2013高考数学(理)一轮复习课件:10-2
合集下载
2013届高考理科数学总复习(第1轮)全国版课件:10.2排列、组合应用题(第1课时)

• 4. 从n个不同元素中取出m(m≤n)个元素 ⑤ _________,叫做从n个不同元素中取 并成一组 出m个元素的一个组合. • 5.从n个不同元素中取出m(m≤n)个元素的 ⑥ ______________,叫做从n个不同元 所有组合的个数 素中取出m个元素的组合数,记作⑦ m Cn ____ . m n n 1 n 2 n m 1 A=⑧ ____________________. n • 6. m n n 1 n 2 n m 1 C =⑨ ____________________. • 7. n m m 1 m 2 2 1
14
题型2
• • • • • • • • •
(2)方程要有实根,需Δ=b2-4ac≥0. 当c=0时,a、b可在1、3、5、7 2 中任取2个,有 A 4 个; 当c≠0时,b只能取5、7. 2 b取5时,a、c只能取1、3,有 A 2 个; b取7时,a、c可取1、3或1、5, 2 有2 A 2 个. 故有实数根的一元二次方程共有 2 2 2 A4 A2 2 A2 18 个.
A5 A4
5 4
6
• 2.若2n个学生排成一排的排法数为x,这 2n个学生排成前后两排,每排各n个学生 的排法数为y,则x、y的关系为( ) C • A. x>y B. x<y • C. x=y D. x=2y • 解:第一种排法数为 ,第二种排法数 2n A2 n 为 n n = 2 n ,从而x=y.
25
• 2.元素相邻用“捆绑法”,即将必须相邻的元 素“捆”在一起当作一个元素进行排列. • 3.元素相离用“插空法”,即把可相邻元素每 两个元素留出一个空位,将不能相邻即相离的 元素插入空位中进行排列. • 4.定序元素用“除法”,即n个元素的全排列 中若有m个元素必须按一定顺序排列,这m个 元素相邻或不相邻都可以,
2013高考数学(理)一轮复习课件:2-2

(3)∵f(x)在[0,+∞)是单调递减函数. ∴f(x)在[2,9]上的最小值为f(9).
x1 9 由fx =f(x1)-f(x2)得,f3=f(9)-f(3), 2
而f(3)=-1,所以f(9)=-2. ∴f(x)在[2,9]上的最小值为-2.
规范解答2——如何解不等式恒成立问题
【示例】►
(本题满分12分)已知函数f(x)=x2-2ax+2,当x∈
[-1,+∞)时,f(x)≥a恒成立,求a的取值范围. 利用函数性质求f(x)的最值,从而解不等式 f(x)min≥a,得a的取值范围.解题过程中要注意a的范围的讨 论. [解答示范] ∵f(x)=(x-a)2+2-a2,∴此二次函数图象的对称 轴为x=a(1分) (1)当a∈(-∞,-1)时,f(x)在[-1,+∞)上单调递增, ∴f(x)min=f(-1)=2a+3.(3分) 要使f(x)≥a恒成立,只需f(x)min≥a,即2a+3≥a, 解得a≥-3,即-3≤a<-1.(6分)
双基自测 1.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则 xf(x)<0的解集为( ). B.(-∞,-2)∪(0,2) D.(-2,0)∪(0,2)
A.(-2,0)∪(2,+∞) C.(-∞,-2)∪(2,+∞) 答案 C
2.(2011· 湖南)已知函数f(x)=ex-1,g(x)=-x2+4x-3.若有 f(a)=g(b),则b的取值范围为( A.[2- 2,2+ 2] C.[1,3] ). B.(2- 2,2+ 2) D.(1,3)
x2+a 【例2】►已知函数f(x)= x (a>0)在(2,+∞)上递增,求实数 a的取值范围. [审题视点] 等价性. 求参数的范围转化为不等式恒成时要注意转化的
2013版高考数学人教A版一轮复习课件第1单元-集合与常用逻辑用语(理科)

第1讲 │ 问题思考
► 问题3 集合的运算 (1)A∩B=A∪B的充要条件是A=B.( (2)A∩B=∅的充要条件是A=B=∅.(
) )
第1讲 │ 问题思考
[答案] (1)对;(2)错.
[解析] (1)根据韦恩图分析可知. (2)A∩B=∅时,只要集合 A,B 没有公共元素即可,不一 定是 A=B=∅.
B∩A A ∅ (3)交集:A∩B=______,A∩A=____,A∩∅=____, ⊆ A∩B____A,A∩B=A⇔A⊆ B. ∅ U (4)补集:A∩(∁UA)=____,A∪(∁UA)=____.
(∁UA)∪(∁ (5)∁U(A∪B)=________,∁U(A∩B)=________. UB ) (∁UA)∩(∁UB)
集合 常用逻 辑用语 集合 常用逻 辑用语
集合的含义、运算、 基本关系 命题、充要条件、逻 辑联结词、量词
了解 理解 了解 理解 了解 理解 理解
2011江苏1 2011陕西12 2010北京20 2010安徽20
解 答 题
第一单元 │ 使用建议 使用建议
第1讲 │ 知识梳理
(4)几个常用集合的表示法 数集 自然数 正整数 集 集 整数集 有理数 集 实数集
N*或N Q R 表示法 ______ ______+ ______ ______ ______ N Z 列举法 描述法 (5)集合有三种表示法:________,________, Venn图法 ________.
第1讲 │ 问题思考
► 问题4 元素、集合的关系 (1)a {a}.( ) (2)∅∈{∅}.( ) (3){(1,2)}⊆ {1,2}.( )
第1讲 │ 问题思考
[答案] (1)错;(2)对;(3)错.
2013届高考一轮数学复习理科课件(人教版)第5课时 对数与对数函数

第5课时
高考调研
高三数学(新课标版· 理)
(3)由指数函数的性质: ∵0<0.9<1,而5.1>0, ∴0<0.95.1<1,即0<m<1. 又∵5.1>1,而0.9>0,∴5.10.9>1,即n>1. 由对数函数的性质: ∵0<0.9<1,而5.1>1,∴log0.95.1<0, 即p<0.综上,p<m<n.
图所示,则a,b满足的关系是( A.0<a-1<b<1 B.0<b<a-1<1 C.0<b-1<a<1 D.0<a 1<b 1<1
- -
第二章
第5课时
高考调研
高三数学(新课标版· 理)
【解析】 首先由于函数φ(x)=2x+b-1单调递增, 可得a>1;又-1<f(0)<0,即-1<logab<0,所以a-
【解析】 设f1(x)=(x-1)2,f2(x)=logax,要使当x ∈(1,2)时,不等式(x-1)2<logax恒成立,只需f1(x)=(x- 1)2在(1,2)上的图像在f2(x)=logax的下方即可.(如图所示)
第二章
第5课时
高考调研
高三数学(新课标版· 理)
当0<a<1时,显然不成立. 当a>1时,如图,要使在(1,2)上, f1(x)=(x-1)2的图像在f2(x)=logax的下方,只需 f1(2)≤f2(2), 即(2-1)2≤loga2,loga2≥1,∴1<a≤2.
第二章
第5课时
高考调研
高三数学(新课标版· 理)
【人教版】数学(理)一轮复习:第10章《计数原理、概率、随机变量及其分布》(第2节)课件 公开课一等奖课

(3)当 x=1,y=3 时,有 C13·C34·C15=60 种不同选法; (4)当 x=2,y=1 时,有 C23·C14·C25=120 种不同选法; (5)当 x=2,y=2 时,有 C23·C24·C15=90 种不同选法;
第十章 计数原理、概率、随机变量及其分(理) 概率 (文)
(6)当 x=3,y=1 时,有 C33·C14·C15=20 种不同选法. 所以不同的选法共有 120+180+60+120+90+20=590 种. 答案 590
第十章 计数原理、概率、随机变量及其分(理) 概率 (文)
5.(2014·本溪模拟)5 名乒乓球队员中,有 2 名老队员和 3 名新队 员.现从中选出 3 名队员排成 1,2,3 号参加团体比赛,则入 选的 3 名队员中至少有 1 名老队员,且 1、2 号中至少有 1 名 新队员的排法有________种.(以数字作答) 解析 ①只有 1 名老队员的排法有 C12·C23·A33=36(种); ②有 2 名老队员的排法有 C22·C13·C12·A22=12(种), 所以共 48 种. 答案 48
()
第十章 计数原理、概率、随机变量及其分(理) 概率 (文)
[听课记录] 先将 4 名水暖工选出 2 人分成一组,然后将三组水暖 工分配到 3 户不同的居民家,故有 C24A33种. 答案 C
第十章 计数原理、概率、随机变量及其分(理) 概率 (文)
(2)(2013·重庆高考)从 3 名骨科、4 名脑外科和 5 名内科医生中选 派 5 人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生 都至少有 1 人的选派方法种数是________(用数字作答). [听课记录] 解法一:从 12 名医生中任选 5 名,不同选法有 C512= 792 种.不满足条件的有:只去骨科和脑外科两科医生的选法有 C57=21 种,只去骨科和内科两科医生的选法有 C58-C55=55 种,只 去脑外科和内科两科医生的选法有 C59-C55=125 种,只去内科一 科医生的选法有 C55=1 种,故符合条件的选法有:792-21-55 -125-1=590 种.
第十章 计数原理、概率、随机变量及其分(理) 概率 (文)
(6)当 x=3,y=1 时,有 C33·C14·C15=20 种不同选法. 所以不同的选法共有 120+180+60+120+90+20=590 种. 答案 590
第十章 计数原理、概率、随机变量及其分(理) 概率 (文)
5.(2014·本溪模拟)5 名乒乓球队员中,有 2 名老队员和 3 名新队 员.现从中选出 3 名队员排成 1,2,3 号参加团体比赛,则入 选的 3 名队员中至少有 1 名老队员,且 1、2 号中至少有 1 名 新队员的排法有________种.(以数字作答) 解析 ①只有 1 名老队员的排法有 C12·C23·A33=36(种); ②有 2 名老队员的排法有 C22·C13·C12·A22=12(种), 所以共 48 种. 答案 48
()
第十章 计数原理、概率、随机变量及其分(理) 概率 (文)
[听课记录] 先将 4 名水暖工选出 2 人分成一组,然后将三组水暖 工分配到 3 户不同的居民家,故有 C24A33种. 答案 C
第十章 计数原理、概率、随机变量及其分(理) 概率 (文)
(2)(2013·重庆高考)从 3 名骨科、4 名脑外科和 5 名内科医生中选 派 5 人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生 都至少有 1 人的选派方法种数是________(用数字作答). [听课记录] 解法一:从 12 名医生中任选 5 名,不同选法有 C512= 792 种.不满足条件的有:只去骨科和脑外科两科医生的选法有 C57=21 种,只去骨科和内科两科医生的选法有 C58-C55=55 种,只 去脑外科和内科两科医生的选法有 C59-C55=125 种,只去内科一 科医生的选法有 C55=1 种,故符合条件的选法有:792-21-55 -125-1=590 种.
高考数学(理)一轮复习课件:坐标系与参数方程-2参数方程

π
当α= 4 时,射线l与C1交点A1的横坐标为x=
2 2
,与
C2交点B1的横坐标为x′=3
10 10 .
π
当α=- 4 时,射线l与C1,C2的两个交点A2,B2分别
与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形. 故四边形A1A2B2B1的面积为 (2x′+2x)2 (x′-x)=25.
(2)由(1)知xy==t12+2t
① ②
由①得t=x-2 1,代入②得y=(x-2 1)2,∴(x-1)2-4y=0.
[答案] (1)1 (2)(x-1)2-4y=0
[规律总结] 化参数方程为普通方程,关键是消去参
数建立关于x,y的二元方程F(x,y)=0,常用方法有代入
消元法,加减消元法,恒等式法,方法的选取是由方程
=0.
由题意可得圆心C(-1,0),则圆心到直线x+y+3=
0的距离即为圆的半径,故r=
2= 2
2 ,所以圆的方程为
(x+1)2+y2=2.
高考测点典例研习
参数方程与普通方程的互化
例1 [教材改编]已知某曲线C的参数方程为
x=1+2t y=at2
(其中t是参数,a∈R),点M(5,4)在该曲线
点.当α=0时,这两个交点间的距离为2,当α=
π 2
时,这
两个交点重合.
(1)分别说明C1,C2是什么曲线,并求出a与b的值;
(2)设当α=
π 4
时,l与C1,C2的交点分别为A1,B1.当α
=-
π 4
时,l与C1
,C2的交点分别为A2,B2求四边形
A1A2B2B1的面积.
[思路点拨] (1)将参数方程化成普通方程; (2)求出A1B1A2B2点的坐标结合图形求四边形的面 积.
高考数学一轮复习第二篇第10节导数的概念与计算课件理新人教A版
返回导航
解:(1)∵y=x12+x5x+2 sin x=x-32+x3+sixn2 x, ∴y′=(x-32)′+(x3)′+(x-2sin x)′ =-32x-52+3x2-2x-3sin x+x-2cos x; (2)因为 y=sin 2x(-cos 2x)=-12sin x, 所以 y′=(-12sin x)′=-12(sin x)′=-12cos x.
第二篇 函数、导数及其应用 (必修1、选修2-2)
第 10 节 导数的概念与计算
最新考纲 1.了解导数概念的实际背景. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数 y=C(C 为常数),y=x,y=1x,y=x2,y=x3, y= x的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的 导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如 y=f(ax +b)的复合函数)的导数.
返回导航
【教材导读】 曲线 y=f(x)“在点 P(x0,y0)处的切线”与“过点 P(x0,y0)的切线”有何不 同? 提示:(1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点,切线斜 率为 k=f′(x0)的切线,是唯一的一条切线. (2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以 是切点,也可以不是切点,而且这样的直线可能有多条.
返回导航
【即时训练】 求下列函数的导数: (1)y=( x+1) 1x-1; (2)y=xsin2x+π2cos2x+π2; (3)y=ee2xx++ee--x2x.
返回导航
解:(1)因为 y= x·1x- x+ 1x-1
=-x12+x-12,
所以 y′=-(x12)′+(x-12)′=-12x-12-12x-32
2013版高考数学人教A版一轮复习课件第5单元-数列(理科)
第五单元 │ 网络解读
2.等差数列 (1)等差数列的通项公式中的已知量与未知量的区分是重点, 是联系一次函数的性质的核心; (2)等差数列的前n项和公式为二次函数,首项的正负与公 差的正负影响数列前n项和的最大值、最小值.关注项数为正自 然数的要求; (3)等差数列的定义是判断一个数列是否为等差数列的常用 依据,等差中项只有唯一的值.求和公式中的两项之和通常结 合性质并利用整体思想求值.
它的前一项an-1(或前几项) 第2项(或某一项)开始的任一项an与________________________
间的关系可以用一个公式来表示,那么这个公式就叫做这个数 列的递推公式.
第27讲 │ 问题思考 问题思考
► 问题 1 数列的概念 (1)相同的一组数按不同顺序排列时都表示同一个数 列.( ) (2)一个数列中的数是不可以重复的.( )
本课件为基于精确校对的word书稿制作的“逐字编辑” 课件,使用时欲修改课件,请双击对应内容,进入可编辑状态。
如果有的公式双击后无法进入可编辑状态,请单击选中此
公式,点击右键、“切换域代码”,即可进入编辑状态。修改 后再点击右键、“切换域代码”,即可退出编辑状态。
第五单元 数
列
第27讲 数列的概念与简单表示法 第28讲 等差数列 第29讲 等比数列
第27讲 │ 数列的概念与简单表示法
第27讲
数列的概念与简单表示法
第27讲 │ 考纲要求 考纲要求
1.了解数列的概念和几种简单表示法(列表、图象、 通项公式). 2.了解数列是自变量为正整数的一类函数.
第27讲 │ 知识梳理 知识梳理
1.数列的定义
一定顺序 (1)数列的定义:按照________排列的一列数称为数列, 项 数列中的每一个数叫做这个数列的____. (2)从函数观点看,数列可以看成以 正整数集N*(或它的有限子集{1,2,…,n}) ______________________________________________________ 为定义域的函数an=f(n)当自变量按照从小到大的顺序依次取 值时所对应的一列函数值.
高三数学第一轮复习课件(ppt)目录
Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(
)
A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]
)
D、[5,+∞﹚
2013版高考数学人教A版一轮复习课件第4单元-平面向量(理科)
第四单元 │ 网络解读
(2)平面向量的线性运算是指平面向量的加法运算、减法运 算、数乘运算,这些运算都是从几何上进行定义的,要从几何 表示上弄清楚这些运算的含义,注意两个向量共线的充要条件 的应用. (3)平面向量的数量积是平面向量的另一种重要运算,是平 面向量的核心内容,主要是数量积的定义、性质和运算法则、 运用数量积表示两个向量的夹角、两向量垂直的充要条件,要 注意数量积的运算结果是一个数量,注意一个向量在另外一个 向量上的投影也是一个数量,注意向量的数量积和数的乘法运 算的区别.
(2)下列命题中: ①时间、速度、加速度都是向量; ②向量的模是一个正实数; ③所有的单位向量都相等; ④共线向量一定在同一直线上. 其中真命题的个数为( A.0 B.1 C.2 D.3 )
第24讲 │ 要点探究
(3)给出下列命题: ①若|a|=|b|,则 a=b; ②向量不可以比较大小; ③若 a=b,b=c,则 a=c; ④a=b 的充要条件是|a|=|b|且 a∥b; ⑤若 a∥b,b∥c,则 a∥c. 其中正确的命题有( A.1 个 C.3 个 B.2 个 D.4 个 )
第四单元 │ 使用建议
3.课时安排 本单元共3讲和一个45分钟滚动基础训练卷,第26讲建议 2课时完成,其余每讲建议1课时完成,45分钟滚动基础训练 卷,建议各1课时完成,共需6课时.
第24讲 │ 平面向量的概念及其线性运算
第24讲
平面向量的概念 及其线性运算
第24讲 │ 考纲要求 考纲要求
1.了解向量的实际背景,理解平面向量的概念,理 解两个向量相等的含义. 2.理解向量的几何意义. 3. 掌握向量加法、 减法的运算, 并理解其几何意义. 4.掌握向量数乘的运算及其意义,理解两个向量共 线的含义. 5.了解向量线性运算的性质及其几何意义.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.14.9 mm D.15.1 mm
1 平均数 x = (14.7+14.6+15.1+15.0+14.8+15.1+15.0 8
+14.9)=14.9 (mm). 答案 B
2.(2012· 合肥月考)一个容量为100的样本,其数据的分组与各 组的频数如下: 组 别 频 数 12 13 24 15 16 ). 13 7 (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]
【训练 2】 在一项大西瓜品种的实验中,共收获甲种大西瓜 13 个、乙种大西瓜 11 个,并把这些大西瓜的重量(单位:斤,1 斤 =500 克)制成了茎叶图,如图所示,据此茎叶图写出对甲乙两 种大西瓜重量的两条统计结论是: (1) _________________________________________; (2) ______________________________________.
【训练3】 甲、乙两名射击运动员参加某大型运动会的预选 赛,他们分别射击了5次,成绩如下表(单位:环): 甲 10 8 9 9 9
乙 10 10 7 9 9 如果甲、乙两人中只有1人入选,则入选的最佳人选应是 ________.
解析
2
1 x 甲= x 乙=9环,s 甲 = 5 [(9-10)2+(9-8)2+(9-9)2+(9
第2讲 用样本估计总体
【2013年高考会这样考】 1.考查样本的频率分布(分布表、直方图、茎叶图)中的有关 计算,样本特征数(众数、中位数、平均数、标准差)的计 算.主要以选择题、填空题为主. 2.考查以样本的分布估计总体的分布(以样本的频率估计总体 的频率、以样本的特征数估计总体的特征数).
【复习指导】 1.由于高考对统计考查的覆盖面广,几乎对所有的统计考点 都有所涉及,其中频率分布直方图、均值与方差、茎叶图是核 心考点,需要好好掌握.复习时,对于统计的任何环节都不能 遗漏,最主要的是掌握好统计的基础知识,适度的题量练习. 2.高考对频率分布直方图或茎叶图与概率相结合的题目考查 日益频繁.因此,复习时要加强这方面的训练,弄清图表中有 关量的含义,并从中提炼出有用的信息,为后面的概率计算打 好基础.
将这组数据从小到大排列得
15+15 10,12,14,14,15,15,16,17,17,19.故中位数为 2 =15. 答案 C
4.某雷达测速区规定:凡车速大于或等于 70 km/h的汽车视为“超速”,并将受到处罚, 如图是某路段的一个检测点对200辆汽车的车速 进行检测所得结果的频率分布直方图,则从图中 可以看出被处罚的汽车大约有( ).
2
=4, 1 s乙=5[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]
2
=0.8.
2 (2)由s2 >s乙可知乙的成绩较稳定. 甲
从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波 动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.
平均数与方差都是重要的数字特征,是对总体的一种简明的 描述,它们所反映的情况有着重要的实际意义,平均数、中位 数、众数描述其集中趋势,方差和标准差描述其波动大小.
A.30辆 B.40辆 C.60辆 D.80辆 解析 由题图可知,车速大于或等于70 km/h的汽车的频率为 0.02×10=0.2,则将被处罚的汽车大约有200×0.2=40(辆). 答案 B
5.(2011· 江苏)某老师从星期一到星期五收到的信件数分别为 10,6,8,5,6,则该组数据的方差s2=________. 10+6+8+5+6 解析 平均数 x = =7. 5 1 ∴s =5[(10-7)2+(6-7)2+(8-7)2+(5-7)2+
③众数考查各数据出现的频率,其大小只与这组数据中的部分 数据有关.当一组数据中有不少数据多次重复出现时,其众数 往往更能反映问题. ④某些数据的变动对中位数可能没有影响.中位数可能出现在 所给数据中,也可能不在所给数据中.当一组数据中的个别数 据变动较大时,可用中位数描述其集中趋势.
(2)标准差与方差的异同 标准差、方差描述了一组数据围绕平均数波动的大小.标准 差、方差越大,数据的离散程度就越大;标准差、方差越小, 数据的离散程度则越小,因为方差与原始数据的单位不同,且 平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画 样本数据的分散程度上是一样的,但在解决实际问题时,一般 多采用标准差.
解 (1)由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. 10+13+12+14+16 x 甲= =13, 5 13+14+12+12+14 x 乙= =13, 5 1 s甲=5[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]
则样本数据落在(10,40]上的频率为( A.0.13 B.0.39 C.0.52 D.0.64
解析 由列表可知样本数据落在(10,40]上的频数为52,故其频 率为0.52. 答案 C
3.10名工人某天生产同一零件,生产的件数分别是 15,17,14,10,15,19,17,16,14,12,则这一天10名工人生产的零件 的中位数是( A.14 解析 B.16 ). C.15 D.17
基础梳理 1.频率分布直方图 (1)通常我们对总体作出的估计一般分成两种:一种是 用 样本的频率分布估计总体的分布;另一种是 用 样本的数字特征估计总体的数字特征 .
(2)作频率分布直方图的步骤 ①求极差(即一组数据中最大值与最小值的差). ②决定 组距 与 组数 . ③将数据分组. ④列频率分布表. ⑤画频率分布直方图. 频率 (3)在频率分布直方图中,纵轴表示 ,数据落在各小组内 组距 的频率用 各小长方形的面积 等于1. 表示.各小长方形的面积总和
【示例】►(本题满分12分)(2011· 北京)以下茎叶图记录了甲、乙 两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无 法确认,在图中以X表示.
2
1 (6-7) ]=5×(9+1+1+4+1)=3.2.
2
答案 3.2
考向一 频率分布直方图的绘制与应用 【例1】►某校从参加高一年级期中考试的学生 中随机抽出60名学生,将其物理成绩(均为整数) 分成六段[40,50),[50,60),„,[90,100]后得到如 图所示的频率分布直方图,观察图形的信息,回答 下列问题: (1)求分数在[70,80)内的频率,并补全这个频率分布直方图; (2)统计方法中,同一组数据常用该组区间的中点值作为代 表,据此估计本次考试中的平均分.
[审题视点] 率.
利用各小长方形的面积和等于1求[70,80)内的频
解 (1)设分数在[70,80)内的频率为x,根据频率分布直方图, 有(0.010+0.015×2+0.025+0.005)×10+x=1,可得x=0.3, 所以频率分布直方图如图所示. (2)平均分为:x=45×0.1+55×0.15+ 65×0.15+75×0.3+85×0.25+95×0.05 =71(分).
频率分布直方图直观形象地表示了样本的频率分布,从这个 直方图上可以求出样本数据在各个组的频率分布.根据频率分 布直方图估计样本(或者总体)的平均值时,一般是采取组中值 乘以各组的频率的方法.
【训练1】
(2011· 湖北)有一个容量为200的样本,其频率分布
直方图如图所示.根据样本的频率分布直方图估计,样本数据 落在区间[10,12)内的频数为( A.18 C.54 B.36 D.72 ).
考向三 用样本的数字特征估计总体的数字特征 【例3】►甲乙二人参加某体育项目训练,近期的五次测试成绩 得分情况如图.
(1)分别求出两人得分的平均数与方差; (2)根据图和上面算得的结果,对两人的训练成绩作出评价. [审题视点] (1)先通过图象统计出甲、乙二人的成绩; (2)利用公式求出平均数、方差,再分析两人的成绩,作出评 价.
解析
样本数据落在区间[10,12)内的频率1-(0.19+0.15+0.05
+0.02)×2=0.18,所以数据落在此区间的频数为200×0.18= 36. 答案 B
考向二 茎叶图的应用 【例2】►如图是某青年歌手大奖赛上七位评委为甲、乙两名选 手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一 个最高分和一个最低分后,甲、乙两名选手得分的平均数分别 为a1、a2,则一定有( A.a1>a2 B.a2>a1 C.a1=a2 D.a1,a2的大小与m的值有关 ).
解析
从这个茎叶图可以看出,甲种大西瓜的重量大致对称,
平均重量、众数及中位数都是30多斤;乙种大西瓜的重量除了 一个51斤外,也大致对称,平均重量、众数及中位数都是20多 斤,但甲种大西瓜的产量比乙种稳定,总体情况比乙好. 答案 (1)甲种大西瓜的平均重量大于乙种大西瓜 (2)甲种大
西瓜的产量比乙种大西瓜稳定
2.频率分布折线图和总体密度曲线 (1)频率分布折线图:连接频率分布直方图中各小长方形上端 的 中点 ,就得频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分组数增 加, 组距 减小,相应的频率折线图会越来越接近于一条光滑 曲线,即总体密度曲线.
3.茎叶图的优点 用茎叶图表示数据有两个突出的优点: 一是统计图上没有原始数据信息的损失,所有数据信息都可以 从茎叶图中得到; 二是茎叶图中的数据可以随时记录,随时添加,方便记录与表 示.
2 2
2 -9) +(9-9) ]= , 5 1 6 2 2 2 2 2 s 乙 = 5 [(9-10) +(9-10) +(9-7) +(9-9) +(9-9) ]= 5 >
2
s2 ,故甲更稳定,故填甲. 甲 答案 甲
规范解答19——怎样解答茎叶图与概率的综合性问题 【问题研究】 茎叶图是一个将数据分成主、次两部分,把主 要部分当做茎、次要部分当作叶表达数据的一个图,它是一种 常用的统计图.因此考题常将茎叶图作为载体来考查平均数、 方差以及概率问题., 【解决方案】 首先对茎叶图中的数据全面分析,然后再根据 茎叶图的数据解决其它问题.