,可以降低电机系统的能耗,提高工作效率,实现节能减排。
(2)智能制造和自动化控制借助电气工程技术,工业领域可以实现智能制造和自动化控制。
自动化控制不仅可以提高生产效率,还能避免人为因素导致的能源浪费,帮助企业在节约资源和减少排放方面取得更好的效果。
三、电气工程技术在交通领域的节能应用(1)电动交通工具电气工程技术的一个重要应用领域就是电动交通工具的研发和推广。
相对于传统的燃油车辆,电动交通工具具有零排放、低能耗的特点,是实现交通行业节能减排的有效手段。
(2)智能交通系统利用电气工程技术,可以建设智能交通系统,通过智能信号灯、智能交通调度和交通数据分析等手段,实现交通流量的优化调度,减少路况拥堵,降低车辆的能耗和排放。
未来展望电气工程技术在节能减排中的应用前景广阔。
电气及其自动化在节能降耗方面的创新应用

电气及其自动化在节能降耗方面的创新应用在当今社会,能源问题日益严峻,节能降耗成为了各个领域关注的焦点。
电气及其自动化技术作为现代工业和生活中不可或缺的一部分,在节能降耗方面发挥着越来越重要的作用。
通过不断的创新应用,电气及其自动化技术为实现能源的高效利用和可持续发展提供了有力的支持。
电气及其自动化技术在工业生产中的节能降耗应用十分广泛。
在电机驱动系统中,采用变频调速技术可以根据实际负载需求灵活调整电机转速,避免了电机在工频运行时的能源浪费。
例如,在风机、水泵等设备中,通过变频调速可以显著降低能耗。
传统的定速运行方式往往导致设备在低负载时仍以高功率运行,而变频调速能够使设备根据实际工况精确匹配功率输出,从而大大提高了能源利用效率。
智能控制系统也是电气及其自动化在节能降耗方面的重要创新。
通过对生产过程中的各种参数进行实时监测和分析,智能控制系统可以自动调整设备的运行状态,实现优化控制。
例如,在工厂的照明系统中,采用智能感应控制,根据光照强度和人员活动情况自动调节灯光亮度和开关,避免了无人区域的长明灯现象,有效降低了照明能耗。
在空调系统中,智能控制可以根据室内外温度、人员数量等因素自动调节温度和风量,在保证舒适度的前提下降低能耗。
电气设备的优化选型对于节能降耗也具有重要意义。
在选择变压器、开关柜等设备时,应优先考虑高效节能型产品。
新型的节能变压器具有更低的空载损耗和负载损耗,能够有效降低电力传输过程中的能量损失。
同时,合理配置电气设备的容量,避免“大马拉小车”的情况,也能够提高设备的运行效率,减少能源浪费。
在能源管理方面,电气及其自动化技术为企业提供了更加精准和高效的手段。
能源管理系统可以实时采集和分析企业的能源消耗数据,帮助企业发现能源浪费的环节和原因。
通过对这些数据的深入挖掘,企业可以制定针对性的节能措施和管理策略,实现能源的精细化管理。
例如,通过能源管理系统发现某条生产线在特定时间段内能耗过高,经过进一步分析,可能是设备老化、操作不当或者工艺不合理等原因导致。
电气行业的现状与发展趋势

电气行业的现状与发展趋势电气行业是指以电力工程、电子工程为主要内容的行业,是现代工业的基础和支撑。
电气行业的现状和发展趋势主要体现在以下几个方面:一、现状:1. 产业规模逐年扩大:随着国民经济的不断发展,电气行业的产业规模逐年扩大。
电力工程、电能计量、输配电设备、电力传输与变换设备等领域的市场需求不断增加,各类电力设备和电子产品的产量和销售额也在稳定增长。
2. 技术创新推动行业进步:电气行业在技术创新方面取得了重大突破,如智能电网、可再生能源的开发利用、高效节能电器的研发等。
这些技术的应用促进了电气行业的发展和提升,提高了生产效率和能源利用效率。
3. 产业结构优化升级:电气行业正面临着淘汰落后产能、提升产业结构和技术升级的任务。
随着产业结构的优化升级,行业内高端产品、高附加值产品和绿色环保产品的比重逐步增加,产品质量和技术水平不断提高。
二、发展趋势:1. 绿色环保成为行业发展的重要方向:在全球环境保护意识不断提升的背景下,绿色环保成为电气行业发展的重要方向。
未来电气行业将加大技术研发力度,推动绿色低碳技术的应用,提高能源的利用效率,降低能源的消耗和排放。
2. 智能化应用的发展:随着物联网、人工智能等新技术的兴起,智能化已经成为电气行业的发展趋势。
未来,电气产品和设备将实现互联互通,智能化应用将广泛应用于电力传输、配电、用电等各个环节,提高电气系统的安全性、稳定性和可控性。
3. 新能源的广泛应用:随着可再生能源的快速发展和应用,电气行业将积极推动新能源的广泛应用。
太阳能、风能等新能源将成为未来电力供应的重要来源,相关设备和技术也将得到快速发展和应用。
4. 国际竞争的加剧:随着全球经济一体化进程的不断推进,电气行业的国际竞争将愈发激烈。
未来,电气企业需要加强与国际先进企业的合作和交流,提高技术研发能力和核心竞争力,积极参与国际市场竞争。
总之,电气行业正处于发展的关键时期,面临着机遇和挑战。
未来,随着科技进步和产业转型升级的推动,电气行业将继续保持快速发展,同时需要加强技术研发和创新能力,推动绿色、智能、可持续发展的方向前进。
电气工程中电力电子技术的应用现状与前景

电气工程中电力电子技术的应用现状与前景在当今的电气工程领域,电力电子技术犹如一颗璀璨的明星,发挥着至关重要的作用。
它不仅极大地改变了电能的变换、控制和应用方式,还为电气工程的发展带来了前所未有的机遇和挑战。
电力电子技术是一门利用电力电子器件对电能进行变换和控制的技术。
其核心在于通过对半导体器件的精确控制,实现电能形式的转换,如交流到直流、直流到交流、直流到直流以及交流到交流等。
这些转换过程在电气工程的各个领域都有着广泛而深入的应用。
在电力系统中,电力电子技术的应用可谓是无处不在。
高压直流输电(HVDC)是其中的一个典型例子。
传统的交流输电方式在长距离、大容量输电时存在诸多限制,如线路损耗大、稳定性差等。
而 HVDC系统通过电力电子换流器将交流电能转换为直流电能进行传输,有效地降低了线路损耗,提高了输电效率和稳定性。
此外,灵活交流输电系统(FACTS)也是电力电子技术在电力系统中的重要应用。
FACTS装置可以快速、灵活地控制电力系统中的潮流、电压和无功功率,增强电力系统的稳定性和可靠性。
在新能源领域,电力电子技术更是扮演着不可或缺的角色。
随着太阳能、风能等可再生能源的快速发展,其发电的间歇性和波动性给电网的接入和稳定运行带来了巨大挑战。
电力电子变换器作为新能源发电系统与电网之间的接口,能够实现电能的高效变换和稳定控制。
例如,在太阳能光伏发电系统中,光伏逆变器将直流电转换为交流电并接入电网;在风力发电系统中,变流器则负责将风机输出的不稳定电能进行变换和控制,以满足电网的要求。
在工业领域,电力电子技术广泛应用于电机调速、电源供应等方面。
交流调速系统取代了传统的直流调速系统,大大提高了电机的运行效率和控制精度。
同时,各种高性能的电源,如不间断电源(UPS)、开关电源等,也都是基于电力电子技术实现的。
这些电源具有效率高、体积小、重量轻等优点,为工业生产和设备运行提供了可靠的保障。
在交通运输领域,电力电子技术的应用推动了电动汽车和轨道交通的发展。
电气行业现状及发展趋势

电气行业现状及发展趋势
电气行业是指生产电气产品和提供电气服务的企业集合。
这个行
业涵盖了电力、电力电子、电机、电缆、电器、信息通讯等多个领域,与国家经济、国防、工业、农业、建筑、运输等各个领域密切相关。
当前,电气行业正在经历快速转型,由传统制造向智能制造、数
字化、网络化和智慧化发展。
随着国民经济的稳步增长,以及用户对
电气产品和服务日益提高的需求和要求,电气行业的前景很广阔。
具体表现如下:
1、智能化:智能化是电气行业的重要趋势。
智能化技术可以提高
电气产品的安全性和性能,并实现更高效、更智能的生产。
2、节能减排:随着国际和国内的环境保护要求不断加强,电气行
业也在不断推进节能减排技术,研发新型的高效、低能耗产品。
3、新能源:电气行业作为电力行业的支柱,也积极发展新能源和
可再生能源技术。
同时,电气行业还通过电池储能、智能电网等技术,实现多能互补,使节能减排、绿色发展成为可能。
4、数字化、网络化:电气行业生产模式正在向数字化、网络化方
向转变。
数字化技术可以实现数据共享、设备维护保养及监控等管理
操作,提高资源利用效率和企业的生产效益。
总结来说,电气行业在智能化、节能减排、新能源和数字化、网络化等方面都具有广阔的发展前景。
这也为电气企业提供了一个更好的投资和发展机会,对于经济的全面发展具有不可替代的作用。
电气工程及其自动化的发展现状及发展趋势

电气工程及其自动化的发展现状及发展趋势随着科技的不断进步,电气工程及其自动化领域也在不断发展。
本文将探讨电气工程及其自动化的发展现状以及未来的发展趋势。
一、电气工程的发展现状1.1 电气工程在能源领域的应用- 电气工程在能源领域的应用越来越广泛,包括传统能源和新能源。
传统能源方面,电气工程在火电、水电、核电等发电领域发挥着重要作用。
而在新能源方面,电气工程在太阳能、风能等领域也有着重要应用。
- 电气工程在能源领域的应用不仅提高了能源利用效率,还有助于减少对环境的影响,推动了清洁能源的发展。
1.2 电气工程在工业自动化领域的应用- 电气工程在工业自动化领域的应用也越来越广泛。
自动化生产线、智能工厂等都少不了电气工程的支持。
电气工程通过传感器、控制系统等技术,实现了工业生产的智能化和自动化。
- 电气工程在工业自动化领域的应用大大提高了生产效率,降低了成本,同时也提高了产品质量和稳定性。
1.3 电气工程在交通运输领域的应用- 电气工程在交通运输领域的应用也十分重要。
电动汽车、高铁、地铁等交通工具都少不了电气工程的支持。
电气工程在交通运输领域的应用不仅提高了交通工具的能效,还有助于减少对环境的污染。
- 电气工程在交通运输领域的应用还有助于提高交通运输系统的智能化和安全性,为人们的出行提供更便捷、舒适的选择。
二、电气工程及其自动化的发展趋势2.1 智能化- 未来电气工程及其自动化领域将更加智能化。
通过人工智能、大数据等技术的应用,电气设备将更加智能化,能够自动感知、学习和适应环境,提高系统的智能化水平。
- 智能化的电气工程系统将大大提高生产效率和质量,降低能源消耗和成本,为各行业带来更多的发展机遇。
2.2 绿色化- 未来电气工程及其自动化领域将更加注重绿色化发展。
通过节能减排、清洁能源的应用等措施,电气工程将更加环保,减少对环境的影响。
- 绿色化的电气工程系统将有助于建设绿色、可持续的社会,推动经济的可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气节能技术的现状及应用前景发表时间:2019-05-07T10:57:39.633Z 来源:《防护工程》2019年第2期作者:谭海亮[导读] 对于本文所提及的水泵、风机和电力变压器的节电原则与发展方向,同样适用于其他通用设备的节电。
山东黄金矿业(莱州)有限公司三山岛金矿山东莱州 261442摘要:电气自动化技术是一项新兴技术,而最大的应用特点是使用更加方便、节能环保作用更加明显。
在电气自动化节能设计技术中,通过降低资源浪费、提高资源循环使用效率,从而达到节能减排的目的,实现对自然环境的保护。
如今,我国的电气自动化的节能技术还处在研究阶段,设备的能耗、维护及安全都成了我国现阶段电气自动化的关键,制约了我国节能技术的发展。
为解决这一关键问题,实现对电力的有效利用,需要从供电、配电几个方面入手优化,降低电能传输过程中和电能分配转换过程中的能量损耗,提高效率,达到节能之目的。
本文主要针对电气节能技术的现状及应用前景进行简要分析。
关键词:电气节能;技术;现状;应用前景1我国电气节能历程电能作为一种优质的二次能源,已经成为国民经济、人民生活、工农业生产中不可或缺的能源之一,近阶段,我国一直处于对电力资源需求不满的状态。
2013年全国总用电量达到53223亿千瓦时,比上年同期增长7.6%,2006年—2013年以来年均增长10.16%。
2014年是我国节电历程上的一个转折点。
2014年全国总用电量达到55637亿千瓦时,增速下降3.18个百分点,通过节电节省的能源占社会技术节能的78.9%。
从2015年至2017年,全国总用电量增长率分别为1.0%、5%、6.6%,在过去的五年中,全国的用电量增长率呈U形走势。
在我国的发电装机容量中,火电装机容量的比例相对较高(超过70%)。
2011年,6000kw及以上电厂发电生产及供热消耗了19.87亿吨原煤,占全国工业用煤53.88%。
随着节能减排工作的逐步推进,我国火电装机的比重逐步下降,截止到2017年,我国火电装机占发电装机的58%。
2电气节能的主要方向在我国全社会终端用电量当中,通用设备终端耗电量占到了一半以上。
可见通用设备节电是我国节电工作的主力军。
而通用设备中耗电量较大的包括风机、水泵、输送机、电动机、变压器、发电机、水轮机、提升机、变压器等。
下面以水泵、风机和电力变压器为例,来剖析探索其节电原则与应用方法。
3水泵、风机的节能3.1水泵、风机的节能概述许多场合和领域都需要输送液体和气体,因此水泵和风机被广泛使用。
水泵、风机总耗电量占世界总耗电量的30%~35%,风机用电量占全国用电量的10.4%,泵类用电量占全国用电量的20.9%。
我国风机的平均运行效率为50%,水泵平均运行效率为41%,风机的节能潜力为20%~60%,水泵的节能潜力为20%~40%,因此水泵、风机是节能的一个重要领域。
3.2水泵、风机的节能原则与应用在水泵、风机领域的节电方式主要有两方面,一方面积极开发高效的水泵、风机设备及调速设备,另一方面积极寻求量化的节能设计、节能测算和节能控制方法。
前者的技术发展已经比较成熟,后者则是国内外业界的热点和难点问题。
虽然各种产品在水泵、风机应用领域的运行策略稍有不同,但总的控制思路基本出自单闭环自动控制思想,以风机恒压控制系统为例:控制原理:当实际压力低于设定压力,增加风机转速,若风机在最大转速情况下仍未满足压力要求,则增加一台运行风机。
相反,若实际压力高于设定压力,减小风机转速,若风机在最小转速情况下仍未满足压力要求,则关闭一台运行风机。
以上控制是对单体设备的优化设计,没有对水泵、风机站设备整体电耗的综合考虑,没有对水泵、风机具体的应用环境条件的综合考虑,没有对水泵、风机实际运行老化造成运行参数变化的综合考虑,所以也会造成系统耗电增加。
应当将系统工程优化的思想和信息化体系操控的技术应用到该节能领域,在满足工艺要求、生产安全和运行可靠的前提下,把以下诸因素:(1)水泵、风机设计制造的优化(2)水泵、风机运行模式的合理选择(3)温度、湿度等环境因素对运行参数的影响(4)整个风机、水泵站线损的综合考虑(5)检查、更新、清理时间间隔的动态方案设定(6)系统节电效益及投资回收时间融入到基于互联网的系统节电管理信息化体系,打破以往电力设备一旦投放后基本模式和运行参数不变的情况,而是以互联网技术为基础,在任何时刻都为该系统提供最佳的节电运行模式,达到“时时刻刻都最节电”的目的,笔者认为这应当是我们研究的方向。
4电力变压器的节能4.1电力变压器的节能概述电力变压器是一种应用广泛的电气设备,广泛应用于发电、输电、变电、配电的整个电力系统中。
虽然电力变压器的额定效率已达98%以上,有些大型电力变压器效率甚至高达99.7%,由于其使用量大、运行时间长,节电潜力依然很大。
据统计,电力变压器的损耗可占电网总损耗的40%以上,约占发电量的3%。
如损耗每降低1%,每年可节电上百亿千瓦时,因此电力变压器节电技术是节能的重要课题之一。
4.2电力变压器的节能原则与应用当电力变压器的负载率过低或过高时,电力变压器本身的总损耗在电力变压器输入能量中所占比例上升,这导致实际运行效率下降,因此电力变压器负载率的选择至关重要。
当我们以尽可能接近负荷功率为条件来选择电力变压器时,实际选择容量会小一些,投资也会小一些;当我们以追求最佳负载率、降低有功损耗为条件来选择电力变压器时,其容量会大一些,投资也会大一些。
目前这类问题的解决方案是二者综合考虑,权衡利弊,但是无论哪种方案都难以回避的问题是“最佳节电方案却不能成为最经济方案”的问题。
节电的过程就是提高管理水平、完善管理体制的过程,是开发应用和提高科技的水过程,也是国家现代化的重要标志。
随着节能节电方针的逐步推进,未来发展的方向必定是使最佳节电方案逐步趋近最经济方案,因此广大研究人员在努力探究电力变压器容量选择与经济运行的最佳方案的同时,也应当投入到使电力变压器最佳节电方案趋近最经济方案领域的技术创新、政策调控的研究上来。
5矿区内节能技术的应用5.1提高矿区内的相关负荷等级在矿区设计中,不同的规模所要求的电荷量不同。
如在矿区内设计方案中,其原有的网络电力为一级负荷,在满足对原有网络电力一级负荷的前提下,推动其他子系统也按照设计要求达到一级负荷,并且严格区别电力系统中的二级负荷和三级用电负荷,在保证用电安全的情况下实现节能控制。
一级负荷的系统主要有消防负荷、生活负荷等;二级负荷包括空调系统电力、生活泵房电力等;矿区内余下的电气设备电力负荷量则为三级负荷。
5.2照明、空调和电梯系统照明系统的节能改造方案主要是实现灯具的改造,在矿区内全面采用LED光源.并且在各个照明配电箱内增加模块控制,提高对照明系统的节能管理。
而空调系统节能改造设计同样要求在控制箱内增加控制模块,对空调电机的运行状况进行全面、系统的控制。
电梯系统主要发挥传递矿区工人的作用,在使用方面有频繁性、分布多等特点。
因而要求电梯系统控制增加模块控制,对电机进行控制,增加多种渠道的监视要求,并且增加手动控制功能,减少意外出现。
5.3提高系统的功率因数第一,采用科学合理的措施,提高系统的功率因数。
在满足工艺生产的状态下,提高用电设备的自动化程度,加强电气设备的运行效率,提高用户的负载率,达到节约电能的目的。
运用变频技术,有效控制电动机的运行,使电动机在负载情况下,获得较好工作效率。
利用先进的自动化控制技术,在不增加任何无功补偿装置的前提下,提高功率因数,降低能量损耗,提高电能的利用率,实现节约电能。
第二,采用人工补偿方式提高供电用电系统的功率因数。
供电用电系统自然功率因数因为多种原因,造成自然功率因数往往不能满足节能减耗的用电需求,因此,还应装设一定的无功补偿装置提高功率因数,减少无功损耗,提高电能的利用率。
5.4运用智能控制终端在原来采用人工控制方式的电力系统中,由于控制技术落后,控制自动化程度较低,在一定程度上电力损耗也被人们疏忽,造成了电力资源的浪费。
当今,科学技术飞速发展,智能控制終端技术取得了长足的发展,在电气自动化节能技术中得到了广泛的应用,节能效果日益明显。
5.5增加有源滤波器的使用有源滤波器的使用是为了降低电网运行中的误动作,消除系统谐波影响,目前这一方法正在研究和试用。
用电设备增多是导致谐波增多的主要原因,谐波电流可以引起电压畸变,使电网运行出现误动作。
在有源滤波的选择上,可以从性能以及需求范围出发,通常有源滤波器与其他滤波器相比,具有更好的无功补偿效率,并且功率范围扩大,动态性能优异。
在电气设备中,有源滤波器有效阻止了误操作,降低了能源消耗。
另外,还可以考虑高效光源来实现节能,采用光线好的光源提高显色性能,最终实现能源降低的目的。
6结束语综上所述,节约用电不是权宜之计,而是长远方针,是当今的迫切需要,更是持之以恒的重任。
对于本文所提及的水泵、风机和电力变压器的节电原则与发展方向,同样适用于其他通用设备的节电。
参考文献:[1]试析电厂电气节能降耗问题与技术方案[J].成勋.科技风.2018(03)[2]电气节能技术与电力新能源的发展应用[J].苏延雲,德勒尼玛.智能城市.2017(12)[3]电气节能技术与电力新能源的应用研究[J].高艳玲,蔡伟东.科学技术创新.2018(17)[4]火力发电厂电气节能降耗问题及对策研究[J].王丙化.现代国企研究.2017(10)。