断裂力学-应力强度因子(第2章)

合集下载

02--断裂力学-I-II-III裂尖场

02--断裂力学-I-II-III裂尖场
断裂力学简介研究内容断裂力学分类断裂力学分类线弹性断裂力学弹塑性断裂力学微观断裂力学线弹性断裂力学弹塑性断裂力学微观断裂力学2裂纹的分类断裂发生破坏的几个阶段与断裂力学应用断裂发生破坏的几个阶段与断裂力学应用主要应力分量iii型反平面剪切问题根据复变函数理论任何解析函数的实部和虚部都满足laplace方程它们构成共轭的调和函数
z C2 z
C2 A2 B2i
C1,C2为待定复常数
0为实常数

代入裂纹上下表面( )的应力自由边界条 件,可得:
22 i 12 C1 r 1ei ( 1) C1 r 1e i ( 1)
C1 1 r 1ei ( 1) C2 r 1ei ( 1) 0
和 为解析函数
Ⅰ型和Ⅱ型裂纹问题

易证:
11 22 2 m 2 ( z ) ( z ) 4 Re ( z )
22 11 2i12 2 z ( z) ( z)
22 i12 ( z) ( z) z ( z) ( z)

平面问题 u u ( x1, x2 ) ,应变分量为:
(u , u , )
1 2

线弹性本构关系为:


平衡方程为: 变形协调方程为:
1 1 3 ( ) E 2 4
x
zy zy
K III cos 2 2 r K III sin 2 2 r
其中,K III S y a
线弹性断裂力学

均匀受载含中心裂纹无限大板的裂纹尖端附近 位移场(I-II混合型裂纹):
K II r 2 cos 1 2sin 2 2 2 2 r 2 sin 1 2 cos 2 2

断裂力学

断裂力学
(2)几何方程
1 x ( x y) E 1 y ( y x) E 2(1 ) xy xy E
(4)相容方程
u x x v y y v u xy x y
4 4 4 2 2 2 4 0 4 x x y y
k
结构为何破坏?
存在裂纹
(2) 研究对象与任务
定义: 断裂力学是研究带裂纹体的强度和裂纹扩展规律的一门学科。 任务: 1) 研究裂纹尖端附近的应力变化。 2) 掌握裂纹在荷载作用下的扩展规律。 3) 了解带裂纹构件的承载能力。 4) 提出抗断设计的方法,保证构件安全。
断裂力学的发展为强度设计打开了新领域,但并不能完全代替传统 的强度设计理论。
1.2 材料断裂韧度
(1)脆性断裂与韧性断裂
要区分两种不同的断裂需要首先了解什么是脆性,什么是韧性。 韧性(度)是指材料在断裂前的弹塑性变形中吸收能量的能力。 韧度高的材料不易断裂。比如低强度钢在断裂前往往有大量的塑性 变形,颈缩。可容易产生塑性变形的材料并不一定韧度高。如金、 银很容易断裂,是因为强度太低,吸收能量有限。把韧性低的材料 称为脆性材料,如玻璃、粉笔。 脆性断裂:荷载与变形量是线性关系(非线性段很小)。起裂点与失 稳点非常接近。如图,裂纹扩展后荷载迅速下降,断裂过程很快结束。 从实验现象上看脆断的断口比较平坦,基本与轴线垂直。 韧性断裂: 韧性断裂有较长的非线性关系(即先早已进入塑性阶段)。 启裂后又有一段缓慢的扩展时间,除外荷载增加到失稳点否则不失稳。 实验试件切口根部发生塑性变形,剩余面积变小,端口可能是锯齿型。
1) 2) 3)
Z的共轭复数:
z x iy
z1 z 2 z1 z 2
cos i sin

哈工大断裂力学讲义(第二章)[研究材料]

哈工大断裂力学讲义(第二章)[研究材料]
p(x, z), p(x1, z1) 均在 y 0的平面内
c2 x2 a2 z2 (1 f )4 a2c2 a2c2
调研学习
14
新的裂纹面仍为椭圆 长轴 短轴
c (1 f )c a (1E
2(1 2 ) (1 E
f
)a
(1
f
) y0
原有裂纹面:
1.Ⅱ型裂纹应力强度因子的普遍表达形式(无限大板):
KⅡ
lim
0
Z
(
)
2
2.无限大平板中的周期性的裂纹,且在无限远的边界上处于 平板面内的纯剪切力作用.
Z(z)
sin z
2b
(sin z )2 (sin a )2
2b
2b
Z ( )
sin ( a)
2b
[sin ( a)]2 (sin a )2
调研学习
3
以新坐标表示
边界条件:
z ,x y xy 0
z a, 除去 z b 处裂纹为自由 表面上 y 0, xy 0 如切出 xy 坐标系内的第一象限的 薄平板,在 x 轴所在截面上内力 总和为P
Z 2 p( a) a2 b2
[( a)2 b2 ] ( 2a)
KⅠ
1 cos a sin a
2b
2b 2b 2b
2b tan a a 2b
取 Mw
2b tan a a 2b
--修正系数,大于1,表示其他裂纹存在对 KⅠ 的影响
若裂纹间距离比裂纹本身尺寸大很多( 2a 1 )可不
考虑相互作用,按单个裂纹计算.
2b 5
调研学习
9
二.无限大平板Ⅱ、Ⅲ型裂纹问题应力强度因子的计算
x2 a2

断裂力学总结

断裂力学总结
在脆性断裂的情况下,所释放能量与形成裂纹面积所需要能量的差额,是随着裂纹增长越来越大还是越来越小,以致最后差额趋近于零。数学表达式如下:
失稳扩展
可以止裂
若材料的表面自由能是常数,则有:
失稳扩展
可以止裂
第二章应力பைடு நூலகம்度因子
2.1裂纹的几种基本型
断裂发生时在裂纹端点要释放出多余的能量,因此,裂端区的应力场和应变场必然与此裂端的能量释放率有关。若裂端应力应变场的强度足够大,断裂即可发生,反之则不发生。
图4-2
等于 时,则 ,当 时, 趋近于 值,得 ;当 时, 得: ,最后得到 。
4.2裂纹张开位移CTOD及J积分
裂纹张开位移是指一个理想裂纹受载荷时,其裂纹表面间的距离。对I型裂纹来说,线弹性断裂力学给出 。若用Irwin塑性区修正,真正裂纹长度被有效裂纹长度所取代,此时原点移动到有效裂纹的端点,以 代替 , 代替 ,可得小范围屈服修正时 ,利用能量释放率 与 的关系有:
考虑带有裂纹的弹性体,在拉伸载荷作用下,若裂纹仍然维持静止,则此弹性体所储存的总应变能 要比在没有裂纹时所储存的总应变能 大,两者之差用 表示。由于没裂纹时的总应变能 与裂纹长度无关,故有:
1.2能量平衡理论的应用
按照热力学的能量守恒定律,在单位时间内,外界对于系统所做功的改变量,应等于系统储存应变能的该变量,加上动能的改变量,再加上不可恢复消耗能地改变量。假设 为外界对系统所做的功, 为系统储存的应变能, 为裂纹总面积, 为表面能,则断裂发生的临界条件为: 此式为带裂纹物体的断裂判据。按照线性弹性力学的原理,在外力拉伸下,因裂纹扩展而引起的功的变化量 ,将等于两倍的总应变能的变量 ,因此能量释放率在给定外力拉伸的情形下,有:
现以I型单边裂纹为例,来说明柔度法的原理。一块很长的矩形板,如图3-3,

断裂力学——2Griffith 理论(1)

断裂力学——2Griffith 理论(1)

13
Griffith理论
二、Griffith理论 1920年,Griffith研究玻璃与陶瓷材料脆性断裂问题 时,将Inglis解中的短半轴趋于0,得到Griffith裂纹。
Griffith研究了如图所示厚度为B的薄平板。 上、下端受到均匀拉应力作用,将板拉长 后,固定两端,构成能量封闭系统。
14
12
Griffith理论
一、动机 两个矛盾的事实
The stress needed to fracture bulk glass is around 100 MPa. The theoretical stress needed for breaking atomic bonds is approximately 10,000 MPa experiments on glass fibers that Griffith himself conducted suggested that the fracture stress increases as the fiber diameter decreases. –尺寸相关性
6
C. E. Inglis
Department of Engineering Head of Department 1919-43
He carried the largest teaching load, covering the subjects : statics, dynamics, theory of structures, materials and drawing, balancing engines, girder design and reinforced concretE. Inglis
A Mathematical Treatise on Vibrations in Railway Bridges. By C. E. Inglis. Cambridge, University Press, and New York, Macmillan, 1934. 203 pp. and 65 figures.

断裂力学课程设计

断裂力学课程设计

断裂力学课程设计一、课程目标知识目标:1. 学生能理解断裂力学的概念,掌握断裂力学的基本原理和主要公式。

2. 学生能描述材料断裂的类型及特点,了解断裂力学在实际工程中的应用。

3. 学生能运用断裂力学知识分析简单结构组件的断裂问题,并掌握基本的断裂控制方法。

技能目标:1. 学生具备运用断裂力学原理进行问题分析的能力,能运用相关公式进行计算。

2. 学生能通过案例分析和团队合作,提高解决实际工程问题的能力。

3. 学生能运用现代技术手段,如计算机软件,进行断裂分析,提高实际操作能力。

情感态度价值观目标:1. 学生通过学习断裂力学,培养对工程科学的兴趣,增强探索精神。

2. 学生在学习过程中,培养严谨的科学态度,提高分析和解决问题的自信心。

3. 学生通过团队合作,培养沟通协调能力和团队合作精神,认识到团队协作的重要性。

4. 学生能关注断裂力学在工程领域的发展,意识到断裂控制对工程安全的重要性,树立安全意识。

分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握断裂力学基本知识的基础上,提高解决实际问题的能力,培养严谨的科学态度和团队协作精神,为未来从事相关领域工作打下坚实基础。

通过具体的学习成果分解,后续教学设计和评估将更有针对性,确保课程目标的实现。

二、教学内容本课程依据课程目标,选取以下教学内容:1. 断裂力学基本概念:讲解断裂力学的发展历程、断裂韧性的定义、断裂控制的目的。

- 教材章节:第一章 引言2. 断裂力学基本理论:包括应力强度因子、裂纹尖端应力场、位移场等基本理论。

- 教材章节:第二章 断裂力学基本理论3. 断裂类型及特点:分析线弹性断裂、弹塑性断裂、疲劳断裂等类型的特点及判定方法。

- 教材章节:第三章 断裂类型及特点4. 断裂力学应用:介绍断裂力学在工程领域的应用,如航空、汽车、建筑等行业的断裂控制。

- 教材章节:第四章 断裂力学应用5. 断裂分析及控制方法:讲解线性弹性断裂力学、弹塑性断裂力学分析方法及断裂控制策略。

应力强度因子的求解方法的综述

应力强度因子的求解方法的综述

应力强度因子的求解方法的综述摘要:应力强度因子是结构断裂分析中的重要物理量,计算应力强度因子的方法主要有数学分析法、有限元法、边界配置法以及光弹性法。

本文分别介绍了上述几种方法求解的原理和过程,并概述了近几年来求解应力强度因子的新方法,广义参数有限元法,利用G*积分理论求解,单元初始应力法,区间分析方法,扩展有限元法,蒙特卡罗方法,样条虚边界元法,无网格—直接位移法,半解析有限元法等。

关键词:断裂力学;应力强度因子;断裂损伤;Solution Methods for Stress Intensity Factor of Fracture MechanicsShuanglin LU(HUANGSHI Power Survey&Design Ltd.)Abstract: The solution methods for stress intensity factor of fracture mechanics was reviewed, which include mathematical analysis method, finite element method, boundary collocation method and photo elastic method. The principles and processes of those methods were introduced, and the characteristics of each method were also simply analyzed in this paper.Key words: fracture mechanics; stress intensity factors0 引言断裂力学的基础理论最初起源于1920年Griffith的研究工作[1]。

Griffith在研究玻璃、陶瓷等脆性材料的断裂现象时,认为裂纹的存在及传播是造成断裂的原因。

应力强度因子

应力强度因子

断裂与损伤力学应力强度因子数值计算方法综述2013年6月第一章应力强度因子求解方法概述含有裂纹的工程结构的断裂力学分析一直是一个重要问题,在断裂力学理论中应力强度因子是线弹性断裂力学中最重要的参量。

它是由构件的尺寸、形状和所受的载荷形式而确定。

由于裂尖应力场强度取决于应力强度因子,因此在计算各种构件或试件的应力强度因子是线弹性断裂力学的一项重要任务。

由于应力强度因子在裂纹体分析中的中心地位,它的求解自断裂力学问世以来就受到了高度的重视。

迄今为止,已经产生了众多的理论和致值解法。

70年代中期以前的有关工作在文献中已有相当全面的总结,近20年来,求解的方法又得刭了明显的发展与完善。

下文将穿透裂纹问题(二维)与部分穿透裂纹问题(三维)分开讨论。

第二章 二维裂纹问题2.1 复变函数法由Muskhelishvili 的复变函数法,应力函数为:_])()()([2/1)]()(Re[z z z z z z z z χψψχψ++=+=Φ平面应变情况下的应力与位移为: )]('Re[42222z yx y x ϕφφσσ=∂∂+∂∂=+ )]('')(''[22z z z i xy y x χϕτσσ+=+-)](')('[21)(243x z z z iv u χϕμϕμμ+--=+ 可以证明,在裂纹尖端区域:)]('lim[220z z z iK K K I ϕπ-=-=∏由上式可见。

由于k 仅与)(z φ有关,因此只需确定一个解析函数)(z φ,就能求得k I ,这一方法一般只能用来解无限体裂纹问题。

对于含孔边裂纹的无限大板,通常可利用复变函数的保角映射原理来简化解题过程。

如采用复变(解析)变分方法,则可求解具有复杂几何形状的含裂纹有限大板的应力强度因子。

2.2 积分方程法弹性边值问题可以变为求解下列形式的积分方程:)())(()().,(r f dt t b a t t P t r M -=--⎰ 由积分方程解出沿裂纹的坐标的函数,便能直接求出应力强度因子k 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

KⅡ lim Z ( ) 2
0
2.无限大平板中的周期性的裂纹,且在无限远的边界上处于 平板面内的纯剪切力作用.
sin
(sin
z
2b
Z ( z)
z
2b
)2 (sin
a
2b
Z ( )
sin
[sin

2b
( a)
)2

2b
( a)]2 (sin
a
f F1 (Z ) F1 (Z ) ZF4 (Z ) ZF4 (Z )
a 1 KI ( ) 2 (c2 sin 2 a 2 cos2 ) c
1 4
在椭圆的短轴方向上,即
K I K Imax


2
,有

--椭圆片状深埋裂纹的应力强度因子 当 a c 时, 2

KI 2

a
--圆片状深埋裂纹应力强度因子
x12 z12 x12 z12 x12 z12 1 (1 2 f ) 2 (1 2 f ) 2 1 2 2 2 f ( 2 2 ) a c a c a c
2f
2 2 2 y2 2 fy 2 f (1 f ) y 0 0
2 fy02
f
r c 2 sin 2 a 2 cos2 ac
K ( x y )ⅠⅡ | 0 2 Re( ) | 0 2
K lim 2 2 x(Z )
0

( x y ) 4Re[ x(Z )]
26
若采用
Z a K 2 2 lim Z ax( Z )
z a
选择 x( z ) 满足具体问题的应力边界条件
裂纹长度
又有
板宽度
19
A 当W
1 时,
2 A 2 A sin W W
tan
A
W

A
W
KI边 1.2 1.1 K I中
KI表 1.1 KI埋
K I 表 1.1K I 埋 1.16 a

--椭圆片状表面裂纹A处的 K I 值
20
二、表面深裂纹的应力强度因子

1
1962年,Irwin利用上述结果计算在这种情况下的应 力强度因子 原裂纹面
z1 cos , x1 sin
x12 z12 2 2 2 2 2 2 1 c x a z a c 1 1 2 2 a c


ac c2 sin 2 a 2 cos2
M1 1.12
时, 接近于半圆形的表面裂纹 M1 1
a M 1 1 0.12(1 ) c
利用线性内插法
利用中心穿透裂纹弹性体的厚度校正系数
2B a 1 M2 ( tan )2 a 2B
裂纹深度 板厚
浅裂纹不考后自由表面的影响
22
2. 柯巴亚希.沙.莫斯
M 1 1 0.12(1 a 2 ) 2c
KⅡ 2
| 0
25
Ⅰ、Ⅱ型复合裂纹在裂纹前端处的不变量
( x y )ⅠⅡ | 0 2 Re KⅠ 2 | 0 2 Im KⅡ 2 | 0
1 2 Re[ ( KⅠ iKⅡ)] | 0 2
取复数形式的应力强度因子
K KⅠ iKⅡ
2 2 ry 0 y 2 c 2 sin 2 a 2 cos2 ac

16
设各边缘的法向平面为平面应变,有:
KⅠ r 3 v [(2k 1)sin sin ] 4G 2 2 2
k 3 4
当 时,
4(1 2 ) r v KⅠ E 2
y 0, xy 0
z
2b

Z (sin
sin z
2b
2
) (sin
a
2b
)2
7
采用新坐标: z a


Z
2b ( a) 2 a (sin ) (sin )2 2b 2b
sin

( a)
当 0 时,sin 2b 2b , cos 2b 1

2b
a) 2

2b
( a)]2 (sin

2b
a) 2 2
2b
cos

2b
a sin

2b
8
Z
0
2b 2 a a cos sin 2b 2b 2b
a
sin
a
KⅠ lim 2 Z
0
a 2b a 2b 2b tan a tan 2b 1 a a a 2b cos sin 2b 2b 2b
3
边界条件:
z , x y xy 0
z a, 除去 z b 处裂纹为自由 y 0, xy 0 表面上
如切出 xy 坐标系内的第一象限的 以新坐标表示
薄平板,在 x 轴所在截面上内力 总和为P
2 p ( a ) a 2 b 2 Z [( a ) 2 b 2 ] ( 2a)
sin
取 M 2b tan a w
a
2b
--修正系数,大于1,表示其他裂纹存在对 KⅠ 的影响
2a 1 2b 5
若裂纹间距离比裂纹本身尺寸大很多(
)可不
考虑相互作用,按单个裂纹计算.
9
二.无限大平板Ⅱ、Ⅲ型裂纹问题应力强度因子的计算
1.Ⅱ型裂纹应力强度因子的普遍表达形式(无限大板):
2b
)2
10
KⅡ lim 2 Z ( ) a
0
2b a tan a 2b
3.Ⅲ型裂纹应力强度因子的普遍表达形式(无限大板):
KⅢ lim 2 Z ( )
0
4.Ⅲ型周期性裂纹:
K a 2b a tan a 2b
11
§3-2
深埋裂纹的应力强度因子的计算
1.在“无限大”平板中具有长度为 2 a 的穿透板厚的裂 纹表面上,距离 x b 处各作用一对集中力P
x Re ZⅠ y Im ZⅠ
y Re ZⅠ y Im ZⅠ
xy y Re ZⅠ
选取复变解析函数:
2 pz a 2 b2 Z ( z 2 b2 )
原有裂纹面: 扩展后裂纹面:
x2 z 2 y 2 2 ( ) 1 2 a c y0
x2 z2 y 2 2 ( ) 1 2 a c y0
z z1 代入 原有裂纹面的边缘 y 向位移 y 以 x x1 ,
15
x12 z12 x12 z12 y 2 1 2 2 1 2 2 2 2 2 y a c (1 f ) a (1 f ) c 0
2q a
0
(a x )
2 2
dx
x a cos a2 x2 a cos
dx a cos d
5

KⅠ 2q
0
a
sin 1 ( a1 a )
a cos a d 2q sin 1 (a1 a ) a cos
当整个表面受均布载荷时

KⅠ 2q
x Re ZI y Im ZI'
( x y ) I
| |0
y Re ZI y Im ZI'
| |0

2 Re Z I
KI 2 Re 2
| |0
' Ⅱ型: x 2Im ZII y Re ZII
' y y Re ZII
( x y )Ⅱ | 0 2 Im ZⅡ | 0 2 Im
a

sin 1 (a a) q a
3.受二向均布拉力作用的无限大平板,在 长度为 2a ,间距为 2b 的裂纹 单个裂纹时
x 轴上有一系列
Z
z
z 2 a2
6
边界条件是周期的:
z , y x
y 0, a x a, a 2b x a 2b

KⅠ lim 2 Z ( )
0
2p a
(a 2 b 2 )
4
2.在无限大平板中,具有长度为 2a 的穿透板厚的裂纹表 面上,在距离 x a1 的范围内受均布载荷q作用 利用叠加原理 集中力 qdx
dKⅠ
a
2q a
(a x )
2 2
dx


KⅠ
18
§3-3 半椭圆表面裂纹的应力强度因子计算 一、表面线裂纹的应力强度因子
欧文假设: 半椭圆片状表面线裂纹 K I 与 深埋椭圆裂纹的 K I 之比等于边裂 纹平板 K I 与中心裂纹平板的 K I 值之比
KI表 KI边 K I 埋 K I中
K I边 K I中 2 A 0.1sin 1 W )2 (1 A tan W
p( x, z), p( x1, z1 ) 均在 y 0的平面内
c2 x2 a2 z2 (1 f )4 a2c2 a2c2
14
新的裂纹面仍为椭圆
长轴
短轴
c (1 f )c
a (1 f )a
2(1 2 ) a 2(1 2 ) (1 f )a y0 (1 f ) y0 E E
2 2 2 2ry0 16(1 ) 2 r c 2 sin 2 a 2 cos2 KI 2 ac E 2
1 E 2 2 2 2 2 2 K I2 ( ) y c sin a cos 0 2 4 1 ac
相关文档
最新文档