乳化液破乳实验
破乳技术在乳化液废水预处理中的实验研究

破乳技术在乳化液废水预处理中的实验研究 [摘要]:本文内容为破乳技术在乳化液废水预处理中的实验研究。
根据乳化液废水主要添加成分为阴离子表面活性剂的特性,选用阳离子聚丙烯酰胺(CPAM)作为破乳剂,对选用的乳化液废水通过调整CPAM投加量、搅拌速度和反应时间,以COD、含油率、悬浮物(SS)去除率作为乳化液破乳效果评价指标,最终确定CPAM投加量0.25g/L,在150r/min搅拌下,反应10min,此时,COD、含油率、SS,去除率分别为75.37%,97.04%、100%,油类、SS和投加的破乳剂以黑色团状粘性油泥形式去除,油水分离方便、快捷、高效。
油泥热值高达35992kj/kg,高于原煤热值(20934kj/kg),可作为替代性燃料使用。
并用其他厂家不同乳化液废水进行破乳验证实验,结果表明CPAM作为乳化液废水破乳剂具有一定的普适性。
乳化液废水主要来自切削、研磨、锻造等金属加工行业,一般呈碱性,具有有机物、含油量、杂质和悬浮物含量高的特点,是一种高浓度难处理废水,若不能有效处理必将对环境和人类健康造成很大的危害[1]。
破乳是乳化液废水处理的关键步骤,目前的主流破乳方法可分为物理法、化学法[2]。
物理法主要是通过调节温度(热处理、冷冻与解冻)、借用外力(重力、离心、震动、膜技术、超声波及电磁技术等)破坏乳化液的油水界面实现油水分离,物理法破乳一般所需时间长或能耗高。
化学破乳法是通过投加化学药剂改变油水界面的性质或强度来实现破乳,一般化学破乳对破乳剂的选择性较强,一般破乳后的废水中需要增加后续气浮、混凝等技术进一步去除破乳后废水中的油类或悬浮物。
本研究从乳化液废水快速破乳出发,以化学破乳为基础,选用阳离子聚丙烯酰胺(CPAM)作为破乳剂[3],考察其破乳效果及影响因素。
1、实验部分1.1各指标分析方法pH采用pHS-3C精密pH计测定,COD分析采用快速密闭催化消解法,含油率测定采用重量法,悬浮物(SS)测定采用重量法,热值测定采用5E-C5500测定。
乳状液的制备、鉴别及破坏

中国石油大学(华东)渗流物理实验报告实验日期:成绩:班级:石工1205 学号:姓名:教师:同组者:实验九乳状液的制备、鉴别及破坏一、实验目的1.制备不同类型的乳状液;2.了解乳状液的一些制备方法;3.熟悉乳状液的一些破坏方法。
二、实验原理乳状液是指一种液体分散在另一种与它不相溶的液体中所形成的分散体系。
乳状液有两种类型,即水包油型(O/W)和油包水型(W/O)。
只有两种不相溶的液体是不能形成稳定乳状液的,要形成稳定的乳状液,必须有乳化剂存在,一般的乳化剂大多为表面表面活性剂。
表面表面活性剂主要通过降低表面能、在液珠表面形成保护膜、或使液珠带电来稳定乳状液。
乳化剂也分为两类,即水包油型乳化剂和油包水型乳化剂。
通常,一价金属的脂肪酸皂类(例如油酸钠)由于亲水性大于亲油性,所以,为水包油型乳化剂,而两价或三价脂肪酸皂类(例如油酸镁)由于亲油性大于亲水性,所以是油包水型乳化剂。
两种类型的乳状液可用以下三种方法鉴别:1. 稀释法:加一滴乳状液于水中,如果立即散开,即说明乳状液的分散介质为水,故乳状液属水包油型;如不立即散开,即为油包水型。
2. 电导法:水相中一般都含有离子,故其导电能力比油相大得多。
当水为分散介质(即连续相)时乳状液的导电能力大;反之,油为连续相,水为分散相,水滴不连续,乳状液导电能力小。
将两个电极插入乳状液,接通直流电源,并串联电流表。
则电流表显著偏转,为水包油型乳状液;若指针几乎不动,为油包水型乳状液。
3. 染色法:选择一种仅溶于油但不溶于水或仅溶于水不溶于油的染料(如苏丹Ⅲ为仅溶于油但不溶于水的红色染料)加入乳状液。
若染料溶于分散相,则在乳状液中出现一个个染色的小液滴。
若染料溶于连续相,则乳状液内呈现均匀的染料颜色。
因此,根据染料的分散情况可以判断乳状液的类型。
在工业上常需破坏一些乳状液,常用的破乳方法有:1. 加破乳剂法:破乳剂往往是反型乳化剂。
例如,对于由油酸镁做乳化剂的油包水型乳状液,加入适量油酸钠可使乳状液破坏。
破乳剂小试步骤

破乳剂小试步骤破乳剂如何实现破乳实验步骤药剂准备:1、将破乳剂稀释成25%溶液(破乳剂:自来水=1:3),待用;【浅色103、深色202】2、将聚合氯化铝(PAC)稀释成10%溶液,待用;小包装带中黄色就是PAC3、将聚丙烯酰胺(PAM)稀释成2‰溶液,待用;(小包装带中白色就是PAM,取1g加入500ml 自来水后搅拌溶解即可使用)4、氢氧化钠10%,待用(百分比质量分数可大概,用于调PH值)5、10%硫酸,待用(百分比质量分数可大概,用于调PH值)破乳剂使用大约500ml废水加入没有稀释的破乳剂0.5-2ml;如果用量超过则考虑是不是浓度太高;PH值检验下是否中性左右。
效果对比实验步骤:1、取水样:1000mL,混合均匀,测PH,加酸或者碱调节PH至7;碱性可以不调节;2、逐步投加25%破乳剂[记录投加量];搅拌,【①如果加入破乳剂后水中没有产生沉淀,可增加破乳剂加入量直到沉淀产生】【②如果乳化液浓度过浓,可以将废水进行稀释再行实验】【③根据水质絮凝澄清状况判断破乳剂加入是否足够,如果水还是浑浊,继续加入破乳剂,并计量直到加入破乳剂后水中不再产生更多的沉淀】;加入破乳剂后,检查水样PH值,将PH值调节至7-8左右;3、破乳完成后;投加3ml左右-10%聚合氯化铝,搅拌,投加1ml-2‰的聚丙烯酰胺,搅拌5min后,沉淀分层,取清液标为样品,测量COD;【如果与原水进行比较;COD降的不够理想,可以将处理沉淀后的废水再加入破乳剂看是否破乳不够完全。
】实验中PAC与PAM的投加量可根据絮凝沉淀的效果进行增加或者减少;如果沉淀物多可以增加PAM滴加;PAC为增加沉淀效果而投加;如果现场没有PAC可不投加,直接加入PAM絮凝沉淀即可;如果投加破乳剂后效果不理想,请调节PH 至8.5-9再看效果;测试:分别测试样品1-5,CODcr数值进行比较实验效果。
注意:测量过程中,注意记录反应现象,并拍照记录。
聚合物乳液破乳过程分析

由于乳化剂分子在油—水界面上定向吸附并形成坚固的界面膜,同时增大了扩散双电层的有效厚度,并且使得双电层的电位分布宽度和陡度增大,使油高度均匀地分散在水中,从而使乳化液具有相当的稳定性。
因此要使乳化液失去稳定性,就必须设法消除或减弱乳化剂保护乳化液稳定的能力,即破坏油—水界面上的吸附膜,,减少分散粒子岁、所带的同种电荷量。
最后实现油水分离、达到破乳的目的。
由此可见,破乳是处理乳化液废水的关键之所在。
几类常用原油破乳剂的作用机理1相破乳机理早期使用的破乳剂一般是亲水性强的阴离子型表面活性剂,因此早期的破乳机理认为,破乳作用的第一步是破乳剂在热能和机械能作用下与油水界面膜相接触,排替原油界面膜内的天然活性物质,形成新的油水界面膜。
这种新的油水界面膜亲水性强,牢固性差,因此油包水型乳状液便能反相变型成为水包油型乳状液。
外相的水相互聚结,当达到一定体积后,因油水密度差异,从油相中沉降出来。
Salager用表面活性剂亲合力差值SAD(Surfactant affinity–difference)定量地表示阴离子破乳剂的反相点:SAD将所有影响破乳剂的诸因素归纳在一起,当SAD=0时,乳状液的稳定性最低,最容易反相破乳。
2絮凝–聚结破乳机理在非离子型破乳剂问世后,由于其相对分子质量远大于阴离子破乳剂,因此,出现了絮凝-聚结破乳理论。
这种机理并没有完全否定反相排替破乳机理,而是认为:在热能和机械能的作用下,即在加热和搅拌下相对分子质量较大的破乳剂分散在原油乳状液中,引起细小的液珠絮凝,使分散相中的液珠集合成松散的团粒。
在团粒内各细小液珠依然存在,这种絮凝过程是可逆的。
随后的聚结过程是将这些松散的团粒不可逆地集合成一个大液滴,导致乳状液珠数目减少。
当液滴长大到一定直径后,因油水密度差异,沉降分离。
对于非离子型破乳剂,SAD定义为:研究表明:在低温下,非离子型原油破乳剂中环氧乙烷链段以弯曲形式掉入水相,环氧丙烷链段以多点吸附形式吸附在油水界面上。
乳化液破乳实验讲解学习

乳化液破乳实验乳化废水处理实验方案一、乳化液破乳实验(一)目的:通过实验确定混凝气浮破乳的最佳参数,例如:混凝剂的投加量、助凝剂的投加量、pH值等。
(二)实验过程:此次试验的原水来自XXXXXXXXX有限公司的乳化液废液,其水质的主要指标:COD XXX 104 mg/L、SS: mg/L、pH值左右、BOD5 mg/L 。
1.混凝剂投加量的确定此次实验采用的混凝剂是PAC,即聚合氯化铝。
选用的浓度为100g/L。
调整水样的PH值为最佳值,向水中滴加PAC,在滴加的过程中需要缓慢的搅拌直至出现矾花为止。
然后,静止10分钟,取上清液测量COD cr,计算COD cr的去除率,去除率越大,混凝的效果就越好。
实验步骤:选择八个100ml的烧杯,在烧杯中加入100ml的原水,调节其pH值在8左右,向其中滴加不同量的PAC,缓慢搅拌。
静置10分钟,分离出下层清液。
测量COD cr,计算COD cr的去除率,去除率越大就是混凝效果最好的,这样就可以确定最佳投药量,测量效果如图3图1 PAC投加量与COD去除率的关系由图1可知,在pH值一定的条件下,可以随着混凝剂加入量的逐渐增大,而当混凝剂加到一定量时,COD cr的去除率反而上升,上层的清液也逐渐变得混浊。
这是由于加入的聚合氯化铝逐渐溶解分散到溶液中去。
又有铝离子带有部分正电荷,而乳化液大多数都含有阴离子表面活性剂。
这样,会通过压缩双电层,吸附点中和,吸附架桥,网捕作用达到凝聚,絮凝的效果。
随着混凝剂量的逐渐增大,这四种混凝作用的效果也逐渐增强,直至达到最佳效果,再过量地加入混凝剂,溶液中存在过量的铝离子,产生水解,将会形成胶体,再次达到胶体的稳定,使COD cr值有些许升高的现象。
所以,在混凝的过程中要严格控制混凝剂的投加量。
由此次试验可以确定:100ml原水加6ml的PAC(浓度为100g/L)混凝效果最佳。
2.pH对混凝效果的影响实验步骤:分别取9份100mL的原水,分别调节pH值为5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5,均加入6mlPAC(最佳投加量),搅拌,静置10分钟,分离出清液,测定其pH 值,并测量COD。
石油产品破乳化测定规程

石油产品破乳化测定一.适用范围本规程规定了HGRH203型破乳化测定仪的操作使用方法,该仪器适用于在标准下测定石油产品和合成液的破乳化能力和与水分离的能力。
二.方法概要在量筒中装入40mL油样和40mL蒸溜水,并在54℃士1℃下搅拌5min形成乳化液,测定乳化液分离(即乳化层且也体积不大于3mL,水层体积到37mL时)所需要的时间。
静止30min后,如果乳化液没有完全分离,或乳化层没有减少为3mL或更少,则记录此时油层、水层和乳化层的体积。
三.实验仪器和试剂1.HGRH203型破乳化测定仪2.搅拌电动机:1500±50r/min。
3. 水浴缸:用耐热玻璃制成,底部有支撑板,上部有固定量筒的夹具,装水水面能浸到量筒的85mL刻度。
附有搅拌。
4. 控温器:控温范围0~100℃,控温精确度±1℃。
5.量筒{用耐热玻璃制做,容积100mL(在5~100mL范围内,分度为1.0mL),内径28 ±1.0mm}。
6.鼓风烘箱7清洗剂:溶剂汽油,石油醚,铬酸洗液,蒸馏水四.HGRH203型破乳化测定仪技术参数1.控温范围:室温~100℃2.控温精度:设定温度±0.5℃3.电源电压:AC220V±10% 50Hz4.环境温度:0℃-40℃5.相对湿度:<80%6.试样搅拌:1500±10转/分五.准备工作1. 打开电源,仪器自动进入主页面。
通过移位,选着破乳化测定,按确定。
2. 按“设定”键,通过“移位”“+”“-”可以设定时间、温度、试样数,设定好按“确3. 按“自检”键,通过“移位”“自检”可以检查仪器状态,检查好了,按“退出”。
4. 通过“加热”键将破乳化测定仪的加热水浴升温,并使之恒定在54±1℃。
5. 用洗涤剂洗净量筒上的油污后,再用铬酸洗液浸泡,清水冲洗,最后用蒸馏水洗净(至器壁不挂水珠),用蘸有溶剂汽油(或石油醚)的脱脂棉擦净搅拌桨,吹干。
O/W型乳化液破乳茵发酵条件优化及破乳研究

Ex e i e t li v si a i n o e me t t n c n i o a d d ・mu sfc to p rm n a n e tg t n f r n a o o d t n n e e li ai n o i i i
a tv t fO/ m uli n de c i iy o W e so muli e o uc d b c e i sf r pr d e y ba t ra i
xu ra g 一, n MA a g 一, F n DAIYa , IXu 一, U a g , ng L LI Ch n
V . 0 o2 N. 36 3
Fb2 1 e・00
O W 型 乳 化 液 破 乳 茵 发 酵 条 件 优 化 及 破 乳 研 究 /
徐 唠 , 马 放 , 代 阳 , 李 旭 , 畅 一刘 ’
(. 1 哈尔滨工业大学 城市水资源与水环境国家重点实验室 , 哈尔滨 30 9 5 00; 2 哈 尔滨 工业 大 学 市 政 环 境 工 程学 院 , 尔 滨 309 ) . 哈 5 0 0 摘 要: 以枯草 芽孢杆菌全培养液对 【 w 型乳状 液进行破 乳效能研 究. ) / 通过正 交试验对 枯草 芽孢杆
( .teKyLbr o f r nWa r e u eadE von n,a i 3st e f eho g,ab 09 , fa 1S t e ao t yo Ub t s r n ni n ̄ t r n ntu cnl yH ri 1 00(i ; a ar a eR o c r H b it o T o n5  ̄n 2 Sho o M nc a adE v om n nier gH ri Isteo eho g ,a i 3 00C ia .col f ui pl n ni n et E g ei , a n ntu f cnl yH bn 5 9 ,hn) i r l a n n b it T o r 0
破乳常用方法

破乳常⽤⽅法
破乳常⽤⽅法
(⼀)长时间静置:将乳浊液放置过夜,⼀般可分离成澄清的两层。
(⼆)⽔平旋转摇动分液漏⽃:当两液层由于乳化⽽形成界⾯不清时,可将分渡漏⽃在⽔平⽅向上缓慢地旋转摇动,这样可以消除界⾯处的“泡沫”。
促进分层。
(三)⽤滤纸过滤:对于由于有树脂状、粘液状悬浮物存在⽽引起的乳化现象,可将分液漏⽃中的物料,⽤质地密致的滤纸,进⾏减压过滤。
过滤后物料则容易分层和分离。
(四)加⼄醚:⽐重接近l的溶剂,在萃取或洗涤过程中,容易与⽔相乳化,这时可加⼊少量的⼄醚,将有机相稀释,使之⽐重减⼩,容易分层。
(五)补加⽔或溶剂,再⽔平摇动:向乳化混合物中缓慢地补加⽔或溶剂,再进⾏⽔平旋转摇动,则容易分成两相。
⾄于补加⽔,还是补加溶剂更有效,可将乳化混合物取出少量,在试管中预先进⾏试探。
(六)加⼄醇:对于有⼄醚或氯仿形成的乳化液,可加⼊5~10滴⼄醇,再缓缓摇动,则可促使乳化液分层。
但此时应注意,萃取剂中混⼊⼄醇,由于分配系数减⼩,有时会带来不利的影响。
(七)离⼼分离:将乳化混合物移⼊离⼼分离机中,进⾏⾼速离⼼分离。
(⼋)加⽆机盐及减压:对于⼄酸⼄醑与⽔的乳化液,加⼊⾷盐、硫酸铵或氯化钙等⽆机盐,使之溶于⽔中,可促进分层。
另外,将乳化部分取出,⼩⼼地温热⾄50℃,或⽤⽔泵进⾏减压排⽓,都有利于分离。
对于由⼄醚形成的乳化液,可将乳化部分分出,装⼊⼀个细长的筒形容器中,向液⾯上均匀地筛撒充分脱⽔的硫酸钠粉末,此时,硫酸钠⼀边吸⽔,⼀边下沉,在容器底部可形成⽔溶液层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乳化废水处理实验方案一、乳化液破乳实验(一)目的:通过实验确定混凝气浮破乳的最佳参数,例如:混凝剂的投加量、助凝剂的投加量、pH值等。
(二)实验过程:此次试验的原水来自XXXXXXXXX的乳化液废液,其水质的主要指标:COD XXX 104 mg/L、SS: mg/L、pH值左右、BOD5 mg/L 。
1.混凝剂投加量的确定此次实验采用的混凝剂是PAC,即聚合氯化铝。
选用的浓度为100g/L。
调整水样的PH 值为最佳值,向水中滴加PAC,在滴加的过程中需要缓慢的搅拌直至出现矾花为止。
然后,静止10分钟,取上清液测量COD cr,计算COD cr的去除率,去除率越大,混凝的效果就越好。
实验步骤:选择八个100ml的烧杯,在烧杯中加入100ml的原水,调节其pH值在8左右,向其中滴加不同量的PAC,缓慢搅拌。
静置10分钟,分离出下层清液。
测量COD cr,计算COD cr的去除率,去除率越大就是混凝效果最好的,这样就可以确定最佳投药量,测量效果如图3图1 PAC投加量与COD去除率的关系由图1可知,在pH值一定的条件下,可以随着混凝剂加入量的逐渐增大,而当混凝剂加到一定量时,COD cr的去除率反而上升,上层的清液也逐渐变得混浊。
这是由于加入的聚合氯化铝逐渐溶解分散到溶液中去。
又有铝离子带有部分正电荷,而乳化液大多数都含有阴离子表面活性剂。
这样,会通过压缩双电层,吸附点中和,吸附架桥,网捕作用达到凝聚,絮凝的效果。
随着混凝剂量的逐渐增大,这四种混凝作用的效果也逐渐增强,直至达到最佳效果,再过量地加入混凝剂,溶液中存在过量的铝离子,产生水解,将会形成胶体,再次达到胶体的稳定,使COD cr 值有些许升高的现象。
所以,在混凝的过程中要严格控制混凝剂的投加量。
由此次试验可以确定:100ml 原水加6ml 的PAC (浓度为100g/L )混凝效果最佳。
2.pH 对混凝效果的影响实验步骤:分别取9份100mL 的原水,分别调节pH 值为5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5,均加入6mlPAC(最佳投加量),搅拌,静置10分钟,分离出清液,测定其pH 值,并测量COD 。
见图2:图2 pH 值与COD 去除率的关系由图2可知,在pH 在8.5左右的时候,投加6ml 的PAC 时,COD 的去除率最好,混凝效果达到最好。
可见,pH 值对混凝效果的影响很大。
所以在混凝过程中应控制pH 值8.5左右。
3.助凝剂投加量的确定此次实验所采用的助凝剂是PAM ,即聚丙烯酰胺,选用的浓度为2g/L 。
取6个250ml 的烧杯,加入100ml 的原水,再向其中加入6ml 的PAC ,搅拌。
向其中分别加入0.5ml 、1ml 、1.5ml 、2ml 、2.5ml 、3.0ml 的PAM ,搅拌。
静止10分钟。
取上层清液,测量COD ,计算COD 的去除率。
见图3图3 PAM投加量与COD去除率的关系由上图可知,当PAM的投加量为ml时,COD的去除率,混凝效果最佳。
可见,二、乳化液深度处理实验-芬顿实验Fenton 试剂即过氧化氢与亚铁离子的结合 , 是一种特效氧化剂 , 其氧化电极电位高达 2 .80 V; Fen 2ton 试剂催化氧化用于工业废水处理已有三十年历史 , 他最早用于处理苯酚和烷基苯废水 [1 ] 。
该氧化剂具有极强的氧化能力 , 适用于难降解有机废水的处理 , 而且对那些有毒有机物和三致物 [2 ] 具有很好的分解能力。
近年来 , 有关 Fenton 试剂处理有机废水的研究较多 , 如纺织印染废水 [3 ] , 有机合成芳胺废水 [4 ]等。
日本在这方面已有部分专利面世 [1 ] 。
本文就机械加工清洗产生的乳化废水的氧化实验作详细介绍。
1.实验部分1)废水来源本实验采用的乳化废水是废液。
COD 浓度为20000 ~100000mg/L;试验 COD 50540mg/L , 试验用原水pH值 9.35;2)试剂及测试方法双氧水、绿矾 ( 硫酸亚铁 ) 用水等为分析纯试剂 ,COD 采用标准法测定 , 3)实验方法水样 100mL 于 250mL 三角烧瓶 , 用硫酸调节原水pH值 , 投加绿矾后 , 加入双氧水 , 置于摇床振荡 , 振荡速度 200 r/ min , 反应完成后静置 30 min 取样。
2.实验结果与讨论 :影响有机物去除的重要因素有双氧水投量 , 原水pH值 ,反应时间等 ; 本实验针对这四方面考察了Fenton 氧化反应规律 ; 为求得最佳反应条件 , 首先考虑三因素三水平正交实验。
( 见表1)3.正交实验结果分析:双氧水投量选择 50 % 、 100 % 、 150 % Q th ( Q th 为与 COD 表征的有机物氧化化学当量 ; Fe 2 +投量不仅与双氧水量有关还与原水种类有关 , 由条件预备实验确定出较佳的 Fe2 +投量接近0.1 COD , 即 Fe2 + /H2O2为 1 ∶ 20左右 ; 反应时间确定 2 h 。
正交实验结果如下 :由正交实验结果分析 , 三因素中最为显著的当数双氧水投量 , 其次是pH 值 , 再次是绿矾投量。
从数据变化趋势来看似乎呈相同的递增态势 , 但结合实际 , 第二个数据水平 COD 去除率已经高达 88 % , 再增加双氧水和绿矾投量 , 有机物分解率增加不多 ; 第二个数据水平就可以认为是较为理想的条件 ; 唯有pH值的影响趋势是于我们更有利 , 原水的pH值9.35 较高 , 有利于Fenton 氧化 ; 这似乎同文献报道的Fenton 试剂最佳作用条件 pH 3.0 有所不符 , 但是当向水样中投加药剂后 , 根据实验测定 , 即使不调节原水pH值 , 体系的pH值也会降低至 2.5 左右 , 而后体系的pH值一直维持在 2.5 左右( 见图 5) ; 这一结果又是同文献报道的结果相一致。
也就是说 , Fe2 + -H 2O2的加入使反应体系pH值下降至最佳pH值附近是导致pH值影响不显著的重要原因。
为更精确地寻求反应规律 , 我们进行如下单因素实验。
4.单因素实验分析1)原水pH值的影响 : 固定双氧水投量在 100%Q th , 绿矾 (FeSO4· 7H2O)投量 2.482 g(Fe2+/H2O2= 1 ∶20)反应 2 h , 结果如图 1 所示 :在本实验中 , 原水pH值较低或不调pH值 ,COD去除率较高 ,pH 值为 6.0 左右 COD 去除率最低 , 但从整体来看 ,pH 值对有机物氧化反应的影响并不明显 , 总体差异很小。
而且 , 在原水不进行pH调节时COD 去除率呈现出最高水平。
图4 原水pH对有机物去除影响2)Fe 2 +投量的影响图5为摸索 Fe 2 +投量的影响规律 ,固定双氧水投量100 % Q th(2.0COD) ,原水不调节pH值 , 反应 2 h , 亚铁离子同过氧化氢的比例折算成同 COD 之比 , 实验结果见图 5 。
由上图 , 亚铁投量在 0.075COD(1.863 g ) 时达到最高的有机物去除效果 , 此时 Fe 2 + / H2 O2为 1 ∶28; 亚铁投量不足或过高均会使有机物去除水平下降。
在亚铁投量极低时 , (0.025COD) 出现负去除现象 , 即反应后的水中 COD 浓度高于初始 COD 浓度 ,一个很好的解释就是乳化废水属于难降解废水也是难以化学氧化的废水 , Fe 2 + - H2 O2体系产生的羟自由基 HO ·具有强氧化能力 , 它能氧化绝大多数的有机物 , 特别是芳香族化合物易被 HO ·开环 , 变成易于氧化的大分子有机物 , 这样测得的有机物浓度比初始 COD 值要高 ; 经过多次反复 , 情形仍然如此。
由此可以看到 Fenton 试剂的应用潜力。
3)双氧水投量的影响图6保证Fe 2 +投量为最佳水平0.075COD(1.863 g) ,使用原水不调节pH值 , 结果如图 6 所示。
随着双氧水投量的增加 , COD 去除率呈上升趋势 , 但也并不是多多益善 , H2O2投量超过 100 % Q th(2.0COD) 时 , COD 去除率反而有所下降 ; 这可解释为当过氧化氢量过多时 , 在亚铁离子的催化作用下产生的羟自由基浓度较高 , 易发生自分解而变成水和氧 , 这样就没有达到充分利用于分解有机物的目的 , 耗费了大量 H2 O2。
因此 , 最佳投量还是100 % Q th(2.0COD) , 此时 COD 去除率为 91 % 。
4)反应时间的影响反应时间也是重要的影响因素 , 在没有催化剂时氧化反应的发生极为缓慢。
甚至难以观察检测。
加入适量催化剂可以改变反应途径 , 加快反应速度。
从COD 降解规律来看 ,该反应过程同其他催化反应类似 ,仍然存在有机物分解的诱导过程 ;反应初期速度较慢 , 约 1.0h 后反应速度急剧上升 , 如图 4 所示 :反应进行 0.5h 时出现负去除率 (COD 稍有增加而 TOC 有所减少) ,实际上说明有机物没有真正去除 , 而是由难以分解的变成易于氧化分解的有机物 ;因而可以认为η COD = 0; 在反应进行到 1.5h , 已有大部分分解 ( η COD = 75.2 %) ; 反应 2.0 h 后 , 有机物分解比较缓慢。
图 8 是体系pH值随氧化反应时间的变化规律 ; 开始一段时间 , 氧化反应产酸使体系pH值下降 , 而后有机酸开始被氧化使得pH值有所回升 ,最后pH值的下降可以推测是生成更稳定的甲酸和乙酸造成。
5.反应机理与动力学浅析Fenton 氧化机理属于典型的自由基反应过程 ,在 Fe 2 +的催化作用下 , 过氧化氢分解产生羟基自由基引起有机物自由基链引发、链传递、以及链终止 ; 羟基自由基将大分子有机物分解为有机小分子、CO2、 H2O;部分有机自由基发生聚合形成易于沉降的大分子 , 在绿矾水解产物的絮凝作用下沉淀下来。
有关其反应机理的报道较多 , 在此不再重复 ; 下面就其反应动力学过程略做介绍 : 在最佳投量(H2O2为 2.0COD , Fe 2 +为 0.075COD) , 该过程符合准一级动力学模型 , 即反应过程可以划分为两个阶段 , 每一阶段均为一级反应 , 各自存在不同的速率常数由图 9 可以看出 , 反应开始速率较高 ( 速率常数为 1 1 142 3) , 而且非常符合一级反应规律 , 其相关系数达 0.997 3; 反应发生到 1.5h 后速率明显变慢 ( 速率常数为 0.124 4, 相关系数为 0.856 7) , 有机物去除总量下降很多 ; 这种自由基反应历程的特点对于工程实际是很有意义的。