基于遗传算法的TSP问题解决
用于求解TSP问题的遗传算法改进

用于求解TSP问题的遗传算法改进一、TSP问题简介TSP问题,全称Traveling Salesman Problem,即旅行商问题。
所谓TSP问题是指,给定一些点和每一对点之间的距离,求出一条遍历每个点恰好一次的最短路径,该问题的解决方法对实际问题中的路径规划和优化有着很大的参考价值。
二、遗传算法的基本思想遗传算法,是模拟自然界中生物遗传进化过程的一种演化计算方法。
它通过模拟生物的繁殖、变异、适应性等生命过程来寻找问题的最优解。
其基本的过程如下:1. 初始化:随机生成一个初始群体,每个个体表示一种可能的解决方案。
2. 选择:根据适应度函数,选择一定数量的优秀个体作为繁殖的父亲。
3. 交叉:将所选父亲进行交叉操作,生成新的子代个体。
4. 变异:对于一部分子代个体,进行变异操作。
5. 替换:用新的子代个体替换掉一部分原有的个体,形成新一代群体。
6. 结束条件:当某种条件达到时结束算法,否则返回步骤二。
在TSP问题中,遗传算法的基本实现方法如下:1.初始化:随机生成一个初始群体,每个个体表示一个解决方案,其中每个基因表示一个城市的编号。
例如,假设有10个城市,则每个个体就是由这10个城市编号随机排列组成的,例如:1-2-5-8-4-3-7-9-6-10等。
2.适应度函数:对于每个个体,计算其总路程,将总路程作为适应度函数的值。
4.交叉:将所选父亲进行交叉操作,生成新的子代个体,交叉方式一般有:顺序交叉法、部分映射交叉法、环形交叉法、边交叉法等。
5.变异:对于一部分子代个体,进行变异操作,变异的方式一般是:交换变异、倒位变异、随机抽样变异等。
7.结束条件:当达到一定条件时结束算法,比如迭代次数达到上限或者群体的适应度达到一定的水平。
传统的遗传算法在求解TSP问题时,存在一些问题:1.收敛速度慢:由于集合了交叉、变异等算子,每一代都要进行大量的计算,所以收敛速度慢。
2.易受陷入局部最优解:由于遗传算法采用的是局部搜索策略,所以可能会陷入到局部最优解中。
实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。
遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。
本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。
2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。
其基本原理可以概括为:选择、交叉和变异。
(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。
(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。
交叉算子的选择及实现方式会对算法效果产生很大的影响。
(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。
通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。
3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。
(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。
(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。
(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。
b. 计算适应度:根据适应度函数,计算每个个体的适应度值。
c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。
d. 交叉操作:对父代进行交叉操作,生成新的个体。
e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。
实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。
一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。
给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。
TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。
1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。
它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。
遗传算法具有全局搜索能力强、适用于多种优化问题等优点。
二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。
(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。
(3)选择操作:根据适应度选择优秀的个体进入下一代。
(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。
(5)变异操作:对交叉后的个体进行变异,增加解的多样性。
(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。
(7)迭代:重复步骤(2)至(6),直至满足终止条件。
2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。
以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。
利用遗传算法解决TSP问题课件

给每个城市一个固定的基因编号,例如10个城市为 0 1 2 3 4 5 6 7 8 9 ,随机地组成一个染色体(以下所有情况都以10个城市为例说明)。 约定这10个城市之间的行走路线为: 0123456789 (其余基因序列的路线同样道理)
两个城市间的距离(用r[i][j]表示)
轮盘选择
for(mem=0;mem<PopSize;mem++) sum+=population[mem].fitness; for(mem=0;mem<PopSize;mem++) //使小的选中的可能性大 x[mem]=sum-population[mem].fitness; sum=0.0; for(mem=0;mem<PopSize;mem++) sum+=x[mem]; /* Calculate relative fitness */ for(mem=0;mem<PopSize;mem++) population[mem].rfitness=x[mem]/sum;
仿真结果
仿真结果
一个完整路线的长度
例如基因序列为:0 8 2 9 7 5 6 4 1 3,存放在gene[0]~gene[9]中。 表示行旅行路线为: 0829756413 总路程为: r[gene[0]][gene[1]]+r[gene[1]][gene[2]]~ +r[gene[9]gene[0]]
交叉
例如一个基因序列为: 0 2 5 6 9 8 1 3 4 7 产生两个0~9的int型随机数,如得到2和6,将gene[2]和gene[6]之间的基因反序,得到: 0 2 1 8 9 6 5 3 4 7
遗传算法解决旅行商问题求解复杂性思考

遗传算法解决旅行商问题求解复杂性思考旅行商问题(Traveling Salesman Problem,TSP)是一个经典的组合优化问题,主要涉及在给定一组城市和其之间的距离的情况下,寻找最短路径,使得旅行商可以访问每个城市并返回起始城市。
由于需要考虑全排列的情况,TSP在计算上通常是一个复杂且困难的问题。
遗传算法(Genetic Algorithm,GA)是一种模拟自然进化的算法。
在解决复杂问题时,遗传算法模拟了生物进化的基本原理,通过自然选择和遗传操作,逐代优化个体的适应度,从而找到解决问题的最佳解。
在使用遗传算法解决TSP时,个体通常表示为城市的排列序列,适应度函数定义为这个序列所对应路线的总长度。
下面将从两个方面对遗传算法解决TSP的复杂性进行思考:问题的复杂性和算法的复杂性。
首先,旅行商问题本身是一个NP-hard问题。
NP-hard问题是指在多项式时间内无法求解的问题。
TSP的复杂性由于需要考虑所有城市间的距离,而随着城市数量的增加,问题的规模呈指数级增长。
这导致在实际情况下,对于较大规模的TSP 问题,找到最优解是非常困难的。
遗传算法作为一种启发式算法,能够找到较好的近似解,在解决复杂问题时取得了较好的效果。
遗传算法通过不断迭代演化种群,逐步优化解的质量。
但是,由于TSP问题本身的困难性,遗传算法无法保证找到全局最优解,因为它受限于初始种群和搜索空间的选择。
此外,遗传算法的收敛速度也受到问题规模的影响。
其次,遗传算法本身也具有一定的复杂性。
需要设置合适的参数,如种群大小、交叉率、变异率等,以及遗传操作的策略。
不同的参数和策略选择可能导致不同的解决效果。
因此,在应用遗传算法解决TSP问题时,需要进行合理的参数配置和算法优化。
在实际应用中,基于遗传算法的TSP求解器已经取得了一定的成果。
通过对问题进行合理的建模和参数调优,可以在可接受的时间内得到较优的解。
此外,还有许多改进的遗传算法策略可以用于提高求解效率,如多父代遗传算法、局部搜索等。
基于遗传算法求解TSP问题

适应度函数
适应度函数用于评估每个染色体的优劣程 度,根据问题的不同,适应度函数需要进 行定制设计。
交叉操作
交叉操作将两个染色体的基因进行交换, 以产生新的个体。常见的交叉方法有单点 交叉、多点交叉等。
选择操作
选择操作根据适应度函数的评估结果,选 择优秀的个体进入下一代种群。常见的选 择方法有轮盘赌选择、锦标赛选择等。
通过选择操作,优秀的个体有更大的机会被选中并参与交叉和变异操作 。交叉操作将两个个体的染色体进行交换,以产生新的个体。变异操作 则对染色体的某些基因进行随机改变,以增加种群的多样性。
遗传算法构成要素
种群
种群是由一组染色体组成的集合,每个染 色体都是优化问题的潜在解。
变异操作
变异操作对染色体的某些基因进行随机改 变,以增加种群的多样性。常见的变异方 法有位点变异、倒位变异等。
04
基于遗传算法的TSP问题求解
TSP问题的遗传算法建模
编码方式
使用染色体编码方式,将TSP问题的解编码 为染色体。
适应度函数
使用距离作为适应度函数,评估染色体的优 劣。
解码方法
通过解码方式将编码后的染色体还原为TSP 问题的解。
遗传操作
包括选择、交叉和变异等操作,用于产生新 的染色体。
编码方式与解码方法
VS
实验环境
本次实验在Windows 10操作系统下进行 ,使用Python 3.8作为编程语言,并利用 NumPy和Matplotlib等库进行数据处理 和可视化。
实验结果展示
最优解
通过运行遗传算法程序,我们得到了最优解为207.9km,与TSPLIB中的最优解206.2km相TSP问题是一个NP-hard问题,它具有以下特征
用于求解TSP问题的遗传算法改进

用于求解TSP问题的遗传算法改进遗传算法是一种常用于解决旅行商问题(TSP)的优化算法。
TSP问题是指在给定一组城市和其之间的距离,找到一条最短路径,使得每个城市只访问一次并最终返回起始城市。
传统的遗传算法在解决TSP问题时存在一些缺点,例如收敛速度慢、易于陷入局部最优解等问题。
对遗传算法进行改进以提高求解TSP问题的效果和效率尤为重要。
改进初始化的方法。
传统的遗传算法一般采用随机生成的方法来初始化种群,但这样会导致种群的多样性不足、容易陷入局部最优解。
可以采用相邻交换法、插入法等启发式方法来生成初始化种群,增加种群的多样性,有助于全局搜索。
改进交叉和变异的操作。
传统的遗传算法中,交叉和变异操作一般是均匀随机进行的,但这样可能会导致交叉和变异带来的新个体的子路径中出现重复的城市,从而违反了TSP问题的约束条件。
可以采用部分映射交叉(PMX)等方法来保证交叉后子路径不会出现重复的城市,同时保持了种群的多样性;可以采用2-opt、3-opt等局部搜索方法来修复变异带来的子路径中出现的重复的城市,提高种群的质量。
可以引入自适应权重的选择策略。
传统的遗传算法中,选择策略一般是基于个体适应度的排序或轮盘赌选择的。
但这种选择策略可能会导致选择压力过大或过小,使种群收敛速度过快或过慢。
可以采用自适应权重的选择策略,根据种群适应度的分布情况动态调整选择概率,使得适应度较高的个体能够更有机会被选中,增加种群的多样性,提高全局搜索能力。
可以引入一些启发式的局部搜索方法。
传统的遗传算法中,局部搜索往往仅在变异操作中进行,但这样可能局部搜索的范围有限,难以跳出局部最优解。
可以在种群进化的过程中,根据种群的适应度情况,选择某些个体进行局部搜索,以进一步改善个体的质量。
对于求解TSP问题的遗传算法改进,可以从初始化方法、交叉和变异操作、选择策略和局部搜索等方面进行改进,以提高算法的效果和效率。
通过引入合适的启发式方法,增加种群的多样性,改善交叉和变异的操作,优化选择策略,加强局部搜索,可以有效地提高遗传算法在求解TSP问题中的性能。
遗传算法(GA)解决TSP问题

遗传算法(GA)解决TSP问题 遗传算法解决TSP问题遗传算法遗传算法的基本原理是通过作⽤于染⾊体上的基因寻找好的染⾊体来求解问题,它需要对算法所产⽣的每个染⾊体进⾏评价,并基于适应度值来选择染⾊体,使适应性好的染⾊体有更多的繁殖机会,在遗传算法中,通过随机⽅式产⽣若⼲个所求解问题的数字编码,即染⾊体,形成初始种群;通过适应度函数给每个个体⼀个数值评价,淘汰低适应度的个体,选择⾼适应度的个体参加遗传操作,经过遗产操作后的个体集合形成下⼀代新的种群,对这个新的种群进⾏下⼀轮的进化。
TSP问题TSP问题即旅⾏商问题,经典的TSP可以描述为:⼀个商品推销员要去若⼲个城市推销商品,该推销员从⼀个城市出发,需要经过所有城市后,回到出发地。
应如何选择⾏进路线,以使总的⾏程最短。
从图论的⾓度来看,该问题实质是在⼀个带权完全⽆向图中,找⼀个权值最⼩的哈密尔顿回路。
遗传算法解决TSP问题概念介绍:种群 ==> 可⾏解集个体 ==> 可⾏解染⾊体 ==> 可⾏解的编码基因 ==> 可⾏解编码的分量基因形式 ==> 遗传编码适应度 ==> 评价的函数值(适应度函数)选择 ==> 选择操作交叉 ==> 编码的交叉操作变异 ==> 可⾏解编码的变异遗传操作:就包括优选适应性强的个体的“选择”;个体间交换基因产⽣新个体的“交叉”;个体间的基因突变⽽产⽣新个体的“变异”。
其中遗传算法是运⽤遗传算⼦来进⾏遗传操作的。
即:选择算⼦、变异算⼦、交叉算⼦。
遗传算法的基本运算过程(1)种群初始化:个体编码⽅法有⼆进制编码和实数编码,在解决TSP问题过程中个体编码⽅法为实数编码。
对于TSP问题,实数编码为1-n的实数的随机排列,初始化的参数有种群个数M、染⾊体基因个数N(即城市的个数)、迭代次数C、交叉概率Pc、变异概率Pmutation。
(2)适应度函数:在TSP问题中,对于任意两个城市之间的距离D(i,j)已知,每个染⾊体(即n个城市的随机排列)可计算出总距离,因此可将⼀个随机全排列的总距离的倒数作为适应度函数,即距离越短,适应度函数越好,满⾜TSP要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于遗传算法的TSP问题解决—余小欢B07330230概述:TSP问题是一个经典的运筹学的组合优化问题,针对此问题,研究人员提出了个中各样的算法,主要有贪婪算法,遗传算法,混沌搜索算法等。
在本文中分别用贪婪算法和遗传算法去解决30个城市的最短路径问题,并把两者得到了最优解进行比较,发现用遗传算法解决TSP问题非常具有优越性,同时在文章的最后提出了对此遗传算法进行改进的方向。
1.贪婪算法x=[18 87 74 71 25 58 4 13 18 24 71 64 68 83 58 54 51 37 41 2 7 22 25 62 87 91 83 41 45 44];y=[54 76 78 71 38 35 50 40 40 40 42 44 60 58 69 69 62 67 84 94 99 64 60 62 32 7 38 46 26 21 35];a=zeros(30,30);for i=1:30for j=1:30a(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); %求取距离矩阵的值enda(i,i)=1000; %主对角线上的元素置为1000作为惩罚endb=0;c=zeros(30);for j=1:30[m,n]=min(a(:,j));b=b+m; %得到的b值即为贪婪最佳路径的总距离a(n,:)=1000; %已经选择的最小值对应的行的所有值置为1000作为惩罚c(j)=n;endx1=zeros(30);y1=zeros(30);for t=1:30x1(t)=x(c(t));y1(t)=y(c(t));endplot(x1,y1,'-or');xlabel('X axis'), ylabel('Y axis'), title('̰À·Â·¾¶'); axis([0,1,0,1]);axis([0,100,0,100]);axis on用贪婪算法得出的最佳路径走遍30个城市所走的路程为449.3845km 其具体的路径图如下:2.遗传算法1主函数部分clc;clear all;close all;global x ycityfile = fopen( 'city30.txt', 'rt' ); %取30个城市的样本cities = fscanf( cityfile, '%f %f',[ 2,inf] );%fscanf返回数据的个数fclose(cityfile);t=30+1; %城市的数目是30个s=1500; %样本的数目是1400个G=300; %运算的代数c=25; %选择算子中每次替代的样本的数量x=cities(1,:);y=cities(2,:);pc=0.10; %交叉的概率pm=0.8; %变异的概率pop=zeros(s,t); %得初始的pop矩阵,矩阵的最后一列表示所在行的样本的路径距离for i=1:spop(i,1:t-1)=randperm(t-1); %随机产生1—(t-1)的t-1个数endfor k=1:1:G %GA开始if mod(k,50)==1kendpop=distance(pop); %调用距离函数求距离pop=select(pop,c); %调用选择函数p1=rand;if p1>=pcpop=cross(pop); %调用交叉函数endp2=rand;if p2>=pmpop=mutate(pop); %调用变异函数endend%GA结束%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%bestL=min(pop(:,t))J=pop(:,t);fi=1./J;[Oderfi,Indexfi]=sort(fi); %对于fi进行排序BestS=pop(Indexfi(s),:); %得到最短路I=BestS;for i=1:1:t-1x1(i)=x(I(i));y1(i)=y(I(i));endx1(t)=x(I(1));y1(t)=y(I(1));cities_new=[x1;y1];disp('Best Route is:');disp(cities_new);pos=[cities_new cities_new(:,1)];lentemp=0;for i=1:1:t-1temp=sqrt((pos(1,i)-pos(1,i+1))^2+(pos(2,i)-pos(2,i+1))^2); lentemp=lentemp+temp;enddisp('Shortest Length is:');disp(lentemp);figure(1);subplot(1,2,1); %窗口分割的左边部分x(t)=x(1);y(t)=y(1);plot(x,y,'-or');xlabel('X axis'), ylabel('Y axis'), title('原始路径');axis([0,1,0,1]);axis([0,100,0,100]);axis onhold on;subplot(1,2,2); %窗口分割的右边部分plot(x1,y1,'-or');xlabel('X axis'), ylabel('Y axis'), title('最新的路径');axis([0,1,0,1]);axis([0,100,0,100]);axis on2距离函数function [pop]=distance(pop)global x y[s,t]=size(pop);for i=1:1:sdd=0;pos=pop(i,1:t-1);pos=[pos pos(:,1)];for j=1:1:t-1m=pos(j);n=pos(j+1);dd=dd+sqrt((x(m)-x(n))^2+(y(m)-y(n))^2);endpop(i,t)=dd;end3选择函数unction [pop]=select(pop,c)[s,t]=size(pop);m11=(pop(:,t));m11=m11';mmax=zeros(1,c);mmin=zeros(1,c);num=1;while num<c+1 %取距离大的C个样本[a,mmax(num)]=max(m11); %选取当前样本的最大值并记录样本编号给mmax(num) m11(mmax(num))=0;num=num+1;endnum=1;while num<c+1 %取距离小的C个样本[b,mmin(num)]=min(m11);m11(mmin(num))=a;num=num+1;endfor i=1:cpop(mmax(i),:)=pop(mmin(i),:); %用距离小的C个样本替换距离大的C个样本end4 交叉函数function [pop]=cross(pop)[s,t]=size(pop);pop_1=pop;n=randperm(s); %将种群随机排序for i=1:2:s%随机选择两个交叉点m=randperm(t-3)+1;crosspoint(1)=min(m(1),m(2));crosspoint(2)=max(m(1),m(2));%任意两行交叉x1=n(i);x2=n(i+1);%将x1左边与x2的左边互换middle=pop(x1,1:crosspoint(1));pop(x1,1:crosspoint(1))=pop(x2,1:crosspoint(1));pop(x2,1:crosspoint(1))=middle;%将x1右边与x2的右边互换middle=pop(x1,crosspoint(2)+1:t);pop(x1,crosspoint(2)+1:t)=pop(x2,crosspoint(2)+1:t);pop(x2,crosspoint(2)+1:t)=middle;%检查x1左边的重复性并得到x1的左边for j=1:crosspoint(1)while find(pop(x1,crosspoint(1)+1:crosspoint(2))==pop(x1,j))zhi=find(pop(x1,crosspoint(1)+1:crosspoint(2))==pop(x1,j)); %确定重复位置temp=pop(x2,crosspoint(1)+zhi);pop(x1,j)=temp;endend%检查x1的右边的重复性并得到x1的右边for j=crosspoint(2)+1:t-1while find(pop(x1,crosspoint(1)+1:crosspoint(2))==pop(x1,j))zhi=find(pop(x1,crosspoint(1)+1:crosspoint(2))==pop(x1,j)); %确定重复的位置temp=pop(x2,crosspoint(1)+zhi);pop(x1,j)=temp;endend%检查x2左边的重复性并得到x2的左边for j=1:crosspoint(1)while find(pop(x2,crosspoint(1)+1:crosspoint(2))==pop(x2,j))zhi=find(pop(x2,crosspoint(1)+1:crosspoint(2))==pop(x2,j)); %确定重复位置temp=pop(x1,crosspoint(1)+zhi);pop(x2,j)=temp;endend%检查x2的右边的重复性并得到x2的右边for j=crosspoint(2)+1:t-1while find(pop(x2,crosspoint(1)+1:crosspoint(2))==pop(x2,j))zhi=find(pop(x2,crosspoint(1)+1:crosspoint(2))==pop(x2,j)); %确定重复的位置temp=pop(x1,crosspoint(1)+zhi);pop(x2,j)=temp;endendend%生成的新的种群与交叉前进行比较,并取两者最优[pop]=distance(pop);for i=1:sif pop_1(i,t)<pop(i,t)pop(i,:)=pop_1(i,:);endend5 变异函数function [pop]=mutate(pop)[s,t]=size(pop);pop_1=pop;for i=1:2:sm=randperm(t-3)+1;%随机取两个点mutatepoint(1)=min(m(1),m(2));mutatepoint(2)=max(m(1),m(2));%用倒置变异的方法倒置两个点中间部分的位置mutate=round((mutatepoint(2)-mutatepoint(1))/2-0.5);for j=1:mutatezhong=pop(i,mutatepoint(1)+j);pop(i,mutatepoint(1)+j)=pop(i,mutatepoint(2)-j);pop(i,mutatepoint(2)-j)=zhong;endend[pop]=distance(pop);%生成的新的种群与变异前比较,并取两者最优for i=1:sif pop_1(i,t)<pop(i,t)pop(i,:)=pop_1(i,:);endend用上面的贪婪算法在matlab里运算的结果如下:30个城市的初始路线和优化后的路线如下:从上面的结果可以很明显的发现用遗传算法得到的结果远比用贪婪算法解得的好。