大学物理作业解答:5-2量子-第二章 波函数和薛定谔方程

合集下载

量子物理2 德-波 波函数 薛定谔方程

量子物理2 德-波 波函数 薛定谔方程

电离能:
E电离=E∞-En=-En
紫外区
1
赖曼系 巴耳末系
E1 En 2 n
-13. 6
帕邢系
1000
1300
2000
3000
5000
10000 20000 A

氢原子的能级与光谱
2)氢原子光谱线的波数公式 当原子从较高能态 En向较低能态 Em 跃迁时 ,发射一个光子,其频率满足: h E E
由不确定关系有
ΔP
在宏观现象中,不确定关系可以忽略。
【例】设子弹质量为0.01kg,枪口直径为0.5cm, 试分析波粒二象性对射击瞄准的影响。 解 横向速度的不确定度为
1.05 10 30 v x 1.1 10 (m s ) 2 2 2mx 2 10 0.5 10
§1 薛定谔方程
1926年,在一次学术讨论会上,当薛定谔介绍完 德布罗意关于粒子波动性假说的论文后,物理学家德 拜(P.Debey)评论说:认真地讨论波动,必须有波动 方程。 几个星期后,薛定谔又作了一次报告。开头就兴 奋地说:“你们要的波动方程,我找到了!”这个方 程,就是著名的薛定谔方程。
玻恩对 的统计解释(1926) :波函数 是描 述粒子在空间概率分布的“概率振幅”。 其模平方
(r , t ) Ψ (r , t ) (r , t ) ——概率密度
*
2
代表 t 时刻 在 r 端点处单位体积中发现一个 粒子的概率 t 时刻在 r 端点附近dV z Ψ dV 内发现粒子的概率为:
三、对波粒二象性的理解 怎样理解微观粒子既是粒子又是波?
根据电子双缝衍射实验 再作单电子双缝衍射实验 双缝
现代实验技术可以做到一次一个电子通过缝 为防止电子间发生作用,让电子一个 一个地入射,发现时间足够长后的干涉图 样和大量电子同时入射时完全相同。

2量子力学-波函数和薛定谔方程

2量子力学-波函数和薛定谔方程
概率密度 w(x, y, z, t)
在时刻t、在 (x,y,z) 点附近,单位体积内找到 粒子的概率,即概率密度 w(x, y, z, t) 为:
w(x, y, z, t)=dW(x, y, z, t)/dτ = C |Φ(x, y, z, t)|2
(2)归一化波函数
由于粒子存在于空间中,即在整个空间出现的 总的概率为1,所以有
|
(rr )
|2
d
(2) 动量平均值
一维情况:令ψ(x)是归一化波函数,相应动量表象 波函数为
1
c( px ) (2 h)1/ 2
i
(x) e h
px x
dx
| c( px ) |2 粒子动量为px的概率密度, 则有
px
px
px
| c( px ) |2
dpx
§2.3 薛定谔(Schrodinger)方程
§2.1 波函数的统计解释
一. 波函数 二. 波函数的统计解释 三. 波函数的性质 四. 多粒子体系的波函数
一. 波函数
1. 经典粒子运动状态的描述 经典粒子的运动状态由坐标 r 和动量 p 来描述
2. 微观粒子的运动状态由波函数 (r,t) 来描述
基于下述考虑: 1.经典粒子的描述方法反映不了波粒二象性; 2.坐标 r 和动量 p 不能同时确定,不确定关系; 3.自由粒子可以用德布罗意平面波描述。
• 3个问题? (1) 是怎样描述粒子的状态呢? (2) 如何体现波粒二象性的? (3) 描写的是什么样的波呢?
二. 波函数的统计解释
经典概念中 粒子意味着
1. 有一定质量、电荷等“颗粒性”的属性;
2. 有确定的运动轨道,每一时刻有一定 位置和速度。

量子力学-第二章波函数和薛定谔方程

量子力学-第二章波函数和薛定谔方程

因发现原子理论新的有 效形式与狄拉克
荣获1933年
RETURN
诺贝尔物理学奖
32
二. 方程的讨论
1. 概率流密度和守恒定律 设t时刻,x点周围单位体积内粒子出现的概率
w x,t * x,t x,t
概率随时间的变化规律
w * *
t
t t
因为 i 2 1 U x
t 2m
概率密度:
w x, y, z,t dW C x, y, z,t 2
dV
3.波函数的性质
(1) x, y,是z,t单 值、有界、连续的; (2) x, y,与z,t C描x写, y同, z,一t 状态。
20
(3)波函数的归一性 ① (x, y是, z)平方可积的,则可归一化,
2
dV 1
玻恩(M.Born):在某一时刻, 空间 x 处粒子出现 的概率正比于该处波函数的模方。粒子在空间出 现的概率具有波动性的分布,它是一种概率波。
19
设波函数 x, y, z,t t 时刻处于 x—x+dx,y—y+dy,z—z+dz内的
概率
dW x, y, x,t C x, y, z,t 2 dxdydz
c
q v B mv 2
q Br v
c
r
mc
与玻尔量子化条件联立,得
r2
n
1 2
2 q
c B
所以,粒子能量可能值为
En
1 2
mv 2
(n
1) 2
qB mc
(n 0,1, 2, )
10
V(x) 3.德布罗意假设的实验V(验x)证
(1)德布罗意—革末(Davison—Germer)

《量子力学教程》作业题及答案--2017-2018第一学期

《量子力学教程》作业题及答案--2017-2018第一学期
第二章波函数和薛定谔方程
1、 求 一 维 线 性 谐 振 子 处 在 第 一 激 发 态 时 概 率 最 大 的 位 置 。
解:ψ 1(x ) =(

π
)αxe − α
2
x2 /2
w(x ) = ψ 1(x ) =
2
2α 3
π
x 2e − α
2
x2
2 2 2 2 ∂w(x ) = 0 得 2xe − α x − 2α 2xx 2e − α x = 0 ∂x
E n x n y = E n x + E n y = (n x + 2n y + )ω
3) 对于基态, n x ,n y = 0 , E 00 =
3 ω 是非简并的; 2
对于第一激发态,
5 n x = 1 , E 10 = ω 是非简并的; 2 n y = 0 7 n x = 0 n x = 2 , , E 01 = E 20 = ω 能级是二重简并的; 2 = 1 = 0 n n y y 9 n x = 3 nx = 1 , ,E E = = ω 是二重简并的。 30 11 n = 1 2 = 0 n y y
x < 0 0 ≤ x ≤ a 中, x > a
V0
4
的本征态,试确定此势阱的宽度 a 。
解:对于 E = −
V0
4
< 0 的情况,三个区域中的波函数分别为
ψ 1 ( x ) = 0 ψ 2 ( x ) = A sin kx ψ ( x ) = B exp(− αx ) 3
其中,
k=
n
则只有量子数 n = 1,3,5, 时, H n (0) = 0 ( n = 1,3,5, ) 则能级为 E n = ( n + 1 2 )ω

量子力学第二章 波函数与薛定谔方程

量子力学第二章 波函数与薛定谔方程
c1 1 c 2 2 (c1、c 2 一般为复数)
描写。
(2) 电子在晶体表面衍射的实验中,粒子被晶体表面反射后,
p p 可能以各种不同的动量 运动,以一个确定的动量 运动的粒
子状态用波函数
i ( E t p r ) p ( r , t ) Ae
即 r , p 决定体系的一切性质。
d r F m (3)质点状态的变化 (运动) 遵从牛顿定律: 2 F , 当 dt
2
已知时,如果初始时刻 r0 , p 0 ( v 0 ) 也已知,则积分得: t t t F v( t ) dt v 0 ; p( t ) Fdt p 0 ; r ( t ) v( t )dt r0 m 0 0 0 即任何时刻的r (t ), p(t ) 完全确定.
可以写作而薛定谔方程这个方程称为哈密顿算是常数其中可以写作于是定态薛定谔方程定义哈密顿算符值方程的解称为哈密顿算符的本征相应的一系列的本征函一系列的本征值求得满足这个方程的是常数其中波函数这样的波函数称为定态程的一系列特解这样我们得到薛定谔方定态波函数与时间t的关系是正弦型的其角频率2eh
一、状态的描述
ቤተ መጻሕፍቲ ባይዱ
(1)坐标平均值 为简单计,剩去时间t变量(或者说,先不考虑随时间 的变化) 设ψ(x) 是归一化波函数,|ψ (x)|2 是粒子出现在x点
的几率密度,则
x x



x | ( x ) | 2 dx
对三维情况,设ψ(r) 是归一化波函数,|ψ(r)|2是 粒子出现在 r 点的几率密度,则x的平均值为 2 x x x | ( r ) | d
两者一一对应 具有类似的物理含义

量子力学习题及答案

量子力学习题及答案
?2k ( 7 )
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x

量子力学专题二(波函数和薛定谔方程)

量子力学专题二(波函数和薛定谔方程)

量子力学专题二:波函数和薛定谔方程一、波粒二象性假设的物理意义及其主要实验事实(了解)1、波动性:物质波(matter wave )——de Broglie (1923年)p h =λ实验:黑体辐射2、粒子性:光量子(light quantum )——Einstein (1905年)hE =ν 实验:光电效应二、波函数的标准化条件(熟练掌握)1、有限性:A 、在有限空间中,找到粒子的概率是有限值,即有=⎰ψψτ*d 有限值有限空间 B 、在全空间中,找到粒子的概率是有限值,即有=⎰ψψτ*d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续;3、单值性:2ψ是单值函数(注意:不是说ψ是单值!)三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率);四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解)1、态叠加原理:设1ψ,2ψ是描述体系的态,则2211ψψψC C +=也是体系的一个态。

其中,1C 、2C 是任意复常数。

2、两种表象下的平面波的形式:A 、坐标表象中r d e p r r p i 3/2/3)()2(1)( •⎰=ϕπψ B 、动量表象中p d e r p r p i 3/2/3)()2(1)( •-⎰=ψπϕ 注意:2/3)2( π是热力学中,Maxwell速率分布的一个常数,也可以使原子物理中,一个相空间的大小!五、Schrodinger Equation (1926年)1、Schrodinger Equation 的建立过程(熟练掌握)ψψH ti ˆ=∂∂ 其中,V T H ˆˆˆ+=。

2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解)A 、定态:若某一初始时刻(0=t )体系处于某一能量本征态)()0,(r r E ψψ=,则/)(),(iEt E e r t r -=ψψ说描述的态,叫做定态(stationary state );B 、非定态:由不同能量能量本征态线性叠加而形成的态,叫做非定态(nonstationary state )。

5-2量子-波函数和薛定谔方程 大学物理作业习题解答

5-2量子-波函数和薛定谔方程 大学物理作业习题解答

1 2
n,1 n,3
c1
1 2
,
c3
1, 2
其它 c n 0 ,
c1
2
c2
2
1. 2
x 1 2 sin x sin 3x
2 a a
a
c1 2 c3 2 1, E
cn
2En
522 2ma2
9
2-7 设粒子在一维无限深势阱中运动,已知粒子所处的势场
Ux
0
x 0,x a 0xa
x L c,p /2x /2c E c/2c,E 1 / 2
2-3一维谐振子的基态波函数是 0 x A e a2x 2 /2 a 2 m 0 / ,试
求:(1)归一化系数A;(2)基态能E0(即零点能)(提示用哈密顿算
符作用基态波函数求E0);(3)求 x 2 ;(4)借助不确定度关系,求
2-2原子从某一激发态向基态跃迁时,辐射的波列长度为L(相当干
长度),把L作为不确定度 x的大小,求光子的动量不确定度 p x
由E=cp计算能量不确定度 E, E正是激发态能级的宽度(所以从
具有一定能级宽度的激发态向基态跃迁时,辐射的光不是单色的),
它对应电子占据该激发态的寿命是有限的。证明: E /2 解:由 E cp , xp / 2
试求:(1)能量量子数为n的概率密度;(2)距势阱内壁四分之一宽
度内发现粒子的概率;(3)n为何值时在上述区域内发现粒子的概
率最大;(4)当时该概率的极限,并说明这一结果的物理意义。
解(1) (2)
(3) (4)
P1 4
a 4
2
sin2
n卜一x
dx
0a
a
a 3a
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

展开,其展开
解:将波函数(x)用一维无限深方势阱的正交完备的本
征方程函数 作展开表示。
n
2 sin nx aa
0 x a
x
cnn
,
cn
*n
xdx
8
a
cn 0
2 sin nx 4 sin x cos2 x dx a a a a a
1
1
1
2n,1 2 n,3 2 n,1 2 n,1 n,3
0 xa x a, x 0 n1 1,2,3,
同理计算y,z。由上可得:
E
h2 8m
n2 1
a2
n
2 2
b2
n3 c2
2
;
x, y, z 8 sin n1x sin n2y sin n3z
abc a
b
c
5
2-5 取一维无限深势阱中心为坐标原点,即势阱表示为:
U(x) 0 , x a / 2 ; Ux x a / 2
a aa
n222 En 2ma2 .
7
2-6 粒子在0,a 范围内的一维无限深势阱中运动,其状态由
以下波函数
x 4 sin x cos2 x
a a a
求:(1)在该态上测得的能量可能值,及相应的概率;(2)求能量
的平均值(提示:用完备正交集n
系数模方为测量可能值的概率)
2 sin nx aa
c1
1 2
,
c3
1, 2
其它 cn 0,
c1
2
c2
2
1. 2
x 1 2 sin x sin 3x
2 a a
a
c1 2 c3 2 1, E
cn
2En
522 2ma 2
9
2-7 设粒子在一维无限深势阱中运动,已知粒子所处的势场
试求:(1)能量U量x子数0为n的概x0率0密x,x度a ;a (2)距势阱内壁四分之一
0
(2)由
x
2
dx
2
c2ea2x2dx
0
H 0
x
E00
x
c2
2

4a2
1, c
E0
1 2
.
a 1/ 4
(3)
x 2
x2
x2
x2
0
2
dx
x
0
2 dx
2
a 2 x e2 a2x2dx
x0
a x
2
xea2x2dx
a x
2
x 4a2
1 2a2
p2
2
4 x2
宽度内发现粒子的概率;(3)n为何值时在上述区域内发现粒子的 概率最大;(4)当时该概率的极限,并说明这一结果的物理意义。
解(1) (2)
(3) (4)
P1 4
a 4
2
sin2
n卜一x
dx
0a
a
a
2 sin2 nx dx
1
1
n sin
3a 4
a
a
2 n 2
p1 4
1 12 2
1,1 1 ,1 2 3 2 (n 2,4,6)
解:由 E cp, xp / 2
x L c,p /2x /2c E c /2c,E 1 / 2
2-3一维谐振子的基态波函数是 0 x Aea2x2 /2 a2 m0 / ,试
求:(1)归一化系数A;(2)基态能E0(即零点能)(提示用哈密顿算
符作用基态波函数求E0);(3)求 x2 ;(4)借助不确定度关系,求
基态零点能,提示:
e a2x2 / 2dx x e 2 a2x2 / 2
0
2a 0
2a3
解:谐振子能量本征值方程
2 2m
d2 dx 2
1 2
m2x2
n
x
Enn x
其中
En
n
1 2
对应零点能
E0
1 2
基态波函数
0
x
cea2x2
/ 2 , a2
m
.
2
(1)基态波函数归一
第二章 波函数和薛定谔方程
2用-1.作s圆表周示运粒动子的在粒圆子轨的道切上向位动置量的和统角计动不量确分定别量为。p由t 和不L确z=定rp关t。系若
spt / 2 ,证明 Lz / 2 ,其中是粒子的角位置。
解:由测不准关系: spt / 2.
令 pt lz / r, s r. 代入有: Lz / 2
1 5
,
1 2
1 7
,
( n 1,3,5)
Pmax
1 1 , 2 3
(n 3)
A 2 a
1 n 1
n
, P1 4
2
2
2
转化为经典问题! 10
2 2m
2 x2
2 y 2
2 z 2
x, y, z
E
令 x,y,z XxYyZz
1 2 d2
1 2 d2
1 2 d2
X
2m
dx
2
X
Y
2m
dy
2
Y
Z
2m
dx
2
Z
E
4
1 2 d2X
X 2m
dx 2
E,
或者
d2x 2mE dx 2 2 X 0
解的
X(x)
2 nx
sin
a
a
0
2
E1 8ma2Biblioteka 2 42m
1 2
m
E0
1 2m
p2
1 2
Rx2
1 4
1 2
m2
1 2
m
1 2
3
2-4 借助一维无限深势阱的结果,试给出粒子在三维无限深 势阱中的能级和波函数(设三维阱宽分别为a,b,c)。(提示: 独立事件同时发生的概率幅是各概率幅之积)
解:在阱外 在阱内
0
2 2 E 2m
0 x a,0 y b,0 Z c
从而解得: Asina / 2 0 , Bcosa / 2 0
6
分两类解:第一类,A=0, cos(a/2)=0; 第二类,B=0, sin(a/2)=0.
因此有: a / 2 n / 2,
n为奇数为第一类,n为偶数为第二类.
n为奇数:
x Bcos nx
2 nx cos
aaa
n为偶数: x A sin nx 2 sin nx
写出粒子的能量本征方程,求能量本征值En和对应的本征函数 n
解:
2 d2
2m dx 2 E
通解:
1
x A sinx B cos x,
2 mE 2
2
在 x a/ 2 处应用边界条件,给出:
A sina / 2 B cosa / 2 0 , A sina/2 B cosa / 2 0
2-2原子从某一激发态向基态跃迁时,辐射的波列长度为L(相当干
长度),把L作为不确定度 x的大小,求光子的动量不确定度 px
由E=cp计算能量不确定度E,E正是激发态能级的宽度(所以从
具有一定能级宽度的激发态向基态跃迁时,辐射的光不是单色的), 它对应电子占据该激发态的寿命是有限的。证明: E / 2
相关文档
最新文档