高考物理二轮复习专题

合集下载

高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的

高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的
受力和运动分析
(1)建立运动模型。
(2)抓住运动过程之间运动参量的联系。
(3)分阶段或全过程列式计算。
(4)对于选定的研究过程,只考虑初、末位置而不用考虑中间过程。
注意摩擦力做功特点
深化拓展
应用动能定理解题应注意的三个问题
(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比
动力学研究方法要简捷。
则重力的瞬时功率不为0,C错误;随着运动员在圆弧跳台上升高,速率逐渐
减小,所需要的向心力也在减小,向心力由台面的支持力与重力垂直接触面
向下的分力提供,由牛顿第二定律有FN-mgcos θ=m
大,v在减小,所以FN在减小,D正确。
2
,随着高度升高,θ在增

2.(命题角度1、2)(多选)一个质量为5 kg静止在水平地面上的物体,某时刻
能定理
1
Pt-W=2 m 2 ,则这一过程中小汽车克服阻力做的功为
D 错误。

W=Pt- 2 ,率启动
1
a-图像和
1
a-v 图像
1
F-图像问题
恒定加速度启动
1
F-v 图像
恒定功率启动
1
a- 图像
v
恒定加速度启动
1
F- 图像
v
①AB 段牵引力不变,做匀加速直线运动;
1
1
2
由动能定理得-mg·2r-W=2 2 − 2 1 2 ,联立解得小球克服阻力做的功
W=mgr,A 错误,B 正确;设再一次到达最低点时速度为 v3,假设空气阻力做
功不变,从最高点到最低点根据动能定理得
最低点,根据牛顿第二定律
1
mg·2r-W= 3 2

新高考适用2025版高考物理二轮总复习第1部分专题突破方略专题6物理实验第2讲电学实验及创新

新高考适用2025版高考物理二轮总复习第1部分专题突破方略专题6物理实验第2讲电学实验及创新

第一部分专题六第2讲基础题——学问基础打牢1. (2024·新课标Ⅰ卷)某同学用伏安法测量一阻值为几十欧姆的电阻R x,所用电压表的内阻为1 kΩ,电流表内阻为0.5 Ω.该同学采纳两种测量方案,一种是将电压表跨接在图(a)所示电路的O、P两点之间,另一种是跨接在O、Q两点之间.测量得到如图(b)所示的两条U­I图线,其中U与I分别为电压表和电流表的示数.回答下列问题:(1)图(b)中标记为Ⅱ的图线是采纳电压表跨接在_O、P__(填“O、P”或“O、Q”)两点的方案测量得到的.(2)依据所用试验器材和图(b)可推断,由图线_Ⅰ__(填“Ⅰ”或“Ⅱ”)得到的结果更接近待测电阻的真实值,结果为_50.5__Ω(保留1位小数).(3)考虑到试验中电表内阻的影响,需对(2)中得到的结果进行修正,修正后待测电阻的阻值为_50.0__Ω(保留1位小数).【解析】(1)若将电压表接在O、P之间,I=UR V +UR x则U=R x R VR x+R V·I依据一次函数关系可知对应斜率为R x R VR x+R V若将电压表接在O、Q之间,电流表分压为U A=IR A依据欧姆定律变形可知R x=U-IR AI解得U=I(R x+R A)依据一次函数可知对应斜率为(R x+R A),对比图像的斜率可知kⅠ>kⅡ所以Ⅱ图线是采纳电压表跨接在O、P之间.(2)因为待测电阻为几十欧姆的电阻,通过图像斜率大致估算待测电阻为50 Ω左右,依据1 kΩ50 Ω<50 Ω0.5 Ω说明电流表的分压较小,电压表的分流较大,所以电压表应跨接在O、Q之间,所以选择图线I得到的结果较为精确.依据图像可知R x=3 V-1 V59.6 mA-20 mA≈50.5 Ω.(3)考虑电流表内阻,则修正后的电阻为R x′=R x-R A=50.5 Ω-0.5 Ω=50.0 Ω.2. (2024·四川成都二诊)为将一只毫安表A(量程3 mA,内阻约几十欧姆)改装成量程为1.5 V的电压表,试验室供应了下列器材:电源E(电动势约6 V,内阻不计);滑动变阻器R1(0~50 Ω);滑动变阻器R2(0~5 kΩ);电阻箱R(0~999.9 Ω);开关两个、导线若干.某同学先按图示电路连接线路,测量表A的内阻.他的操作步骤如下:a.将滑动变阻器的阻值调到最大,闭合S1后调整变阻器的阻值,使表A的指针满偏;b.闭合S2保持变阻器的阻值不变,调整电阻箱R的阻值,使表A的指针偏转到量程的1 2位置;c.登记R的阻值为30.0 Ω.(1)上述试验中,滑动变阻器应选用_R2__(选填“R1”或“R2”).(2)表A的内阻测量值R A=_30.0或30__Ω.此测量值_小于__(选填“大于”“等于”或“小于”)表A内阻的真实值.(3)若取表A内阻的测量值R A进行计算,为达成改装的目的,可将表A与电阻箱R_串联__(选填“串联”或“并联”),且将电阻箱R的阻值调到_470.0或470__Ω.【解析】(1)毫安表A的量程3 mA,则电路中的最大电流为3 mA,电路的最小电阻为R=EI g =63×10-3Ω=2 000 Ω,故滑动变阻器应选用R2.(2)试验中用半偏法测电表的内阻,所以R的阻值即为电表的测量值,则表A的内阻测量值R A=30 Ω,由于闭合S2,电阻箱R并入电路,电路的总电阻变小,干路电流变大,而流过毫安表的电流为满偏的一半,所以流过电阻箱R的电流大于满偏的一半,依据并联电路的特点,可知电阻箱R的阻值小于毫安表的内阻,即测量值小于表A内阻的真实值.(3)应把毫安表与电阻箱串联,改装成电压表,量程为1.5 V,则有U=I g(R A+R),则将电阻箱R的阻值调到R=470 Ω.3. (2024·新课标Ⅱ卷)某同学要探讨一小灯泡L(3.6 V,0.30 A)的伏安特性.所用器材有:电流表A1(量程200 mA,内阻R g1=10.0 Ω),电流表A2(量程500 mA,内阻R g2=1.0Ω)、定值电阻R0(阻值R0=10.0 Ω)、滑动变阻器R1(最大阻值10 Ω)、电源E(电动势4.5 V,内阻很小)、开关S和若干导线.该同学设计的电路如图(a)所示.(1)依据图(a),在图(b)的实物图中画出连线.(2)若I1、I2分别为流过电流表A1和A2的电流,利用I1、I2、R g1和R0写出:小灯泡两端的电压U=_I1(R g1+R0)__,流过小灯泡的电流I=_I2-I1__.为保证小灯泡的平安,I1不能超过_180__mA.(3)试验时,调整滑动变阻器,使开关闭合后两电流表的示数为零.逐次变更滑动变阻器滑片位置并读取相应的I1和I2.所得试验数据在下表中给出.I1/mA325585125144173I2/mA1712292993794244701_11.6__Ω(保留1位小数).(4)假如用另一个电阻替代定值电阻R0,其他不变,为了能够测量完整的伏安特性曲线,所用电阻的阻值不能小于_8.0__Ω(保留1位小数).【答案】(1)见解析图【解析】(1)依据电路图连接实物图如图所示(2)①依据电路图可知灯泡两端的电压为电流表A 1和R 0的总电压,故依据欧姆定律有U =I 1(R g1+R 0 );②依据并联电路特点可知流过小灯泡的电流为I =I 2-I 1;③因为小灯泡的额定电压为3.6 V ,故依据题目中已知数据带入①中可知I 1不能超过180 mA.(3)依据表中数据可知当I 1=173 mA 时,I 2=470 mA ;依据前面的分析代入数据可知此时灯泡两端的电压为U =3.46 V ;流过小灯泡的电流为I =297 mA =0.297 A ;故依据欧姆定律可知此时小灯泡的电阻为R =U I =3.460.297Ω=11.6 Ω.(4)要测量完整的伏安特性曲线则灯泡两端的电压至少要达到3.6 V ,而电流表A 1不能超过其量程200 mA ,此时结合①有3.6=0.2×(10+R 0),解得R 0=8 Ω,即要完整的测量小灯泡伏安特性曲线所用电阻的阻值不能小于8 Ω.4. (2024·新课标Ⅲ卷)已知一热敏电阻当温度从10 ℃升至60 ℃时阻值从几千欧姆降至几百欧姆,某同学利用伏安法测量其阻值随温度的变更关系.所用器材:电源E 、开关S 、滑动变阻器R (最大阻值为20 Ω)、电压表(可视为志向电表)和毫安表(内阻约为100 Ω).(1)在所给的器材符号之间画出连线,组成测量电路图.(2)试验时,将热敏电阻置于温度限制室中,记录不同温度下电压表和毫安表的示数,计算出相应的热敏电阻阻值.若某次测量中电压表和毫安表的示数分别为5.5 V 和3.0 mA ,则此时热敏电阻的阻值为_1.8__kΩ(保留2位有效数字).试验中得到的该热敏电阻阻值R 随温度t 变更的曲线如图(a)所示.(3)将热敏电阻从温控室取出置于室温下,测得达到热平衡后热敏电阻的阻值为2.2 kΩ.由图(a)求得,此时室温为_25.5__℃(保留3位有效数字).(4)利用试验中的热敏电阻可以制作温控报警器,其电路的一部分如图(b)所示.图中,E 为直流电源(电动势为10 V ,内阻可忽视);当图中的输出电压达到或超过6.0 V 时,便触发报警器(图中未画出)报警.若要求起先报警时环境温度为50 ℃,则图中_R 1__(填“R 1”或“R 2”)应运用热敏电阻,另一固定电阻的阻值应为_1.2__kΩ(保留2位有效数字).【答案】 (1)见解析图【解析】 (1)滑动变阻器应用分压式,电压表可视为志向表,所以用电流表外接.连线如图.(2)由部分电路欧姆定律得R =U I = 5.53×10-3Ω≈1.8 kΩ.(3)由图(a)可以干脆读该电阻的阻值为2.2 kΩ对应的温度为25.5 ℃.(4)温度上升时,该热敏电阻阻值减小,分得电压削减.而温度高时要求输出电压上升,以触发报警,所以R 1为热敏电阻.由图线可知,温度为50 ℃时,R 1=0.8 kΩ,由欧姆定律可得E =I (R 1+R 2),U =IR 2,代入数据解得R 2=1.2 kΩ.5. (2024·全国乙,23,10分)一同学探究阻值约为550 Ω的待测电阻R x 在0~5 mA 范围内的伏安特性.可用器材有电压表V(量程为3 V ,内阻很大),电流表A(量程为1 mA ,内阻为300 Ω),电源E (电动势约为4 V ,内阻不计),滑动变阻器R (最大阻值可选10 Ω或1.5 kΩ),定值电阻R 0(阻值可选75 Ω或150 Ω),开关S ,导线若干.(1)要求通过R x 的电流可在0~5 mA 范围内连续可调,将图甲所示的器材符号连线,画出试验电路的原理图.(2)试验时,图甲中的R 应选最大阻值为_10_Ω__(选填“10 Ω”或“1.5 kΩ”)的滑动变阻器,R 0应选阻值为_75_Ω__(选填“75 Ω”或“150 Ω”)的定值电阻.(3)测量多组数据可得R x 的伏安特性曲线.若在某次测量中,电压表、电流表的示数分别如图乙和图丙所示,则此时R x 两端的电压为_2.30__V ,流过R x 的电流为_4.20__mA ,此组数据得到的R x 的阻值为_548__Ω(保留3位有效数字).【答案】 (1)见解析图【解析】 (1)电流表内阻已知,电流表与R 0并联扩大电流表量程,进而测量通过R x 的电流,电压表测量R x 两端的电压;滑动变阻器采纳分压式接法,满意通过R x 的电流在0~5 mA 内连续可调的条件,电路图如下.(2)电路中R 应选最大阻值为10 Ω的滑动变阻器,便利电路的调整,测量效率高、试验误差小;通过R x 的电流最大为5 mA ,须要将电流表量程扩大为原来的5倍,依据并联分流,即并联电路中电流之比等于电阻的反比,可知5 mA -1 mA 1 mA =300 ΩR 0,解得R 0=75 Ω.(3)电压表每小格表示0.1 V ,向后估读一位,即U =2.30 V ;电流表每小格表示0.02mA ,本位估读,即读数为0.84 mA ,电流表量程扩大5倍,所以通过R x 的电流为I =4.20 mA ;依据欧姆定律可知R x =UI≈548 Ω.6. (2024·浙江1月高考)小明同学依据图1的电路连接器材来“探究导体电阻与其影响因素的定量关系”.试验时多次变更合金丝甲接入电路的长度l 、调整滑动变阻器的阻值,使电流表的读数I 达到某一相同值时记录电压表的示数U ,从而得到多个U I 的值,作出U I­l 图像,如图2中图线a 所示.(1)在试验中运用的是_0~20_Ω__(选填“0~20 Ω”或“0~200 Ω”)的滑动变阻器. (2)在某次测量时,量程为3 V 电压表的指针位置如图3所示,则读数U =_1.32(1.31~1.34)__V.(3)已知合金丝甲的横截面积为7.0×10-8m 2,则合金丝甲的电阻率为_1.1×10-6(0.90×10-6~1.3×10-6)__Ω·m(结果保留2位有效数字).(4)图2中图线b 是另一根长度相同、材料相同的合金丝乙与合金丝甲并联后采纳同样的方法获得的UI­l 图像,由图可知合金丝甲的横截面积_小于__(选填“大于”“等于”或“小于”)合金丝乙的横截面积.【解析】 (1)由试验原理可知R x =U I ,而由U I­l 图像可知待测电阻最大约为8 Ω,为了使电压表有明显的读数变更,则滑动变阻器的阻值不能太大,故选0~20 Ω比较合适.(2)量程为 3 V 的电压表,精度为0.1 V ,估读到0.01 V ,则电压为 1.32 V(1.31~1.34).(3)依据电阻定律有U I =R x =ρS ·l 则U I ­l 图像的斜率为k =ρS可得合金丝甲的电阻率为ρ=kS =7.4-3.60.44-0.20×7.0×10-8(Ω·m)≈1.1×10-6(Ω·m).(4)另一根长度相同、材料相同的合金丝乙与合金丝甲并联后,电阻率不变,而横截面积变为S′=S+S乙由图2中图线b可得S′=ρk b=1.1×10-62.2-1.00.44-0.15≈26.6×10-8 m2解得S乙=S′-S≈19.6×10-8 m2>S故合金丝甲的横截面积小于合金丝乙的横截面积.7. (2024·贵州押题卷)李老师为了让同学们更好地理解电表的改装原理,将量程为0~3 V~15 V的电压表底座拆开后,展示其内部结构,如图甲所示.图中a、b、c是该表的3个接线柱,李老师已依据图甲画出如图乙所示的电路图.(1)依据图乙可以推断,当须要选择0~3 V的量程时,应接入电路的两个接线柱是_b、c__.(2)若电压表的表头内阻为200 Ω,满偏电流为600 μA,则可以计算出R1=_20_000__Ω,R2=_4_800__Ω.(3)某同学受到启发后,接着探讨量程为0~0.6 A~3 A的电流表.拆开电流表底座后,发觉其内部结构如图丙所示,其中“-”为电流表的负接线柱,d、e为其余两个接线柱.在所给的器材符号之间画出连线,组成该电流表的电路图;(4)已知电流表中R4=0.22 Ω,表头与电压表的表头相同,则R3=_0.88__Ω.【答案】(3)见解析图【解析】(1)电压表量程越大,与表头G串联的总电阻越大,所以当须要选择0~3 V 的量程时,表头G只与R2串联,应接入电路的两个接线柱是b、c.(2)依据串联电路规律有I G(R2+r G)=3 V,I G(R1+R2+r G)=15 V,联立解得R1=20 000 Ω,R2=4 800 Ω.(3)依据题图丙作出电路图如图所示.(4)电流表量程越大,分流总电阻越小,所以e接线柱对应0.6 A量程,d接线柱对应3 A量程,依据串并联电路规律有I1=I G+I G r G+R5R3+R4=0.6 A,I2=I G+I G r G+R3+R5R4=3A,联立解得R3=0.88 Ω.应用题——强化学以致用8. (2024·全国高考甲卷)某同学用图(a)所示电路探究小灯泡的伏安特性,所用器材有:小灯泡(额定电压2.5 V,额定电流0.3 A)电压表(量程300 mV,内阻300 Ω)电流表(量程300 mA,内阻0.27 Ω)定值电阻R0滑动变阻器R1(阻值0~20 Ω)电阻箱R2(最大阻值9 999.9 Ω)电源E(电动势6 V,内阻不计)开关 S、导线若干.完成下列填空:(1)有3个阻值分别为10 Ω、20 Ω、30 Ω的定值电阻可供选择,为了描绘小灯泡电流在0~300 mA的U­I曲线,R0应选取阻值为_10__ Ω的定值电阻.(2)闭合开关前,滑动变阻器的滑片应置于变阻器的_a__(填“a”或“b”)端.(3)在流过电流表的电流较小时,将电阻箱R2的阻值置零,变更滑动变阻器滑片的位置,读取电压表和电流表的示数U、I,结果如图(b)所示.当流过电流表的电流为10 mA 时,小灯泡的电阻为_0.7__ Ω(保留1位有效数字).(4)为使得电压表满量程时对应于小灯泡两端的电压为 3 V ,该同学经计算知,应将R 2的阻值调整为_2_700_Ω__.然后调整滑动变阻器R 1,测得数据如下表所示:U /mV 24.0 46.0 76.0 110.0 128.0 152.0 184.0 216.0 250.0 I /mA140.0160.0180.0200.0220.0240.0260.0280.0300.0增大__(大”“减小”或“不变”).(6)该同学观测到小灯泡刚起先发光时流过电流表的电流为160 mA ,可得此时小灯泡电功率P 1=_0.074__W(保留2位有效数字);当流过电流表的电流为300 mA 时,小灯泡的电功率为P 2,则P 2P 1=_10__(保留至整数).【解析】 (1)因为小灯泡额定电压2.5 V ,电动势6 V ,则滑动滑动变阻器时,为了保证电路平安,须要定值电阻分担的电压U =6 V -2.5 V =3.5 V ,则有R 0=3.5 V0.3 A≈11.7 Ω则须要描绘小灯泡在0~300 mA 的伏安特性曲线,即R 0应选取阻值为10 Ω. (2)为了爱护电路,滑动变阻器的滑片应置于变阻器的a 端.(3)由图可知当流过电流表的电流为10 mA 时,电压为7 mV ,则小灯泡的电阻为R =7×10-310×10-3 Ω=0.7 Ω. (4)由题知电压表满量程时对应于小灯泡两端的电压为3 V 时,有3R 2+R V =0.3R V解得R 2=2 700 Ω.(5)由图(b)和表格可知流过小灯泡电流增加,图像中U I变大,则灯丝的电阻增大. (6)依据表格可知当电流为160 mA 时,电压表的示数为46 mV ,依据(4)的分析可知此时小灯泡两端电压为0.46 V ,则此时小灯泡电功率P 1=0.46 V×0.16 A≈0.074 W同理可知当流过电流表的电流为300 mA 时,小灯泡两端电压为2.5 V ,此时小灯泡电功率P 2=2.5 V×0.3 A=0.75 W故有P 2P 1=0.750.074≈10.9. (2024·广西南宁二模)某物理试验小组设计了如图甲所示的电路图,采纳半偏法测量一电流计G 的内阻R g ,然后将该电流计G 改装为电压表,并对改装后的电压表进行检验.(1)请依据图甲所示电路图,在图乙中用笔画线表示导线连接相应的实物电路:(2)测量R g的步骤如下:①按图甲所示连接好试验电路,将R1的阻值调到最大,闭合开关S1,调整R1的阻值,使电流计指针满偏;②闭合开关S2,调整R2的阻值,使电流计指针转到满偏刻度的一半处,登记R2的阻值并断开S1;③待测电流计内阻R测=R2.由于存在系统误差,按上述试验步骤测出的电流计内阻R测与电流计内阻的真实值R g相比较,R测_<__R g(选填“>”“<”或“=”).(3)该小组在上述试验中,测得电流计G(量程3 mA)的内阻为400 Ω.他们将此电流计与电阻R串联后改装成量程为6 V的电压表,然后利用一标准电压表,依据图丙所示电路对改装后的电压表进行检验.①与电流计串联的电阻R=_1_600__Ω;②调整滑动变阻器,当标准电压表读数为4.10 V时,电流计G的读数为2.00 mA,则改装后的电压表实际量程为_6.15__V.该小组发觉改装的电压表量程不是6 V,通过分析,缘由是由于电流计G的内阻测量不精确造成的,此时不用做其他改动,要达到预期目的,只需将与电流计串联的电阻R换为一个阻值为_1_550__Ω的电阻即可.【答案】(1)见解析图【解析】(1)依据电路图连接实物图如图所示(2)③当R1保持不变时,再闭合S2时,这样电路中的总电阻变小,总电流将大于I g,当电流半偏时,电阻箱的电流比I g2大,所以电阻箱的电阻小于电流表,即测量值小于真实值.(3)①将电流表改装成电压表,须要串联一较大的分压电阻R =U I g -R g =63×10-3 Ω-400 Ω=1 600 Ω.②由题意,当微安表的示数为2 mA 时,理论上的电压U 理=I (R +R g )=2×10-3×(1 600+400)V =4 V但实际电压U ′有4.10 V .那么实际电流表G 的内阻R g ′=U ′I -R = 4.102×10-3 Ω-1 600 Ω=450 Ω实际量程为U 实=I (R g ′+R )=3×10-3×(450+1 600)V =6.15 V依据表头与分压电阻的串联关系,要达到预期6 V 的目的,只需将R 减小50 Ω即可,即换为1 550 Ω的定值电阻.。

高三物理第二轮总复习全套精品(共10个专题)

高三物理第二轮总复习全套精品(共10个专题)

全册教案导学案说课稿试题高三物理二轮总复习全册教学案高三物理第二轮总复习目录第1专题力与运动 (1)第2专题动量和能量 (46)第3专题圆周运动、航天与星体问题 (76)第4专题带电粒子在电场和磁场中的运动 (94)第5专题电磁感应与电路的分析 (120)第6专题振动与波、光学、执掌、原子物理 (150)第7专题高考物理实验 (177)第8专题 (202)第9专题高中物理常见的物理模型 (221)第10专题计算题的答题规范与解析技巧 (240)第1专题 力与运动知识网络考点预测本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年都有独立的命题出现在高考中但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在2013年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.在综合复习这三个模块内容的时候,应该把握以下几点:1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.一、运动的描述 要点归纳(一)匀变速直线运动的几个重要推论和解题方法1.某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即v -t =v t 2. 2.在连续相等的时间间隔T 内的位移之差Δs 为恒量,且Δs =aT 2.3.在初速度为零的匀变速直线运动中,相等的时间T 内连续通过的位移之比为:s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶(2n-1)通过连续相等的位移所用的时间之比为:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).4.竖直上抛运动(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.(3)整体性:整个运动过程实质上是匀变速直线运动.5.解决匀变速直线运动问题的常用方法(1)公式法灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.(2)比例法在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.(3)逆向过程处理法逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.(4)速度图象法速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.(二)运动的合成与分解1.小船渡河设水流的速度为v1,船的航行速度为v2,河的宽度为d.(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,即t=dv⊥,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间t min=dv2.(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2时,最短路程s min=d;当v1>v2时,最短路程s min=v1v2 d,如图1-1 所示.图1-12.轻绳、轻杆两末端速度的关系(1)分解法把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v 1cos θ1=v 2cos_θ2.(2)功率法通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.3.平抛运动如图1-2所示,物体从O 处以水平初速度v 0抛出,经时间t 到达P 点.图1-2(1)加速度⎩⎪⎨⎪⎧ 水平方向:a x =0竖直方向:a y=g (2)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v 2x +v 2y =v 20+g 2t 2设合速度的方向与水平方向的夹角为θ,有:tan θ=v y v x =gt v 0,即θ=arctan gt v 0. (3)位移⎩⎪⎨⎪⎧ 水平方向:s x =v 0t 竖直方向:s y =12gt2 设合位移的大小s =s 2x +s 2y =(v 0t )2+(12gt 2)2 合位移的方向与水平方向的夹角为α,有: tan α=s y s x =12gt 2v 0t =gt 2v 0,即α=arctan gt 2v 0要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.(4)时间:由s y =12gt 2得,t =2s y g,平抛物体在空中运动的时间t 只由物体抛出时离地的高度s y 决定,而与抛出时的初速度v 0无关.(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g =Δv Δt)相等,且必沿竖直方向,如图1-3所示.图1-3任意两时刻的速度与速度的变化量Δv 构成直角三角形,Δv 沿竖直方向.注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.图1-4故有:y =(L ′+L 2)·tan α=(L ′+L 2)·qUL dm v 20. 热点、重点、难点(一)直线运动高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.●例1 如图1-5甲所示,A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前s =84 m 处时,B 车的速度v B =4 m/s ,且正以a =2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车的加速度突然变为零.A 车一直以v A =20 m/s 的速度做匀速运动,从最初相距84 m 时开始计时,经过t 0=12 s 后两车相遇.问B 车加速行驶的时间是多少?图1-5甲【解析】设B 车加速行驶的时间为t ,相遇时A 车的位移为:s A =v A t 0B 车加速阶段的位移为:s B 1=v B t +12at 2 匀速阶段的速度v =v B +at ,匀速阶段的位移为:s B 2=v (t 0-t )相遇时,依题意有:s A =s B 1+s B 2+s联立以上各式得:t 2-2t 0t -2[(v B -v A )t 0+s ]a =0 将题中数据v A =20 m/s ,v B =4 m/s ,a =2 m/s 2,t 0=12 s ,代入上式有:t 2-24t +108=解得:t 1=6 s ,t 2=18 s(不合题意,舍去)因此,B 车加速行驶的时间为6 s .[答案] 6 s【点评】①出现不符合实际的解(t 2=18 s)的原因是方程“s B 2=v (t 0-t )”并不完全描述B 车的位移,还需加一定义域t ≤12 s .②解析后可以作出v A -t 、v B -t 图象加以验证.图1-5乙根据v -t 图象与t 围成的面积等于位移可得,t =12 s 时,Δs =[12×(16+4)×6+4×6] m =84 m .(二)平抛运动平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan θ=2tan α).●例2 图1-6甲所示,m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮.已知皮带轮的半径为r ,传送带与皮带轮间不会打滑.当m 可被水平抛出时,A 轮每秒的转数最少为( )图1-6甲A .12πg rB .g rC .grD .12πgr 【解析】解法一 m 到达皮带轮的顶端时,若m v 2r≥mg ,表示m 受到的重力小于(或等于)m 沿皮带轮表面做圆周运动的向心力,m 将离开皮带轮的外表面而做平抛运动又因为转数n =ω2π=v 2πr所以当v ≥gr ,即转数n ≥12πg r时,m 可被水平抛出,故选项A 正确. 解法二 建立如图1-6乙所示的直角坐标系.当m 到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m 将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m 将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m 立即离开皮带轮做平抛运动.图1-6乙又因为皮带轮圆弧在坐标系中的函数为:当y 2+x 2=r 2初速度为v 的平抛运动在坐标系中的函数为:y =r -12g (x v )2 平抛运动的轨迹在皮带轮上方的条件为:当x >0时,平抛运动的轨迹上各点与O 点间的距离大于r ,即y 2+x 2>r 即[r -12g (x v )2]2+x 2>r 解得:v ≥gr又因皮带轮的转速n 与v 的关系为:n =v 2πr 可得:当n ≥12πg r时,m 可被水平抛出. [答案] A【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式为a =Δv Δt ,而决定式为a =F m,故这两种方法殊途同归. ★同类拓展1 高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB 段是助滑雪道,倾角α=30°,BC 段是水平起跳台,CD 段是着陆雪道,AB 段与BC 段圆滑相连,DE 段是一小段圆弧(其长度可忽略),在D 、E 两点分别与CD 、EF 相切,EF 是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h =10 m .A 点与C 点的水平距离L 1=20 m ,C 点与D 点的距离为32.625 m .运动员连同滑雪板的总质量m =60 kg .滑雪运动员从A 点由静止开始起滑,通过起跳台从C 点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图1-7(1)运动员在C 点水平飞出时的速度大小.(2)运动员在着陆雪道CD 上的着陆位置与C 点的距离. (3)运动员滑过D 点时的速度大小.【解析】(1)滑雪运动员从A 到C 的过程中,由动能定理得:mgh -μmg cos αhsin α-μmg (L 1-h cot α)=12m v 2C解得:v C =10 m/s .(2)滑雪运动员从C 点水平飞出到落到着陆雪道的过程中做平抛运动,有: x =v C t y =12gt 2 yx=tan θ 着陆位置与C 点的距离s =x cos θ解得:s =18.75 m ,t =1.5 s .(3)着陆位置到D 点的距离s ′=13.875 m ,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v 0=v C cos θ+gt sin θ加速度为:mg sin θ-μmg cos θ=ma运动到D 点的速度为:v 2D =v 20+2as ′ 解得:v D =20 m/s .[答案] (1)10 m/s (2)18.75 m (3)20 m/s 互动辨析 在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.二、受力分析要点归纳(一)常见的五种性质的力(二)力的运算、物体的平衡1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或F x=0、F y=0、F z=0.注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.3.平衡条件的推论(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.图1-84.共点力作用下物体的平衡分析热点、重点、难点(一)正交分解法、平行四边形法则的应用1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:F x合=0,F y合=0,F z合=0.2.平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比.●例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75 kg,举起的杠铃的质量为125 kg,如图1-9甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10 m/s2)图1-9甲【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9乙所示.图1-9乙【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示图1-9丙由平衡条件得:2F cos 60°=mg解得:F=1250 N.[答案] 1250 N●例4两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为3,细杆长度是球面半径的 2 倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考·四川延考区理综卷]()图1-10甲A.45°B.30°C.22.5°D.15°【解析】解法一设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示图1-10乙其中球面对两球的弹力方向指向圆心,即有: cos α=22R R =22解得:α=45°故F N a 的方向为向上偏右,即β1=π2-45°-θ=45°-θF N b 的方向为向上偏左,即β2=π2-(45°-θ)=45°+θ两球都受到重力、细杆的弹力和球面的弹力的作用,过O 作竖直线交ab 于c 点,设球面的半径为R ,由几何关系可得:m a g Oc =F N aR m b g Oc =F N bR解得:F N a =3F N b取a 、b 及细杆组成的整体为研究对象,由平衡条件得: F N a ·sin β1=F N b ·sin β2 即 3F N b ·sin(45°-θ)=F N b ·sin(45°+θ) 解得:θ=15°.解法二 由几何关系及细杆的长度知,平衡时有: sin ∠Oab =22R R =22故∠Oab =∠Oba =45°再设两小球及细杆组成的整体重心位于c 点,由悬挂法的原理知c 点位于O 点的正下方,且ac bc =m am b= 3即R ·sin(45°-θ)∶R ·sin(45°+θ)=1∶ 3解得:θ=15°. [答案] D【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.②在理论上,本题也可用隔离法分析小球a 、b 的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.③解法二较简便,但确定重心的公式ac bc =m am b=3超纲.(二)带电粒子在复合场中的平衡问题 在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.在如图1-11所示的速度选择器中,选择的速度v =EB ;在如图1-12所示的电磁流量计中,流速v =u Bd ,流量Q =πdu 4B.图1-11 图1-12●例5 在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,如图1-13所示.由此可判断下列说法正确的是( )图1-13A .如果油滴带正电,则油滴从M 点运动到N 点B .如果油滴带正电,则油滴从N 点运动到M 点C .如果电场方向水平向右,则油滴从N 点运动到M 点D .如果电场方向水平向左,则油滴从N 点运动到M 点【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M 点向N 点运动,故选项A 正确、B 错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN 垂直的洛伦兹力对应粒子从N 点运动到M 点,即选项C 正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M 点运动到N 点的,故选项D 错误.[答案] AC 【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.★同类拓展2 如图1-14甲所示,悬挂在O 点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B .当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2q 1为 [2007年高考·重庆理综卷]( )图1-14甲A.2B.3C.23D.3 3【解析】对A球进行受力分析,如图1-14 乙所示,图1-14乙由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电=mg tan θ,又F电=k qQ Ar2.设绳子的长度为L,则A、B两球之间的距离r=L sin θ,联立可得:q=mL2g tan θsin2θkQ A,由此可见,q与tan θsin 2θ成正比,即q2q1=tan 45°sin245°tan 30°sin230°=23,故选项C正确.[答案] C互动辨析本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.三、牛顿运动定律的应用要点归纳(一)深刻理解牛顿第一、第三定律1.牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(1)理解要点①运动是物体的一种属性,物体的运动不需要力来维持.②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.①惯性是物体的固有属性,与物体的受力情况及运动状态无关.②质量是物体惯性大小的量度.2.牛顿第三定律(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.(二)牛顿第二定律1.定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.2.公式:F合=ma理解要点①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.②方向性:a与F合都是矢量,方向严格相同.③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.3.应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值.热点、重点、难点一、正交分解法在动力学问题中的应用当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.2.F x合=ma x合,F y合=ma y合,F z合=ma z合.3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t 1=2 s 后停止,小球沿细杆运动的部分v -t 图象如图1-15乙所示.试求:(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)图1-15(1)小球在0~2 s 内的加速度a 1和2~4 s 内的加速度a 2.(2)风对小球的作用力F 的大小.【解析】(1)由图象可知,在0~2 s 内小球的加速度为:a 1=v 2-v 1t 1=20 m/s 2,方向沿杆向上 在2~4 s 内小球的加速度为:a 2=v 3-v 2t 2=-10 m/s 2,负号表示方向沿杆向下. (2)有风力时的上升过程,小球的受力情况如图1-15丙所示图1-15丙在y 方向,由平衡条件得:F N1=F sin θ+mg cos θ在x 方向,由牛顿第二定律得:F cos θ-mg sin θ-μF N1=ma1停风后上升阶段,小球的受力情况如图1-15丁所示图1-15丁在y方向,由平衡条件得:F N2=mg cos θ在x方向,由牛顿第二定律得:-mg sin θ-μF N2=ma2联立以上各式可得:F=60 N.【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.②正交分解法是求解高中物理题最重要的思想方法之一.二、连接体问题(整体法与隔离法)高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为()图1-16A .F 1-F 2kB .F 1-F 22kC .F 1+F 22kD .F 1+F 2k【解析】取A 、B 及弹簧整体为研究对象,由牛顿第二定律得:F 1-F 2=2ma取B 为研究对象:kx -F 2=ma(或取A 为研究对象:F 1-kx =ma )可解得:x =F 1+F 22k. [答案] C【点评】①解析中的三个方程任取两个求解都可以.②当地面粗糙时,只要两物体与地面的动摩擦因数相同,则A 、B 之间的拉力与地面光滑时相同.★同类拓展3 如图1-17所示,质量为m 的小物块A 放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停了下来.已知A 、B 间的动摩擦因数为μ1,B 与地面间的动摩擦因数为μ2,且μ2>μ1,则x 的表达式应为( )图1-17A .x =M m LB .x =(M +m )L mC .x =μ1ML (μ2-μ1)(m +M )D .x =μ1ML (μ2+μ1)(m +M ) 【解析】设A 、B 相对静止一起向右匀速运动时的速度为v ,撤去外力后至停止的过程中,A 受到的滑动摩擦力为:f 1=μ1mg其加速度大小a 1=f 1m=μ1g B 做减速运动的加速度大小a 2=μ2(m +M )g -μ1mg M由于μ2>μ1,所以a 2>μ2g >μ1g =a 1即木板B 先停止后,A 在木板上继续做匀减速运动,且其加速度大小不变对A 应用动能定理得:-f 1(L +x )=0-12m v 2 对B 应用动能定理得:μ1mgx -μ2(m +M )gx =0-12M v 2 解得:x =μ1ML (μ2-μ1)(m +M ). [答案] C【点评】①虽然使A 产生加速度的力由B 施加,但产生的加速度a 1=μ1g 是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.三、临界问题●例8 如图1-18甲所示,滑块A 置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M 的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球B .现对滑。

2023届高考物理二轮复习专题练习:验证力的平行四边形定则

2023届高考物理二轮复习专题练习:验证力的平行四边形定则

验证力的平行四边形定则专题1.“验证力的平行四边形定则”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,和为细绳。

图乙是在白纸上根据实验结果画出的图。

(1)如果没有操作失误,图乙中的F与两力中,方向一定沿AO方向的是。

(2)本实验采用的科学方法是___________。

A .理想实验法B .等效替代法C .控制变量法D .建立物理模型法(3)在此实验过程中必须注意以下几项:其中正确的是___________。

(填入相应的字母)A .两根细绳必须等长B .橡皮条应与两绳夹角的平分线在同一直线上C .在使用弹簧秤时要注意使弹簧秤与木板平面平行D .在用两个弹簧秤同时拉细绳时要注意使两个弹簧秤的读数相等E .用两个弹簧秤同时拉细绳时须将橡皮条的另一端拉到用一个弹簧秤拉时记下的位置2.用等效代替法验证力的平行四边形定则的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳,图乙是白纸上根据实验结果画出的图。

(1)本实验中“等效代替”的含义是_____。

A .橡皮筋可以用细绳替代B .左侧弹簧测力计的作用效果可以替代右侧弹簧测力计的作用效果C .右侧弹簧测力计的作用效果可以替代左侧弹簧测力计的作用效果D .两弹簧测力计共同作用的效果可以用一个弹簧测力计的作用效果替代(2)图乙中的与两力中,方向一定沿着AO方向的是,图中是、合力的理论值。

3.做“验证力的平行四边形定则”的实验时:(1)本实验采用的科学方法是____(填正确答案标号)。

A .理想实验法B .等效替代法C .控制变量法D .建立物理模型法(2)从如图可读得弹簧秤B的示数为N。

(3)某同学认为实验中应该注意下列要求,其中正确的是____A .两根细绳必须等长B .在使用弹簧秤时要使弹簧秤与木板平行C .两根细绳的夹角必须成90°角D .在不超出量程的前提下,要使弹簧秤读数适当大一些(4)图乙是在白纸上根据实验结果画出的力的图示。

高三物理二轮复习力学专题

高三物理二轮复习力学专题

高三物理二轮复习力学专题第一课时:物体平衡【考点分析】1、要熟练掌握重力、弹力、摩擦力以及电场力、安培力(洛仑兹力)的性质和特点,能利用共点力平衡条件解题。

2、对力的处理方法主要是利用平行四边形法则(三角形法则)和正交分解法;对研究对象的处理方法主要是利用整体法和隔离法。

【知识要点】1、 共点力平衡状态及条件:静止或匀速直线运动状态都称为平衡状态,处在平衡状态的物体所受合外力一定为0。

即所有外力在任意一个方向上的投影的代数和为02、 共点力平衡的动态分析法:平衡中涉及大量的动态问题,所谓动态问题就是通过控制某一物理量,使物体的状态发生缓慢变化,在这过程中物体始终处于一系列的平衡状态,处理方法是解析法和图解法,解析法能详细分析出过程中各物理量的变化,也适用讨论某一瞬间的平衡,图解法仅适用于三力平衡的定性判断。

3、 整体法和隔离法:合理选择研究对象是研究力学问题的关键,有时选择一个物体为研究对象分析较为烦琐,但选用整个系统作为研究对象却简洁明了,整体法的优点是未知量少,方程数少,求解简捷。

【思路点拨】本专题内容高考涉及的主要是三力平衡,往往以选择填空为主,在电场磁场中带电粒子及导体的平衡计算题出现较多。

近几年考查在运动中受变力(如f=kx ,f=kv 、f=Kv 2)出现的变化过程和稳定状态(平衡态)较为频繁,应引起足够的重视。

【解题指导】[例1]如图示,在倾角为45°的光滑斜面上放上质量为m 的圆球,在球前放一光滑档板,试分析甲乙两种情况下斜面及档板对小球的弹力N 1 N 2(甲图中档板竖直,乙图中档板与斜面垂直)变1:在甲图中若档板可绕斜面一固定点逆时针转动,试讨论斜面、档板对小球的弹力变化情况。

变2:若斜面体上表面光滑,撤去档板,力F 作用在物块上,使木块沿斜面向上作匀速运动,求最小力F 的大小及方向?甲 乙 45° 45°变3:竖直绝缘墙壁上的P点用相同长度的绝缘丝线悬挂两个带电小球A和B,两小球因带电而相互排斥,使B球的丝线与竖直方向成θ角,如图所示,由于漏电使AB两小球带电量减少,θ减少,则在电荷漏完之前丝线PB对悬点的拉力变化情况。

高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。

题型多为选择题、计算题。

主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。

本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。

复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。

预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。

知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。

高考物理二轮复习专题训练——动量(word版含答案)

高考物理二轮复习专题训练——动量(word版含答案)

动量一、选择题(共15题)1.从同一高度落下的玻璃杯掉在水泥地上易碎,而掉在毛毯上就不易碎,这是因为玻璃杯掉在水泥地上时A.受到的冲量大B.受到地面的作用力大C.动量的变化量大D.动量大2.一静止的物体所受到的合外力随时间的变化关系如图所示,图中F1、F2未知.已知物体从t=0时刻出发,在3t0时刻恰又返回到出发点,则()A.0—t0物体做匀加速直线运动,t0—3t0物体做匀减速直线运动B.物体在F1作用下的位移与在F2作用下的位移相等C.t0时刻物体的速度与3t0时刻物体的速度大小之比为2 3D.F1与F2大小之比为5 63.下列说法正确的是()A.不受外力作用的系统,其动量和机械能必然同时守恒B.只要系统受到摩擦力,动量不可能守恒C.物体受到的冲量越大,它的动量变化一定越快D.某物体做直线运动,受到一个-6N˙s的冲量作用后其动量不一定减小4.下列关于动量和冲量的说法中正确的是()A.物体的动量改变,一定是速度的大小改变B.物体的动量改变,一定是速度的方向改变C.物体的运动状态改变,其动量一定改变D.以上说法均不对5.2020年7月23日,中国首个火星探测器“天问一号”在海南文昌卫星发射中心发射升空。

该探测器经过多次变轨,进入环火轨道,预计5月中旬,将择机开展着陆、巡视等任务,进行火星科学探测。

假设在火星表面完成下面的实验:在固定的竖直光滑圆轨道内部最低点静止放置一个质量为m的小球(可视为质点),如图所示,当给小球一水平向右的瞬时冲量Ⅰ时,小球恰好能在竖直平面内做完整的圆周运动。

若已知圆轨道半径为r ,火星的半径为R 、万有引力常量为G ,则火星的质量为( )A .222I r Gm RB .2225I r Gm RC .222I R GrmD .2225I R Grm 6.一人站在滑板上以速度0v 在冰面上滑行忽略滑板与冰面间的摩擦某时刻人沿水平方向向正前方距离滑板离开时人相对冰面的速度大小为02v 。

2023届高考物理二轮专题复习:电磁感应+电容+试题

2023届高考物理二轮专题复习:电磁感应+电容+试题

电磁感应之电容模型模型1无外力充电式(电容器+单棒)例1 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。

电容器的电容为C ,击穿电压足够大,开始时电容器不带电。

棒ab 长为L ,质量为m ,电阻为R , 初速度为v 0,金属棒运动时,金属棒与导轨始终垂直且接触良好。

(1) 请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。

(2) 若电容器储存的电能满足 212E CU ,忽略电磁辐射损失,求导体棒ab 在整个过程中产生的焦耳热。

模型2.放电式(电容器+单棒)例2 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。

棒ab 长为L ,质量为m ,电阻为R ,静止在导轨上。

电容器的电容为C ,先给电容器充电,带电量为Q ,再接通电容器与导体棒。

金属棒运动时,金属棒与导轨始终垂直且接触良好。

请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。

模型3.有恒力的充电式电容器例3. 水平金属导轨光滑,电阻不计,匀强磁场与导轨垂直,磁感应强度为B 。

棒ab 长为L ,质量为m ,电阻为R ,初速度为零,在恒力F 作用下向右运动。

电容器的电容为C ,击穿电压足够大,开始时电容器不带电。

请分析导体棒的运动情况。

4.模型迁移:(分析方法完全相同,尝试分析吧!)(1)导轨不光滑(2)恒力的提供方式不同,如导轨变成竖直放置或倾斜放置等(3) 电路结构变化1. ( 2017年天津卷12题)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。

电磁轨道炮示意如图,图中直流电源电动势为E ,电容器的电容为C 。

两根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计。

炮弹可视为一质量为m 、电阻为R 的金属棒MN ,垂直放在两导轨间处于静止状态,并与导轨良好接触。

首先开关S 接1,使电容器完全充电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考物理二轮复习专题(一)各种性质的力和物体的平衡考点透视1.力是物体间的相互作用,力是矢量,力的合成和分解。

例题1.(06广东模拟)如图1-2所示是山区村民用斧头劈柴的剖面图,图中BC 边为斧头背,AB 、AC 边是斧头的刃面。

要使斧头容易劈开木柴,则( )A .BC 边短一些,AB 边也短一些B .BC 边长一些,AB 边短一些C .BC 边短一些,AB 边长一些D .BC 边长一些,AB 边也长一些解析:设斧头所受的重力与向下的压力的合力为F ,按照力的作用效果将力F 分解为F 1和F 2如图1-3所示。

由几何关系可知:BC AB F F =1 ,所以F BCAB F =1。

显然BC 边越短,AB 边越长,越容易劈开木柴。

答案:C 。

点拨:将一个已知力进行分解,从理论上讲可以有无数个解,但实际求解时常用两种方法:正交分解和将力按照效果进行分解。

2.形变和弹力、胡克定律例题2.(05全国卷Ⅲ)如图1-4所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B 。

它们的质量分别为m A 、m B ,弹簧的劲度系数为k , C 为一固定挡板。

系统处于静止状态。

现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求从开始到物块B 刚要离开C 时物块A 的位移d 。

(重力加速度为g)。

解析:用x 1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知1sin kx g m A =θ 用x 2表示B 刚要离开C 时弹簧的伸长量,则:2sin kx g m B =θ 由题意得: d =x 1+ x 2 解得:d =kg m m B A θsin )(+ 点拨:两个用弹簧相连的物体,在相对运动过程中,发生的相对位移大小等于弹簧形变量的变化。

因此求出初末两个状态时弹簧的形变量是解决这类问题的关键。

3.静摩擦 最大静摩擦 滑动摩擦 滑动摩擦定律例题3.(06全国卷Ⅱ)如图1-5所示,位于水平桌面上的物块P ,由跨过定滑轮的轻绳与物块Q 相连,从滑轮到P 和到Q 的两段绳都是水平的。

已知Q 与P 之间以及P 与桌面之间的动摩擦因数都是μ,两物块的质量都是m ,滑轮的质量、滑轮轴上的摩擦都不计,若用一水平向右的力F 拉P 使它做匀速运动,则F 的大小为( )A .4μmgB .3μmgC .2μmgD .μmg解析:设绳中张力为T ,对物块Q 和P 分别受力分析如图1-6所示。

因为它都做匀速运动,所以所受合外力均为零。

对Q 有:T =f 1=μmg对P 有:f 2=2μmg F = f 2+T + f 1解得:F =4μmg答案:A点拨:当两物体间相对滑动时产生的摩擦为滑动摩擦,其方向与两者间的相对运动方向相反,大小与该接触面的正压力成正比。

4. 滑动摩擦定律和多物体参与平衡问题例题4.(08全国卷II )如图1-7所示, 一固定斜面上两个质量相同的小物块A 和B 紧挨着匀速下滑, A 与B 的接触面光滑. 已知A 与斜面之间的动摩擦因数是B 与斜面之间动摩擦因数的2倍, 斜面倾角为α. B 与斜面之间的动摩擦因数是A. αtan 32B. αcot 32 C. αtan D. αcot 解析:对AB 这一系统受力分析,如图1-8所示,若设B 与斜面之间动摩擦因数为μ,它们的质量为m ,对该系统受力分析,由摩擦定律与平衡条件得:ααμαμsin 2cos 2cos mg mg mg =+由此可得:αμtan 32=答案:B点拨:把小物块A 和B 看做整体,进行受力分析,然后抓住整体受力特点,根据滑动摩擦定律写出AB 整体受到的摩擦力大小,列平衡方程,是突破多物体参与的平衡问题的关键,这类题能很好考查考生基础知识的掌握与基本能力,复习时应引起注意。

5.共点力作用下物体的平衡例题5.(07广东)如图1-7所示,在倾角为θ的固定光滑斜面上,质量为m 的物体受外力F 1和F 2的作用,F 1方向水平向右,F 2方向竖直向上。

若物体静止在斜面上,则下列关系正确的是( )A .F 1sin θ+F 2cos θ=mg sin θ,F 2≤mgB .F 1cos θ+F 2sin θ=mg sin θ,F 2≤mgC .F 1sin θ-F 2cos θ=mg sin θ,F 2≤mgD .F 1cos θ-F 2sin θ=mg sin θ,F 2≤mg解析:物体受力分析如图1-8所示,以斜面方向和垂直于斜面方向建立直角坐标系,将这些力正交分解。

由物体平衡条件可知:F 1cos θ+F 2sin θ=mg sin θ,而物体要静止在斜面上,必须满足F 2≤mg答案:B点拨:当物体受力个数较多时,可根据具体情况合理地建立坐标系,将物体所受的所有外力进行正交分解,然后对两个方向分别列式求解。

这是解与力学相关问题的基本方法。

应训练掌握。

1. 重力的概念,弹力、摩擦力的方向判定及大小计算。

2. 力的合成与分解的灵活应用。

3. 受力分析和利用共点力的平衡条件解决实际问题的能力。

4. 带电粒体在电磁场中的平衡条件及棒在磁场中的平衡。

5. 整体法与隔离法在受力分析中的灵活应用。

6. 信息提炼,条件转换及过程关联。

例题1. (07北京模拟)木块A 、B 分别重50 N 和60 N ,它们与水平地面之间的动摩擦因数均为0.25;夹在A 、B 之间的轻弹簧被压缩了2cm,弹簧的劲度系数为400N/m ,系统置于水平地面上静止不动。

现用F =1 N 的水平拉力作用在木块B上.如图1-9所示.力F 作用后( )A .木块A 所受摩擦力大小是12.5 NB .木块A 所受摩擦力大小是11.5 NC .木块B 所受摩擦力大小是9 ND .木块B 所受摩擦力大小是7 N本题简介:本题考查了胡克定律,静摩擦,物体平衡条件。

难度:较易解析:未加F 时,木块A 在水平面内受弹簧的弹力F 1及静摩擦力F A 作用,且F 1=F A =kx =8N ,木块B 在水平面内受弹簧弹力F 2和静摩擦力F B 作用,且F 2=F B =kx =8N ,在木块B 上施加F =1N 向右拉力后,由于F 2+F <μG B ,故木块B 所受摩擦力仍为静摩擦力,其大小F /B =F 2+F =9N ,木块A 的受力情况不变。

答案:C反思:摩擦力是高考中的一个热点,同时也是学习中的一个难点。

求解摩擦力时,首先要判断该处是滑动摩擦还是静摩擦,而静摩擦力的大小由物体所受外力和运动状态决定的。

所以在解题时要特别注意的。

例题2.(08江苏)一质量为M 的探空气球在匀速下降,若气球所受浮力F 始终保持不变,气球在运动过程中所受阻力仅与速率有关,重力加速度为g .现欲使该气球以同样速率匀速上升,则需从气球篮中减少的质量为A .2(M F g -) B. M 2F g - C. 2M 2F g - D.0解析:依题意可知,气球在下降过程中处于平衡状态,由平衡条件得:f F Mg += ,在气球上升过程中,速率与下降过程中相等,所以阻力仍为f ,则平衡条件得:f F g M -='减少的质量:M M M '-=∆,由以上各式联合可得:)(2gF M M -=∆ 答案:A反思:本题是匀速直线运动的变力作用下的平衡问题,从题中找出物理情景从一种向另一种转换时的联系,向另一个过程迁移,列平衡方程就能使问题得以突破。

例1.如图1-12所示,质量为m 的工件置于水平放置的钢板C 上,二者间的动摩擦因数为μ,由于光滑导槽A 、B 的控制,工件只能沿水平导槽运动,现在使钢板以速度v 1向右运动,同时用力F 拉动工件(F 方向与导槽平行)使其以速度v 2沿导槽运动,则F 的大小为( )A.等于μmgB.大于μmgC.小于μmgD.不能确定解析:物体相对钢板具有向左的速度分量v 1和侧向的速度分量v 2,故相对钢板的合速度v 的方向如图1-13所示,滑动摩擦力的方向与v 的方向相反。

根据平衡条件可得: F =f cosθ=μmg 22212V V V +从上式可以看出:钢板的速度V 1越大,拉力F 越小。

答案:C反思:滑动摩擦力的方向总是与相对运动方向相反。

解决此类问题的关键是找出相对运动方向,从而判断出所受的滑动摩擦力的方向,方能正确求解。

例题2.(08海南)如图所示,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为( )A .(M +m )gB .(M +m )g -FC .(M +m )g +F sin θD .(M +m )g -F sin θ解析:对楔形物块与小物块这一系统受力分析,受到重力,支持力,拉力F ,系统各物体均平衡,则整个系统也处于平衡状态。

由对力F 正交分解后,由平衡条件得:g m M F F N )(sin +=+θ,则F N =(M +m )g -F sin θ;支持力与压力是作用力与反作用力,所以答案为D 。

答案:D反思:整体法是将两个或者两个以上的物体作为一个整体进行分析的方法,而隔离法是将某个物体单独隔离出来进行分析的方法,整体法、隔离法是分析物体平衡问题的常用方法,通常两种方法结合使用。

例题4.如图1-17所示,重G 的光滑小球静止在固定斜面和竖直挡板之间。

若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2各如何变化?解析:由于挡板是缓慢转动的,可以认为每个时刻小球都处于静止状态,因此所受合力为零。

应用三角形定则,G 、F 1、F 2三个矢量应组成封闭三角形,其中G 的大小、方向始终保持不变;F 1的方向不变;F 2的起点在G 的终点处,而终点必须在F1所在的直线上,由作图1-18可知,挡板逆时针转动90°过程,F 2矢量也逆时针转动90°,因此F 1逐渐变小,F 2先变小后变大。

(当F 2⊥F 1,即挡板与斜面垂直时,F 2最小)反思:这类平衡问题是一个物体受到三个力(或可等效为三个力)而平衡,这三个力的特点:其中一个力的大小和方向是确定的,另一个力方向始终不改变,第三个力的大小和方向都可改变。

运用图解法处理问题,显得直观、简捷,思路明了,有助于提高思维能力,简化解题过程。

例题5.(2007年江苏)如图19所示,带电量分别为4q 和-q 的小球A 、B 固定在水平放置的光滑绝缘细杆上,相距为d ,若杆上套一带电小环C ,带电体A 、B 和C 均可视为点电荷。

(1)求小环C 的平衡位置;(2)若小环C 带电量为q ,将小环拉离平衡位置一小位移x (|x|<<d )后静止释放,试判断小环C 能否回到平衡位置。

相关文档
最新文档