医用高分子载体材料

合集下载

高分子载体材料在药用微球中的应用

高分子载体材料在药用微球中的应用

引言微球(microspheres)是一种应用较为广泛的新型给药体系,其以适宜的高分子材料为载体制成包裹药物的球形或类球形微粒,粒径一般在1~250μm(粒径小于1μm 的 称为毫微球)。

制备微球所用的载体材料按材料的降解性能一般可分为两大类:不可降解性高分子材料(如乙基纤维素等)和可降解性高分子材料。

其中可降解性高分子材料包括天然可降解性高分子材料(如多糖类的淀粉、壳聚糖和海藻酸盐,蛋白类的明胶、丝素蛋白、白蛋白和玉米醇溶蛋白等),以及合成可降解性聚合物材料(如聚乳酸和聚羟基乙酸等)。

生物可降解性高分子载药微球具有良好的生物相容性、生物降解性、理化及生物稳定性、极低的毒性,以及较高的载药性,是理想的药物载体,因此近年来有关它们的研究已受到学术界的广泛重视PART.1不可降解高分子材料用于制备微球的不可降解性高分子材料有乙基纤维素、聚丙烯和聚苯乙烯等,但最常用的为乙基纤维素。

乙基纤维素(Ethyl cellulose),又称纤维素乙醚,简称EC。

乙基纤维素因其水不溶性,同时也对碱和稀酸不起作用,主要用作薄膜包衣材料和混合材料制备包衣缓释微球,使药效持续释放,避免一些水溶性药物过早发生作用和流失等。

PART.2天然可降解高分子材料天然可降解性高分子载药微球有其独特的优势,且给药途径多种,既可供口服,也可制成注射剂或药栓。

随着载药制剂理论、技术的不断完善,此类微球在应用中存在的问题将逐渐得以解决。

以下介绍几个常用的天然可降解高分子材料载体。

1.淀粉淀粉微球是近三十年发展起来的一种新型淀粉产品,因其具有可生物降解、生物相容性、无毒性、无免疫原性及原料来源广泛、价格低廉等显著优点。

淀粉微球作为药物载体的应用性研究备受人们关注。

目前,已经尝试将淀粉微球作为靶向制剂的药物载体应用在鼻腔给药系统、栓塞化疗和口服进行肠内靶向释药等领域。

淀粉微球能增加许多药物在鼻腔中的吸收,给药方便,避免药物对胃肠道的刺激作用和肝-胃肠道对药物的首过作用而提高生物利用度,从而进一步减少给药剂量和不良反应。

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料生物医用高分子材料是一类应用于生物医学领域的高分子材料,具有优良的生物相容性、生物降解性和生物活性等特点。

这类材料旨在解决生物医学领域中的各种问题,如组织工程、药物缓释、生物传感等。

以下将介绍几种常见的生物医用高分子材料及其应用。

首先是生物可降解高分子材料,如聚乳酸(PLA)和聚乳酸-羟基磷灰石(PLGA)。

这类材料能够在体内逐渐降解,并最终被代谢排出体外,具有较好的生物相容性。

它们主要应用于组织修复与再生领域,如制作支架用于骨骼修复、软组织修复和脑部损伤修复等。

其次是生物活性高分子材料,如天然高分子材料胶原蛋白和壳聚糖。

这些材料本身具有一定的生物活性,能够促进细胞黏附、分化和增殖。

它们常用于组织工程中的细胞载体和生物传感器的制备,如用胶原蛋白包裹干细胞用于皮肤再生、用壳聚糖包裹药物用于药物缓释等。

另外一类是生物仿生高分子材料,如聚乙二醇(PEG)。

这类材料模拟生物体内的液体环境,具有良好的生物相容性和抗生物粘附能力。

它们主要应用于制备人工器官、药物控释系统和生物分离材料等,如用PEG涂层改善人工心脏瓣膜的生物相容性、用PEG修饰纳米材料用于靶向药物传递等。

此外,还有一种重要的生物医用高分子材料是羟基磷灰石(HA)。

羟基磷灰石具有良好的生物相容性和生物活性,能够与骨组织有很好的结合性。

它常用于骨修复和牙科领域,如制备骨替代材料、牙齿填充材料和人工牙齿的固定材料等。

总之,生物医用高分子材料在生物医学领域中具有广泛的应用前景。

它们的出现为治疗和修复各种组织和器官提供了新的手段,将对人类健康产生深远影响。

然而,随着研究的深入,还需要克服一些挑战,如材料的稳定性、生物相容性和生物降解速度等问题,以进一步提高材料的应用性能和安全性。

生物高分子材料在医药领域中的应用

生物高分子材料在医药领域中的应用

生物高分子材料在医药领域中的应用生物高分子材料是一类具有自然来源、生物相容性、再生能力好、生物活性高等特点的高分子材料,在医药领域中得到广泛应用。

不同种类的生物高分子材料,具有不同的特性和功能,可以用于制备药物载体、组织修复材料、医用器械等医药产品。

一、药物载体生物高分子材料作为药物载体,能够通过调控药物的释放速率和控制性能,提高药物的疗效和降低副作用。

例如,聚乳酸、聚己内酯等生物高分子材料,可以制备成纳米颗粒、微球等形态,作为药物的载体,能够改善药物的生物利用度和药物在体内的分布,从而提高疗效和减少副作用。

与传统药物制剂相比,生物高分子材料制备的药物载体具有较高的稳定性和长时间的药物释放能力,能够满足临床上的需求。

二、组织修复材料生物高分子材料还可以作为组织修复材料,用于修复人体组织损伤和缺损。

例如,胶原蛋白、明胶、海藻酸等生物高分子材料,能够促进组织的再生和修复,具有良好的生物相容性和生物降解性。

这些材料可以制备成支架、薄膜、凝胶等形态,置于损伤区域进行修复。

与传统的人工材料相比,生物高分子材料不会引起免疫反应和排异反应,能够促进组织的再生和修复,从而达到良好的治疗效果。

三、医用器械生物高分子材料还可以用于制备医用器械,如输液管、人工关节、心脏支架等。

这些器械具有良好的生物相容性和生物降解性,可以与人体的组织和器官良好地接触,不会引起免疫反应和排异反应。

同时,生物高分子材料具有较高的弹性和可塑性,能够制备成各种形态的器械,满足临床上的需求。

总之,生物高分子材料在医药领域中的应用广泛,具有很好的应用前景。

随着技术的不断进步和研究的深入,生物高分子材料在医药领域中的应用将会更加广泛和深入。

新型医用高分子材料剖析

新型医用高分子材料剖析
生物发酵法
借助微生物发酵过程,合成特定高分子材料。生物发酵法具有环保、可持续的 优点。
基因工程法
通过基因工程技术改造生物体,使其能够合成特定的高分子材料。此方法具有 创新性,可开发出独特的高分子材料。
加工技术:纳米技术
纳米压印技术
利用纳米压印技术将高分子材料 加工成纳米级别的图案和结构,
提高材料的表面积和性能。
自适应性
• 智能型医用高分子材料还具有自适应性,能够根据 外部环境的变化自动调整自身的结构和性能。例如 ,形状记忆聚合物能够在特定条件下固定临时形状 ,并在受到外部刺激时恢复原始形状。这种材料可 用于制作心脏支架等医疗器械,实现在体内的自适 应展开和定位。
03
新型医用高分子材料的制 备和加工技术
制备技术一:聚合反应法
生物相容性优良
• 生物相容性高分子材料是指在与生物组织、血液等接触时,不引起明显的生物反应和排斥现象的材料。该材料能够减少医 疗器械与人体之间的摩擦和磨损,降低炎症反应,促进伤口愈合。常用的生物相容性高分子材料包括聚乙烯醇、聚丙烯酸 酯等。
类型一:生物相容性高分子材料
稳定性强
• 生物相容性高分子材料具有优异的稳定性,不易降解和老化,能够保持医疗器 械的长期稳定性和安全性。此外,该材料还具有优异的耐候性和耐化学腐蚀性 ,不易受到环境因素的影响。
刺激响应性
VS
• 智能型医用高分子材料具有刺激响 应性,能够响应外部环境的刺激( 如温度、pH值、光照等)并发生 相应的物理或化学变化。这种特性 使得智能型高分子材料能够在医疗 领域中实现一些特殊功能。例如, 温敏性凝胶能够在体温下形成凝胶 状态,用于药物的局部定位和缓释 。
类型三:智能型医用高分子材料
功能性

医用高分子材料介绍

医用高分子材料介绍

医用高分子材料介绍现代药剂学——高分子材料在药剂学中的应用介绍了高分子材料作为药物载体的必要条件:适当的载药量;载药后具有适当的药物释放能力;无毒、无抗原性,具有良好的生物相容性。

止匕外,根据制剂的加工和成型要求,还应具有适当的分子量和理化性质。

一、高分子材料基础介绍(一)高分子化合物的概念大分子简称为聚合物。

它大致分为有机聚合物化合物(称为有机聚合物)和无机聚合物化合物(无机聚合物)。

高分子化合物又称聚合物或高聚物,是指分子量超过104的一种化合物。

它们是由许多简单的结构单元通过共价键反复连接而成的分子。

(2)重复单元——是聚合物链的基本组成单元。

方括号是指重复连接,这意味着整个分子是通过顺序连接多个这样的重复单元而形成的。

n是重复单元的数量,也称为聚合度。

它是一个平均值,即包含在聚合物中的同源分子的重复单元数的平均值。

根据测定方法或计算方法,获得的平均值在大小和含义上有所不同。

聚合物的分子量M是重复单元的分子量Mo和聚合度(DP)的乘积:例如,如果聚氯乙烯的分子量为50, 000至150, 000,重复单元的分子量为62.5,平均聚合度为800至2400。

也就是说,聚氯乙烯分子是通过结合800至2400个氯乙烯结构单元形成的。

由重复单元连接的线性大分子类似于长链。

因此,重复单元有时被称为链接。

对于像聚乙烯和聚氯乙烯这样的分子,它们的重复单元的组成与合成它们的起始材料相同,只是电子结构略有变化。

因此,这种聚合物的重复单元是单体单元,或者换句话说,是由称为均聚物的单体聚合形成的聚合物。

由两种或多种单体共聚形成的聚合物称为共聚物。

这些聚合物的重复单元与单体结构不同。

(3)大分子化合物的命名1。

习惯命名遵循习惯,聚合物通常根据其来源和制备方法来命名。

大多数天然聚合物都有特殊的名称。

例如,纤维素、淀粉、蛋白质、甲壳质、阿拉伯树胶、藻酸等。

这些名称通常不反映物质的结构。

一些大分子化合物是由天然聚合物衍生或改变而来的,它们的名称是以衍生物开头的基团。

医用功能高分子材料

医用功能高分子材料

医用功能高分子材料医用功能高分子材料是一种应用于医疗领域的高科技材料,具有多种优异的性能和功能。

它们被广泛应用于生物医学领域,包括医疗器械、药物控释系统、组织工程和药物传递等方面。

这些材料不仅可以提高医疗器械的功能,还可以改善治疗的效果,减少患者的痛苦,提高患者的生活质量。

一种常见的医用功能高分子材料是生物可降解聚合物。

这些材料通常由可降解聚酯或聚胺酯等构成,它们可以在体内渐渐分解,最终被代谢掉。

这种材料可以用于制备可降解缝合线、骨修复材料和组织工程支架等。

因为可降解性,这些材料不需要二次手术去除,减少了病人的痛苦和康复时间。

同时,这些材料的表面可以进行改性,以提高其生物相容性和降低感染风险。

另一类医用功能高分子材料是生物活性高分子材料。

这些材料可以释放具有生物活性的物质,如药物、生长因子和细胞,以促进组织修复和再生。

例如,可以制备一种具有药物控释功能的材料,将药物包裹在材料中,并通过缓慢释放来治疗疾病。

这种材料可以用于制备药物输送系统、药物控释片和药物填充剂等。

此外,也可以将细胞或生长因子植入材料中,以促进组织生长和修复。

这些材料可以用于制备生物活性支架、人工器官和组织工程补丁等。

还有一类医用功能高分子材料是智能响应性高分子材料。

这些材料具有对外界刺激(如温度、光、pH值等)响应的能力,并根据刺激的变化产生相应的物理或化学变化。

这种材料可以用于制备智能响应性医疗器械和药物控释系统。

例如,可以制备一种具有温度敏感性的材料,当温度超过一定阈值时,材料会自动释放药物,以达到治疗的目的。

这种材料可以用于制备热敏性药物控释系统、温度感应型植入器件等。

此外,也可以制备具有光敏性或pH值敏感性的材料,以实现更精确的药物控释和治疗效果。

总之,医用功能高分子材料在医疗领域具有广泛的应用前景。

它们通过改进医疗器械和药物输送系统的性能,提高医疗效果和治疗效率。

随着材料科学和生物医学技术的不断发展,相信医用功能高分子材料将会在未来的医疗领域发挥更重要的作用。

医用高分子材料

医用高分子材料
医用高分子材料的简介
医用高分子材料是 用以制造人体内脏、 体外器官、药物剂型及医疗器械的聚合物 材料。20年来,用于这方面的高分子材料 有聚氯乙烯、天然橡胶、聚乙烯、聚酰胺、 聚丙烯、聚苯乙烯、硅橡胶、聚酯、聚四 氟乙烯、聚甲基丙烯酸甲酯和聚氨酯等。
医用高分子 材料
医用高分子材料的 基本要求
医用高分子材料的 基本特征
医用高分子材料的 发展趋势
一、医用高分子材料的基本要求
1、物理机械性能好、能够满足生理功能和使 用环境的要求 2、能耐受灭菌过程儿不致影响生物学性能 3、成型加工性能好,一家工程各种复杂形状 的 制品 4、同血液接触时,材料要有较好的抗凝血性,不引 起溶血,不造成血中蛋白质变性,不破坏血液的 有形成分
相同点外,还有因连接于大分子上而带来的各种高分 子效应和特性
三、生物医用材料的未来发展趋势
1、研究新的降解材料。今后研究发展的趋势是设计、 制作具有特殊功能的材料,如低模量、高柔顺性、 高强度材料 2、研究具有全面生理功能的人工器官和组织材料。 材料不仅是惰性植入体而且要具有生物活性。它 能引导和诱导组织、器官的修复和再生,在完成 上述任务后能自动降解排出体外,为此需要研究 新型降解材料

途径。制备生物梯度功能材料是医用材料表面改性、 提高膜和基结合力的方向
特殊性质
药物剂型性
药物的助剂:高分子材料本身是惰性的,不 参与药的作用,只起增稠、表面活性、崩 解、粘合、赋形、润滑和包装等作用,或 在人体内起“药库”作用,使药物缓慢放 出而延长药物作用时间。
聚合物药物:将低分子药物,以惰性水溶性 聚合物作分子载体,把具有药性的低分子 化合物,通过共价键或离子键与载体的侧 基连接,制成聚合物药物。
聚合物存在多重结构,即一次性结构、二次性结构 和三次性结构 3、高分子化合物的性质不仅与平均相对分子质量有 关,还与组分的不同相对分子质量的分布有关 4、高分子化合物的主链和侧链基上含有多种可以反 应的活性基团,如羧基、羟基、酯基、酰基键和 双键等。这些基团在化学反应活性上除了和小分 子化合物中的基团有

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料生物医用高分子材料是一种具有广泛应用前景的新型材料,它在医学领域中发挥着越来越重要的作用。

生物医用高分子材料是指能够与生物体相容并在生物体内具有一定功能的高分子材料,其应用范围涉及医疗器械、医用材料、组织工程、药物传递系统等多个方面。

本文将从生物医用高分子材料的特点、应用领域、发展趋势等方面进行介绍。

首先,生物医用高分子材料具有良好的生物相容性和生物降解性。

这意味着这类材料可以与生物体组织相容,不会引起排斥反应或过敏反应,并且在一定条件下可以被生物体降解或代谢,不会对生物体造成长期的不良影响。

这一特点使得生物医用高分子材料在医学领域中得到广泛应用,例如可用于制备生物可降解的缝合线、修复骨折的支架材料等。

其次,生物医用高分子材料在医疗器械和医用材料领域有着重要的应用。

例如,生物医用高分子材料可以用于制备人工关节、心脏起搏器、血管支架等医疗器械,同时也可以用于制备医用敷料、人工皮肤、植入式医用材料等。

这些应用为医学诊疗和治疗提供了重要的支持,推动了医学技术的不断进步。

此外,生物医用高分子材料在组织工程和药物传递系统中也有着广泛的应用。

在组织工程领域,生物医用高分子材料可以被用于制备人工器官、组织修复材料等,为组织修复和再生提供了新的途径。

在药物传递系统方面,生物医用高分子材料可以被用于制备缓释药物载体、靶向输送系统等,提高了药物的疗效和降低了药物的副作用。

未来,随着生物医用高分子材料领域的不断发展,其在医学领域中的应用前景将会更加广阔。

例如,生物医用高分子材料的功能化设计和智能化材料的开发将会为医学诊疗提供更多的选择,同时生物医用高分子材料与生物学、医学、材料学等学科的交叉融合也将会带来更多的创新成果。

总之,生物医用高分子材料具有良好的生物相容性和生物降解性,其在医疗器械、医用材料、组织工程、药物传递系统等领域有着重要的应用。

随着生物医用高分子材料领域的不断发展,其在医学领域中的应用前景将会更加广阔,为医学技术的不断进步和医学治疗的不断改善提供重要支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医用高分子载体材料Medical polymer carrier materials摘要:药物高分子载体是随着药物学研究、生物材料科学和临床医学的发展而新兴的给药技术。

高分子材料优良的生物相容性、生物可降解性、降解速率的可调节性以及良好的可加工性能,都为药物制剂的创新提供了便利和可能。

高分子载体材料的合成,高分子材料和所载药物分子的结构关系,提高载药效率,以及药物载体材料的结构,在性能方面,不仅要考虑高分子材料的生物适应性,而且考虑它在体内的分布情况和生物降解性能、降解产物对机体的影响等问题都需要深入研究。

本文结合国内有关医用高分子载体材料方面的研究论文, 阐述了医用高分子载体的概念、种类、作用机理、研究现状、应用以及发展前景。

关键词: 医用高分子载体高分子载体药物控制释放肿瘤给药系统应用Abstract:The development of pharmacology, biomaterials and clinical medicine brings on a new administration method, namely medical polymer carriers. The excellent biocompatibility, bio-degradability, adjusted degradation velocity and processing property of polymer materials facilitate the pharmaceutical preparation. Many problems, such as biocompatibility of polymer materials, in vivo distribution, in vivo degradability, and effect of degradable products, all need further researches in the fields regarding the synthesis of polymer carriers, the correlation between polymer materials and carrying drug molecules, raising the efficiency of drug carrying, the structure and property of the drug carriers. Based on the relevant domestic medical polymer carrier material research papers, expounds the concept of medical polymer carrier, type, function mechanism and research status quo, application and development prospect.Keywords:medical polymer carrier polymer drug carrier control release tumor drug delivery system application1. 引言20世纪60年代化学家们提出将高分子材料应用于生物药物领域,制备高分子药物是改善药物最有效的方法之一。

高分子载体药物可以通过剂型改变,控制药物释放速度,避免间歇给药使血药浓度呈波形变化,从而使释放到体内的药物浓度比较稳定,还可以通过释放体系使药物送达体内特定部位,而对身体其它部位不起作用。

载体药物技术的关键是载体材料的选择,目前已有各种高分子材料和无机材料被用于载体药物的研究,但对材料的选择必须满足组织、血液、免疫等生物相容性的要求。

此外,载体药物的制备也很重要, 因为这将影响到载体药物的给药效率[1]。

良好的高分子载体材料应该有足够的体内循环时间以使药物达到靶向目标,而且能够完全排出体外而减少在体内的长时间积累。

利用具有生物相容性和生物可降解性的高分子材料作为载体的抗肿瘤药物可在病灶部位选择性地释放药物,能极大地提高药物的生物利用率,有效地降低药物的毒副作用和用药剂量,是目前药物释放领域研究的热点。

高分子药物载体本身没有药理作用,也不与药物发生化学反应,但与药物连接后能改善药物的性质,药物和载体之间通过微弱的氢键或者共价键形成药物复合物。

高分子载体材料在其中起着十分重要的作用:(1)增加药物的作用时间;(2)提高药物的选择性;(3)降低小分子药物的毒性;(4)克服药剂构型中所遇到的困难问题;(5)将药物输送到体内确定的部位(靶位)。

药物释放后,高分子载体不会在体内长时间积累,可排出或水解后被吸收[2]。

2. 医用高分子载体材料概念2.l 高分子载体药物指将本身没有药理作用,也不与药物发生化学反应的高分子作为药物的载体,但二者间可存在微弱的氢键结合力形成的一类药物,可以实现药物的有效控制释放,在高分子载体上连接功能部位可以实现定向给药[3]。

2.2靶向制剂系指一类能使药物浓集于靶器官、靶组织、靶细胞且疗效高、毒副作用小的靶向给药系统[4]。

2.3 药物与高分子载体的连接一般先将小分子药物连接在单体上,然后聚合,也可以直接往高分子载体上枝接。

无论采用何种方式,都需注意反应条件,以避免连接过程对药物产生不良影响[4]。

3. 医用高分子载体材料的种类随着许多新性能高分子材料的涌现以及医药制剂工业的迅猛发展,高分子载体被越来越广泛地应用于新药的研究与开发中。

生物可降解性是目前对药物的高分子载体的一般要求,主链含杂原子的高分子通常具备生物可降解性,如聚酯、聚氨基酸、聚酰胺、聚酸酐、多糖等,其中聚乳酸、聚氨基酸、多糖等被广泛用做药物载体,原因是它们都来自天然产物,与活体有良好的相容性,表现出低毒性和高活性。

目前,用作药物载体的高分子材料可分为天然高分子材料、半合成高分子材料、合成高分子材料[5,6,7,8]。

3.1天然高分子载体药物天然高分子材料稳定、无毒、成膜性较好,是最常用的载体材料,其中主要包括胶原、阿拉伯树胶、海藻酸盐、蛋白类、淀粉衍生物。

近年来研究较多的是壳聚糖、海藻酸盐,而源于蚕丝的丝素蛋白则显示出巨大的潜力。

胶原:可应用于医药领域的一个主要原因在于它经过自聚和交联,可形成具有一定强度和稳定性的结构,用弱酸水提取后可制成多种形式的药物载体系统。

在制备以胶原为载体的药物释放系统中需加入交联剂,例如戊二醛、碳二亚胺、酞基叠氮化物等,以便增加强度、减慢分解,从而延长药物释放时间。

将胶原与有治疗作用的酶或药物分子反应,通过共价键结合,形成固定化酶系统和控制药物释放系统同样是一种有用的途径。

例如,将牛皮胶原巯基化后,与溶菌酶通过二硫键结合,此系统可保持酶活性一个月不变。

壳聚糖:甲壳素的主要衍生物,是甲壳素脱除乙酰基后的产物:脱乙酰甲壳素,又名可溶性甲壳素。

壳聚糖具有与粘多糖相似的结构特点,后者在组织中分布广泛,是细胞膜有机组成成分之一,故壳聚糖具有优异的生物相容性;具有良好水溶性的β-环糊精聚合体也是一种较为理想的药物载体。

3.2半合成高分子载体药物半合成高分子包括羧甲基纤维素、邻苯二甲酸纤维素、甲基纤维素、乙基纤维素、羟丙甲纤维素、丁酸醋酸纤维素、琥珀酸醋酸纤维素等。

其特点是毒性小、黏度大、成盐后溶解度增大,由于易水解,故不宜高温处理,需临时现用现配。

3.3合成高分子载体药物合成高分子如聚碳酯、聚氨基酸、聚乳酸、聚丙烯酸树脂、聚甲基丙烯酸甲酯、聚甲基丙烯酸羟乙酯、聚氰基丙烯酸烷酯、乙交酯-丙交酯共聚物、聚乳酸-聚乙二醇嵌段共聚物,ε-己内酯与丙交酯嵌段共聚物、聚合酸酐及羧甲基葡萄糖等,其特点是无毒、化学稳定性高。

聚乳酸:聚乳酸及其共聚物被用作一些半衰期短、稳定性差、易降解及毒副作用大的药物控释载体,有效地增加了给药途径,减少给药次数和给药量,提高药物利用度,减少了药物对肝、肾等的副作用。

目前以聚乳酸为载体的药物的研究主要是抗生素及抗癌用药、多肽药物及疫苗、激素及计生用药、解热镇痛剂、神经系统用药等[9]。

武汉大学的范昌烈等[10]将乳酸与磷酸酯共聚作为释药材料和药物载体,由于人的体内含磷酸酯和聚磷酸酯,所以该材料具有良好的生物相容性同时还被赋予了类似天然物质的性质。

孙洁等[11]将肝素与高分子载体(乳酸-羟基乙酸共聚物)相结合,将其植入兔眼后房内,发现其可明显提高并长期维持房水中的肝素浓度,有效抑制后发性白内障的发生,且该方法毒副作用小,是一种安全、有效的给药方式。

聚乙烯吡咯烷酮的羧酸盐可以作为载体与马来酸结合,将药物运送到肾脏和膀胱,成为对肾脏系统具有瞄定作用的药物释放体系。

Yoshioka等研究发现,聚乙烯吡咯烷酮与苯乙烯形成的共聚物会积累在脾脏,而与乙烯基月桂酸酯形成的共聚物会积累在肝脏。

利用这一特点,就可以设计出优良的聚合物载体,以瞄准脾脏和肝脏给药,实现对不同部位的治疗[4]。

4. 医用高分子载体材料的作用机理[12]根据药物在体内的代谢动力学以及载体药物的设计思想,Rngsdorf提出一个高分子导向药物的模型。

对于一个具有生物活性的高聚物,其主链至少应由3 个不同的结构单元所组成,第一个单元用来使得整个药物可溶并且无毒,称之为增溶部分;第二个单元是连接治疗药物的区域,称之为药物部分;第三个单元对应于传输系统,它的作用是负责将药物运送到病变部位。

对于高分子载体药物的导向作用, Rngsdorf提出了有关以高分子为载体药物的“Piggyback细胞摄粒”的导向机理。

他认为游离的小分子药物可通过与细胞壁作用或与胞壁蛋白的活性作用而穿过细胞壁进入细胞,而高分子的相对分子质量较大,分子链较长,分子结构较复杂, 这一系列性质阻碍了它自由穿越细胞壁。

当以高分子为载体的导向药物接近细胞壁时,如果能被细胞壁吸附,就可以产生一种细胞摄粒作用,通过这种作用进人细胞,吸附作用对于高分子导向药物的吸收是起决定作用的,它是一个与高分子相对分子质量以及高分子电荷有关的过程。

吸附之后,细胞壁产生变形、折叠,将高分子药物包围起来,产生细胞摄粒作用。

此时,细胞内产生一种具有消化功能的含酶的溶菌体,这种溶菌体对细胞壁摄取进来的粒子产生作用,使得高分子载体降解,或者将药物断裂下来。

由于药物已被连接到高分子链上,不再像游离药物一样自由穿过细胞壁,它在细胞间的穿越只能遵循特定的细胞摄粒作用,由此它们便可以在具有高的细胞摄粒作用的细胞中富集。

通过改变药物的传输体系,即改变传输部分高分子的链结构和相对分子质量,就有可能提高或抑制细胞摄粒作用及溶酶过程。

例如对于相对分子质量较大的高分子药物载体,细胞无法将其摄取进细胞内,这种载体药物主要是将药物固定在高分子载体上,与细胞表面接触,通过细胞表面各种受体传导各种信号,引起细胞内一系列的反应机制。

相关文档
最新文档