材料力学性能10

合集下载

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等。

这些性能参数对于材料的选择、设计和应用具有重要的指导意义。

在工程实践中,我们需要对材料的力学性能进行全面的了解和评估,以确保材料能够满足工程要求并具有良好的可靠性和安全性。

首先,强度是材料力学性能的重要指标之一。

材料的强度表现了其抵抗外部载荷的能力,通常用抗拉强度、抗压强度、抗弯强度等参数来描述。

强度高的材料在承受外部载荷时不易发生变形和破坏,因此在工程结构和设备中得到广泛应用。

此外,韧性是衡量材料抗破坏能力的重要指标,它反映了材料在受到冲击或挤压时的变形和吸能能力。

韧性高的材料能够在受到冲击载荷时发生一定程度的塑性变形而不破坏,因此在制造高应力、高载荷的零部件和结构中具有重要意义。

此外,材料的硬度也是其力学性能的重要指标之一。

硬度反映了材料抵抗划痕和穿刺的能力,通常通过洛氏硬度、巴氏硬度、维氏硬度等参数来描述。

硬度高的材料具有较高的耐磨性和耐划痕性,适用于制造刀具、轴承、齿轮等零部件。

此外,材料的塑性也是其力学性能的重要指标之一。

塑性反映了材料在受到外部载荷作用下发生变形的能力,通常通过延伸率、收缩率、冷弯性等参数来描述。

塑性好的材料能够在受到外部载荷时发生较大的变形而不破坏,适用于制造成形性零部件和结构。

总之,材料力学性能是材料工程中的重要内容,对于材料的选择、设计和应用具有重要的指导意义。

在工程实践中,我们需要全面了解和评估材料的强度、韧性、硬度、塑性等性能参数,以确保材料能够满足工程要求并具有良好的可靠性和安全性。

希望本文能够对材料力学性能的研究和应用提供一定的参考和帮助。

工程材料力学性能

工程材料力学性能

工程材料力学性能1. 引言工程材料力学性能是指材料在外力作用下的力学行为和性能特征。

能够准确评估材料的力学性能对于工程设计和材料选择具有重要意义。

本文将介绍一些常见的工程材料力学性能参数及其测试方法。

2. 抗拉强度抗拉强度是衡量材料抗拉能力的指标,通常用Mpa(兆帕)表示。

该值表示材料能够承受的最大拉伸力。

一般情况下,抗拉强度越高,材料的抗拉性能越好。

抗拉强度的测试可以通过拉伸试验来完成。

在拉伸试验中,标准试样会受到均匀的拉力,直到发生材料破裂。

通过测量试样的最大载荷和横截面积,可以计算出抗拉强度。

3. 弹性模量弹性模量是衡量材料刚性和变形能力的指标,通常用Gpa (千兆帕)表示。

弹性模量越大,材料的刚性越好,变形能力越小,即材料在外力作用下不容易发生变形。

弹性模量的测试可以通过弹性试验来完成。

在弹性试验中,标准试样会受到一定的载荷,然后释放。

通过测量载荷-变形关系的斜率,即应力-应变的比值,可以计算出弹性模量。

4. 屈服强度屈服强度是材料在拉伸过程中突破弹性极限后的抗拉能力,通常用Mpa表示。

屈服强度代表了材料的韧性和延展性。

材料的屈服强度越高,其抗变形性能越好。

屈服强度的测试可以通过拉伸试验或压缩试验来完成。

在拉伸试验中,标准试样会受到逐渐增加的拉力,直到发生塑性变形。

通过测量试样的屈服点和横截面积,可以计算出屈服强度。

5. 硬度硬度是衡量材料抗外界划痕和压痕能力的指标。

常见的硬度测试方法包括布氏硬度(HB)、维氏硬度(HV)、洛氏硬度(HRC)等。

硬度测试方法根据材料的硬度特性进行选择。

例如,布氏硬度适用于较软的金属材料,而维氏硬度适用于硬度较高的金属材料。

硬度的测试结果通常以单位压力下形成的压痕直径或者硬度值表示。

6. 断裂韧性断裂韧性是衡量材料抵抗破裂扩展的能力以及吸收塑性能力的指标。

常用的断裂韧性测试包括冲击试验和拉伸试验。

冲击试验通常用于低温下材料的断裂韧性测试。

在冲击试验中,冲击试样受到快速施加的冲击载荷,通过测量试样的断裂能量和断口形貌,可以评估材料的断裂韧性。

材料力学性能

材料力学性能

第一章用一句话对下列的概念进行解释:1)刚度 2 )强度 3 )塑性 4 )屈服 5)韧性 6)形变强化。

对拉伸试件有什么基本要求?为什么?为什么拉伸试验又称为静拉伸试验?拉伸试验可以测定哪些力学性能?试件的尺寸对测定材料的断面收缩率是否有影响?为什么?如何测定板材的断面收缩率?下列的情况与图1-3 中的哪个图对应?1 )装有开水的玻璃杯浸入冷水中破裂。

2 )用钢丝捆绑物件时拧的过紧造成钢丝断裂。

3 )在大风中电线被拉断。

4 )自行车闸被拉断。

5)金项链被拉断。

6 )锯木头时锯条突然断裂。

试画出示意图说明:脆性材料与塑性材料的应力—应变曲线有何区别?高塑性材料与低塑性材料的应力—应变曲线又有何区别?能否由材料的延伸率和断面收缩率的数值来判断材料的属性:脆性材料、低塑性材料、高塑性材料?工程应力--应变曲线上b点的物理意义?试说明b点前后式样变形和强化的特点?脆性材料的力学性能用哪两个指标表征? 脆性材料在工程中的使用原则是什么?何谓材料的弹性、强度、塑性和韧性?试画出连续塑性变形强化和非连续塑性变形强化材料的应力—应变曲线?两种情况下如何根据应力—应变曲线确定材料的屈服强度?条件屈服强度与屈服强度存在本质区别吗?条件屈服强度与条件弹性极限存在本质区别吗?何谓工程应力和工程应变?何谓真应力和真应变?两者之间有什么定量关系?拉伸图、工程应力—应变曲线和真应力—真应变曲线有什么区别?试画出低碳钢在压缩试验条件下的工程应力—应变曲线和真应力—真应变曲线?颈缩发生后如何计算真应力和真应变? 如何根据材料的拉伸性能估算材料的断裂强度和断裂延性?现有do=10mm的圆棒长试样和短试样各一根,测得其延伸率d10与d5均为25%,问长试件和短试件的塑性是否一样?第二章为什么说金属的弹性模量是一个对组织较不敏感的力学性能指标?哪些因素对弹性模量会有较明显的影响?由图2-1,试分析当拉应力增大,弹性模量的精确值会发生怎样的变化?当压缩应力增大时,又会如何变化?试写出在单轴应力(sx10,其它应力分量为0)平面应力(sz=tyz=t zx=0)和平面应变(ez=gyz=gzx =0)条件下的虎克定律。

材料力学性能考试题与答案

材料力学性能考试题与答案

07 秋材料力学性能一、填空:(每空1分,总分25分)1. 材料硬度的测定方法有、和。

2. 在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。

3.平均应力越高,疲劳寿命。

4.材料在扭转作用下,在圆杆横截面上无正应力而只有 ,中心处切应力为 ,表面处。

5.脆性断裂的两种方式为和。

6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根部裂纹形成准则遵循断裂准则;7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉应力与断裂面,而在滑开型中两者的取向关系则为。

8.蠕变断裂全过程大致由、和三个阶段组成。

9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。

10.深层剥落一般发生在表面强化材料的区域。

11.诱发材料脆断的三大因素分别是、和。

二、选择:(每题1分,总分15分)()1. 下列哪项不是陶瓷材料的优点a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好()2. 对于脆性材料,其抗压强度一般比抗拉强度a) 高b) 低c) 相等d) 不确定()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为a) 150HBW10/3000/30 b) 150HRA3000/l0/30c) 150HRC30/3000/10 d) 150HBSl0/3000/30()4.对同一种材料,δ5比δ10a) 大 b) 小 c) 相同 d) 不确定()5. 下列哪种材料用显微硬度方法测定其硬度。

a) 淬火钢件 b) 灰铸铁铸件c) 退货态下的软钢 d) 陶瓷()6.下列哪种材料适合作为机床床身材料a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7. 下列哪种断裂模式的外加应力与裂纹面垂直,因而它是最危险的一种断裂方式。

a) 撕开型 b) 张开型 c) 滑开型 d) 复合型()8. 下列哪副图是金属材料沿晶断裂的典型断口形貌a) b) c) d) ()9. 下列哪种材料中的弹性模量最高a) 氧化铝 b) 钢 c) 铝 d) 铜()10. 韧性材料在什么样的条件下可能变成脆性材料a) 增大缺口半径 b) 增大加载速度c) 升高温度 d) 减小晶粒尺寸()11.应力腐蚀门槛值正确的符号为a) K ISCC b) ΔK th c) K IC d) CF()12.σm=0 , R=-1 表示下列哪种循环应力a) 交变对称循环 b)交变不对称循环c) 脉动循环 d) 波动循环()13.为提高材料的疲劳寿命可采取如下措施a)引入表面拉应力 b) 引入表面压应力c) 引入内部压应力 d) 引入内部拉应力()14.工程上产生疲劳断裂时的应力水平一般都比条件屈服强度a) 高 b) 低 c) 一样 d) 不一定()15.下列曲线中哪种为脆性材料的应力-应变曲线a) b) c) d)三、判断:(每题1 分,总分15分)()1.材料的力学行为与材料的力学性能是同一概念。

材料力学性能期试卷和答案

材料力学性能期试卷和答案

中原工学院2009〜2010 学年第1 学期材科专业材料的力学性能课程期末试卷题号-一- -二二三四五六七八九十总分一、填空(每空1分,共10分)1、屈服强度是金属材料重要的力学性能指标,它受各种内外因素的影响,内在因素包括金属本性及晶格类型,_______________________ ,__________________ ,2、根据摩擦面损伤和破坏的形式,磨损大致可分4类:粘着磨损、___________________________ 及接触疲劳。

3、断裂韧度受各种内外因素的影响,外在因素主要包括 ______________________4、硬度实验方法包括布氏硬度、_____________ 、_____________ 、 _____________等方法。

二、判断题:(在正确的前面划“”,错误的前面划“X” ;每题1分,共10 分) ()1、过载持久值表征疲劳断裂时的应力循环周次,属于采用能量方法表示的力学性能指标,与应变比能、断裂韧度相同。

()2、冲击韧度、静力韧度、断裂韧度,都是衡量材料韧性大小的力学性能指标。

而且,它们采用相同的计量单位。

()3、只要存在金属材料、应力和腐蚀介质,一定会发生应力腐蚀断裂。

()4、疲劳裂纹萌生后便马上开始扩展,扩展分为介稳扩展和失稳扩展两个阶段,而且,介稳扩展的速率较快。

()5、氢脆断裂的微观断裂机理一般为沿晶断裂,断裂表面有泥状花样的腐蚀()6、各种断裂判据,都是裂纹失稳扩展的断裂判据,因此,都是非常安全的。

()7、缺口强化与形变强化不一样,不是强化材料的重要手段,但对于那些不能进行热处理强化的材料,可以作为强化的手段。

()&比例极限与蠕变极限相似,都属于长度类力学性能指标,都与拉伸紧密相关,是表示拉伸的力学性能指标。

()9、磨损曲线与蠕变曲线相似,都分为三个阶段,斜率表示速率,因此它们的纵横坐标是相同。

()10、同一金属材料用不同的硬度测定方法所测得的硬度值是相同的。

材料的力学性能课件10_塑性变形

材料的力学性能课件10_塑性变形
材料的力学性能
Mechanical Properties of Materials
材料力学行为的机理分析
外加 载荷
弹性
断裂
环境 因素
加载方式
塑性
材料成分 组织结构
损伤
介质
加载速度
黏性
材料力学行为
失效
温度
材料力学行为的机理分析
• 第9章 弹性变形(2学时) • 第10章 塑性变形(2学时) • 第11章 断裂(4学时) • 第11章 损伤(2学时)
塑性变形的物理机制
单晶体应力应变曲线
①易滑移阶段(Ⅰ) 当τ达到晶体的τc后,应力增加不多,便 能产生相当大的变形,近似为线性流变阶 段。在阶段Ⅰ,晶体中位错密度低,分布 均匀,所以应变硬化速率很低,约为104G
②线性硬化阶段(Ⅱ) 位错密度增大到中等程度,滑移可以在几 组相交的滑移面中发生,但由于运动位错 之间的交互作用及其所形成不利于滑移的 结构状态,随应变量的增大,应变硬化十 分显著,应力与应变近似呈线性关系,应 变硬化速率大致为G/300。
塑性变形的影响
组织结构的变化
随着塑性变形程度的增加,各个晶粒的滑移方向逐渐向主形变方向转动,使多晶 体中原来取向互不相同的各个晶粒在空间取向逐渐趋向一致,这一现象称为择优取向。 形变金属中的这种组织状态则称为形变织构。随着形变织构的形成,多晶体各向异性 也逐渐显现。 形变织构现象对于工业生产有时可加以利用,有时则要避免。
面心立方晶格 滑移系:4×3=12
密排六方晶格 滑移系:1×3=3
塑性变形的物理机制
单晶体的塑性变形
1、滑移
压缩
拉伸
滑移时晶面的转动
晶体发生转动的力偶
塑性变形的物理机制

第十章聚合物材料的力学性能

第十章聚合物材料的力学性能§10-1聚合物材料的结构与性能特点分子质量大于1万以上的有机化合物称为高分子材料,是由许多小分子聚合而成,故又称为聚合物或高聚物。

原子之间由共价键结合,称为主价键;分子之间由范德瓦尔键连接,称为次价键。

分子间次价键力之和远超过分子中原子间主价键的结合力。

拉伸时常常先发生原子键的断裂。

聚合物的小分子化合物称为单体,组成聚合物长链的基本结构单元则称为链节。

聚合物长链的重复链节数目,称为聚合度。

天然的聚合物有木材、橡胶、棉花、丝、毛发和角等。

人工合成聚合物有工程塑料、合成纤维、合成橡胶等一、聚合物的基本结构1、高分子链的构型(近程结构)由化学键所固定的几何形状--指高分子链的化学组成、键接方式和立体构型等。

见图9-1。

(图9-2)。

长支链、短支链;线型交联分子链、三维交联分子链。

由两种以上结构单体聚合而成的聚合物称为共聚物。

聚合物的结晶很难完全。

(共聚物的几种形式如图9-3。

)2、高分子链的构象(远程结构)一根巨分子长链在空间的排布形象,称为巨分子链的构象。

无规则线团链、伸展链、折叠链、螺旋链等构象(图9-5)。

3、聚合物聚集态结构聚集态结构包括晶态结构、非晶态结构及取向。

晶区与非晶区共存。

结晶度<98%,微晶尺寸在100A左右。

非晶态结构的高分子链多呈无规则线团形态。

在外力作用下,聚合物的长链沿外力方向排列的形态称为聚合物的取向。

4、高分子材料结构特征归纳:⑴聚合物为复合物(∵各个巨分子的分子量不一定相同);⑵聚合物有构型、构象的变化;⑶分子之间可以有各种相互排列。

二、性能特点(1)密度小; (2)高弹性; (3)弹性模量小(刚度差);(4)粘弹性明显。

§10-2线型非晶态聚合物的变形线型非晶态聚合物是指结构上无交联、聚集态无结晶的高分子材料。

随温度不同而变化,可处于玻璃态、高弹态和粘流态三种力学状态(图9-7)tb一脆化温度 tg一玻璃化温度 tf一粘流温度图9-8为非晶态聚合物在不同温度下的应力一应变曲线。

材料力学性能考试题

一、名词解释Ak:冲击吸收功,表示冲击试样变形及断裂消耗的功。

KIC:断裂韧度,表示在平面应变条件下材料抵抗裂纹失稳扩展的能力。

KⅠ:应力场强度因子,表示裂纹尖端应力场的强弱。

△Kth:疲劳裂纹扩展门槛值,表示材料阻止疲劳裂纹开始扩展的性能。

NSR:静拉伸缺口敏感度,金属材料的缺口敏感性指标,缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比值。

ψ:断面收缩率,是试样拉断后,颈缩处横截面积的最大缩减量与原始横截面积的百分比,反映了材料局部变形的能力。

σ-1:疲劳极限,试样经无限次循环也不发生疲劳断裂,将对应的应力称为σ-1。

σ0.2:屈服强度,对于无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力,作为该钢的屈服强度。

στt:持久强度极限,材料在规定温度(t)下,达到规定的持续时间(τ)而不发生断裂的最大应力。

σtε:蠕变极限,在规定温度(t)下,使试样在规定时间内产生的稳态蠕变速率(ε)不超过规定值的最大应力。

σtδ/τ:蠕变极限,在规定温度(t)下和规定的试验时间(τ)内,使试样产生的蠕变总伸长率(δ)不超过规定值的最大应力。

E:弹性模量,表征材料对弹性变形的抗力。

σs:屈服点,呈现屈服现象的金属材料拉伸时,试样在外力不增加仍能继续伸长时的应力。

σbc:抗压强度,试样压至破坏过程中的最大应力。

δ:断后伸长率,是试样拉断后标距的长度与原始标距的百分比。

G:切变模量,在弹性范围内,切应力与切应变之比称为G。

σbc:抗压强度,试样压至破坏过程中的最大应力。

σbb:抗弯强度,指材料抵抗弯曲不断裂的能力。

GI:裂纹扩展力,表征裂纹扩展单位长度所需的力。

σp:比例极限,应力与应变成直线关系的最大应力。

σe:弹性极限,由弹性变形过渡到弹性塑性变形的应力。

弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

材料力学性能复习资料前(简单32课时)

名词解释1.弹性:指材料在外力作用下保持和恢复固有形状和尺寸的能力2.塑性:指材料在外力作用下发生不可逆的永久变形的能力3.强度:指材料在外力作用下抵抗塑性形变和破坏的能力4.比例极限ζp:应力与应变保持正比关系的最大应力5.弹性极限ζe:在拉伸试验过程中,材料不产生塑性变形时的最大应力6.屈服极限:①对拉伸曲线上有明显屈服平台的材料,塑性变形硬化不连续,屈服平台所对应的应力即为屈服强度ζs②对拉伸曲线上没有屈服平台的材料,塑性变形硬化是连续的,此时将屈服强度定义为产生0.2%残余伸长时的应力ζ0.27.抗拉强度ζb:材料断裂前所能承受的最大应力8.应变强化:材料在应力作用下进入塑性变形阶段后,随着变形量的增大,性变应力不断提高的现象9.断裂延性:拉伸断裂时的真应变10.弹性比功We(弹性应变能密度):材料开始塑性变形前单位体积所能吸收的弹性变形功。

We = ζeEe/2 = ζe^2/(2E)[需弹性较大材料时,增大We的措施是增加ζe,降低E]11.弹性后效:在弹性范围内加速加载或卸载后,随时间延长产生附加弹性应变的现象12.弹性滞后:在非瞬间加载条件下的弹性后效13.内耗Q-1=1/2π*△W/W:加载时消耗的变形功大于卸载时释放的变形功,或弹性滞后回线面积为一个循环所消耗的不可逆功,这部分被金属吸收的功,称为内耗14.循环韧性(消振性):金属材料在单向循环载荷或交变循环载荷作用下吸收不可逆功的能力15.包申格效应:产生了少量塑性变形的材料,再同向加载,则弹性极限与屈服强度升高,反向加载则弹性极限与屈服强度降低的现象16.孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系17.硬度:指材料抵抗其他硬物体压入其表面的能力18.应力状态柔度因数:表示应力状态对材料塑性变形的影响。

α=ηmax/ζmax=(ζ1 –ζ3)/2[ζ1 –ν(ζ2 + ζ3)]19.解理断裂:材料在拉应力作用下,由于原子间结合键遭到破坏,严格地沿一定的结晶学平面(即所谓“解理面”)劈开而造成的断裂。

纺织材料学 10 纤维力学性能

力增大,造成结晶区的破碎和非晶区中大分 子链被拉断,沿纵向碎裂,最后断裂破坏。 一般来说,纤维的剪切强度小于拉伸强度。
表示纤维抵抗扭转破坏能力的指标是捻 断纤维时的加捻角。见表10-3
2020/4/25
第十章 纤维的力学性质
25
表 10-3 各种纤维的断裂捻角
纤维
断裂捻角 (度)
种类
短纤维
长丝

34~37
c.大分子的结晶度: 纤维的结晶度愈高,纤维的断裂 强度、屈服应力和初始模量表现得较高。 (2)温湿度
a.温度:在纤维回潮率一定的条件下,温度高,大分子 热运动提高,大分子柔曲性提高,分子间结合力削弱。 拉伸强度下降,断裂伸长率增大。初始模量下降。
2020/4/25
第十章 纤维的力学性质
9
第一节 拉伸性质(续)
料屈服流动。两物体间的接触面不断增大。
2020/4/25
第十章 纤维的力学性质
28
第五节 表面摩擦与抱合性质(续)
三、纤维抱合性能的表征指标
1.抱合系数
可用单位长度纤维的抽出阻力来表征这一集束 能力,并定义该比值为抱合系数h(cN/mm):
除压后剩余变 637 形(%)② 65.1 48.5 56.2 35.2 66.4 33.1 62.4 47.2 66.2 55.6 55十章 纤维的力学性质
12
第二节 压缩性能(续)
纤维集合体在压缩时,压力与纤维集合体密度关系如 图10-3纤维集合体的压力与密度间关系所示。当纤维集 合体密度很小,或纤维间空隙率很大时,压力稍有增大, 纤维间空隙缩小,密度增加极快。当压力很大,纤维间 空隙很小时,再增大压力,集合体密度增加极微。
第十章 纤维的力学性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.固溶强化
(1)固溶强化现象
Cu-Ni合金固溶强化
铁素体的固溶强化
固溶强化现象
溶质原子的加入提高
材料的屈服强度s和
应力水平,
同时加工硬化率d/d
不同程度增大。
Al-Mg合金应力-应变曲线
(2)固溶强化规律 ①一般稀固溶体屈服应力:
s 0 kCm
②固溶强化与溶质极限溶解度(固溶度)显著相关;
思考题:
1.屈服强度的宏观构成和微观本质?两者有何关系? 2.从屈服强度的本质和应变时效效应推测材料强化时应 注意什么? 3.多晶体屈服强度微观本质?与单晶体有何联系与区别? 4.多晶体宏观屈服强度与单晶体有何联系与区别? 5.如何理解细晶强化同时改善塑韧性?
6.细化晶粒对高塑性或高强度材料s何者影响大?
在室温(仅为熔点的22%)轧制纳米晶Cu样品,其延伸率高达 5100%,无明显的加工硬化效应,晶粒尺寸保持不变。说明 晶界运动起重要作用。
思考题:如何兼顾金属材料的强韧性与导电性?
纳米晶材料中塑性变形机制的变化
晶界变形主导: 晶界位错发射与湮灭 晶界滑移 晶粒旋转 ……
S3-2 材料基本强化机制
K eV
K
金属 Cu Pd Fe Pd Pd Fe-1.8%C Cu Fe Sb Al Ag于Cu中 Cu自扩散 Fe
多晶 16 0.24 7.9 123 43 700 83 222 -1 1.2 2.0 2.04 467
单晶 18 7.5 215 -0.03 -
纳米晶 31 0.37 6 88 32 8000 185 130 20 3.2 0.39 0.64 3
g
g

n

kL
Gb
2
g

KL
Gb
(
i )2
(扣除位错滑移阻力i )
当 g cos c (微观)
s (宏观)
c

kd cos
2Gb
( S
i
)2
S i
2Gb c d 1/ 2 K cos

M
cos cos
b2
Ti合金冷变形位错缠结
位错交割结果:在位错线上可形成曲折的运动。
扭折:位错线上位于其滑移面上的曲折部分。 扭折对位错运动影响不大。
b
割阶
b
扭折
典型的位错交割: ①不同滑移面上两条相垂直 刃位错交割,使两条位错线上 各形成大小、方向等于另一条
位错线b 矢量的螺型扭折。
b1
b1
b2
b2
②不同滑移面上两条相垂
b1
b1
直螺位错交割,使两条位错
线上各自形成大小、方向等
b2
b2
于另一条位错线b 矢量的刃
型割阶。该割阶须经攀移才
能运动。
③不同滑移面上的两条相垂直刃位错与螺位错交割,使刃
位错上形成大小、方向等于螺位错b矢量的刃型扭折,螺位 错上形成大小、方向等于刃位错b矢量的刃型割阶。
和微观机制? 8.何种条件下应变时效可以用作强化手段?
物理屈服现象及其本质:
应变时效:
“钉扎-脱钉”机制:位错与溶质原子相互作用结果。 热激活钉扎 力学脱钉
第三章 材料变形抗力与强化机制
初始变形抗力:s 继续变形抗力: s
最大强度:
max y
f d

y d
⑤改变基体键合强度导致点阵阻力变化
弹性交互作用强,但对温度敏感,常温下作用大; 电学和化学交互作用较弱,但对温度不敏感,高
温下作用大。
强化效果大的溶质元素固溶度低; 多元微合金化,非单个元素强化的加和。
习题四:试对比分析单晶体与多晶体的塑性 变形临界条件,基于位错理论推导HallPetch公式并举例说明其工程意义与适用范围。
S3-2 材料基本强化机制
2.细晶强化
1
s 0 kd 2
低碳钢s与晶粒直径的关系
高木節雄.降伏強度 と 組織因子-強化機構 の 加算則について[J].ふぇらむ,2008,13(5):44-49
1
s 0 kd 2
Hall-Petch关系
Hall-Petch关系的推导:
材料力学性能
哈尔滨工业大学材料学院 朱景川
思考题:
1.物理屈服尖锐屈服点或应力陡降反映了塑性变形何种特征?> 2.物理屈服锯齿平台反映了塑性变形何种特征?> 3.物理屈服延伸变形特点?与Luders带应变有何关系?> 4.物理屈服的本质?其产生条件? 5.应变时效条件是什么?有何工程意义?> 6.应变时效的本质?如何理解?> 7.在100-300℃拉伸时会产生动态应变时效,预测其宏观表现
7.纳米晶材料塑性变形行为有何特征?其微观机制? 8.固溶强化微观机制? 9.工程材料为何一般是多元微合金化设计?
纳米晶材料与纳米结构材料结构与性能特点
纳米晶金属与通常多晶或单晶的性能
性能 热膨胀系数 比热容(295K)
密度 弹性模量 剪切模量 断裂强度 屈服强度 饱和磁化强度(4K) 磁化率 超导临界温度 扩散激活能
德拜温度
单位 10-6K-1 J/(g×K) g/cm3
GPa GPa MPa MPa 4p×10-7Tm3/kg 4p×10-9Tm3/kg
①弹性交互作用
溶质原子均匀分布——长程弹性交互作用
形成溶质原子气团钉扎位错
Cottrell气团
Snoek气团
螺型位错与周围的溶质 原子作用,原子在沿x、 y、z的三种面心位置上 发生择优分布(应力感 生有序),使系统能量 降低。
②电交互作用 ③化学交互作用
面心立方晶体中的扩展位错
④几何交互作用
纯铜σs与晶粒直径的关系
第三章 材料变形抗力与强化机制
S3-2 材料基本强化机制
2.细晶强化
关于细晶强韧化:
强化:晶界阻碍位错运动,因此晶粒细化强度提高。 韧化:晶粒细小有利于协调变形;同样的延伸率,每个晶粒 的变形量减小,当其与大晶粒一样的话,总延伸率提高。 细化晶粒是一种有效的强韧化手段。
例外:当晶粒细化到一定程度,比如纳米量级,强度增加; 但塑性明显降低。 原因:晶粒过小晶界不能有效塞积位错,加工硬化能力弱, 易塑性失稳断裂。
b1
b1
b2
b2
d Gb
S3-1 单晶体的屈服强度
3.屈服强度本质及构成
纯净材料单晶体: s p d p Gb
对于一般材料:
s 0 Gb
Bailey-Hirsch关系式
S3-2 材料基本强化机制
1.基本途径
非晶金属
第三章 材料变形抗力与强化机制
d

S3-1 单晶体的屈服强度
1.点阵阻力 (派-纳力:Peierls-Nabarro)
位错滑移时核心能量的变化:
p
2G
1
2d
e (1 )b
2G
1
2w
eb
S3-1 单晶体的屈服强度
2.位错间交互作用阻力
(1)平行位错间交互作用 (2)位错林阻力
b1
位错滑移方向
纳米晶金属材料力学行为特点
(1)高强度:临界晶粒尺寸dc
d >dc,Hall-Petch关系 d <dc,反Hall-Petch关系
dc , nm
纳米晶金属材料力学行为特点
(2)低塑性:尤其是均匀延伸率低 纯度与加工缺陷的影响; 加工硬化能力较差,
易塑性失稳。
卢柯等利用电解沉积技术制备高纯致密块状纳米晶体Cu, 晶粒尺寸为30 nm,纯度高于99.995 wt%,密度可达普通纯Cu 理论密度的99.4%。
溶质原子不同,强化效果不同;溶质原子 浓度越高,强化作用越大,低浓度时效果 更明显。
溶质原子与基体原子的尺寸相差越大,效 果越明显。
间隙式溶质元素比置换式溶质元素固溶强 化作用更大。
溶质原子与基体原子电负性差别越大,固 溶强化作用越大。
(3)固溶强化机理
固溶强化的实质是溶质原子与位错的弹性 交互作用、电交互作用和化学交互作用阻 碍了位错的运动。
M
(单晶体 ) (多晶体 )
M S Mi
2GbM 2 c d 1/2 K cos
s i kd 1/ 2
讨论:(1)i、k的物理意义?
(2)细晶强韧化机制? (3)适用范围?
Hall-Petch关系的适用范围
低碳钢流变应力和抗拉强度与晶粒尺寸的关系

相关文档
最新文档