abaqus计算应力强度因子
使用ABAQUS计算应力强度因子

------------------------------------------------------------------------------------------------------- 如何使用ABAQUS计算应力强度因子Simwefanhj(fanhjhj@)2011.9.9------------------------------------------------------------------------------------------------------- 问题描述:以无限大平板含有一贯穿裂纹为例,裂纹长度为10mm(2a),在远场受双向均布拉应力σ=100N/mm2。
按解析解,此I型裂纹计算出的应力=396.23(N.mm-3/2)强度因子πσaK=I以下为使用ABAQUS6.10的计算该问题的过程。
第一步:进入part模块①建立平板part(2D Planar;Deformation;shell),平板的尺寸相对于裂纹足够大,本例的尺寸为100×50(mm)。
②使用Partation Face:sketch工具,将part分隔成如图1形式。
图1第二步:进入property模块①建立弹性材料;②截面选择平面问题的solid,homogeneous;③赋予截面。
第三步:进入Assembly模块不详述。
需注意的是:实体的类型(instance type)选择independent。
第四步:进入mesh模块除小圈内使用CPS6单元外,其它位置使用CPS8单元离散(图2)。
裂纹尖端的奇异在interaction模块中(图4)考虑。
图2第五步:进入interaction模块①指定裂纹special/creak/assign seam,选中示意图3中的黄色线,done!②生成裂纹crack 1,special/crack/create,name:crack 1,type: contour integral.当提示选择裂纹前端时,选则示意图的红圈区域,当提示裂纹尖端区域时选择红圈的圆心,用向量q表示裂纹扩展方向(示意图3绿色箭头)。
应力强度因子的计算

2b
2b
ZII ( )
sin ( a)
2b
[sin ( a)]2 (sin a )2
2b
2b
10
KⅡ
lim
0
2 ZII ( )
a
2b tan a a 2b
3.Ⅲ型裂纹应力强度因子的普遍表达形式(无限大板):
KⅢ
lim
0
[( a)2 b2 ] ( 2a)
KⅠ
lim
0
2 Z ( )
2P a
(a2 b2)
4
2.在无限大平板中,具有长度为 2a 的穿透板厚的裂纹表 面上,在距离 x a1 的范围内受均布载荷q作用
利用叠加原理
集中力 qdx dKⅠ
2q a dx
K lim 2 2 x(Z ) 0
26
若采用
Z a K 2 2 lim z ax(z) za
选择 x(z) 满足具体问题的应力边界条件
f F1(Z ) F1(Z ) ZF4 (Z ) ZF4 (Z )
---复变解析函数表达的双调和函数的普遍形式 或复变应力函数为普遍形式
)
1 4
在椭圆的短轴方向上,即 ,有
2
KI KImax
--椭圆片状深埋裂纹的应力强度因子
当a
c
时,
2
KI
2
a
--圆片状深埋裂纹应力强度因子
18
§2-3 半椭圆表面裂纹的应力强度因子计算
一、表面浅裂纹的应力强度因子
使用ABAQUS计算应力强度因子

使用ABAQUS计算应力强度因子应力强度因子(Stress Intensity Factor,简称SIF)是应力场的一种特征参数,用于描述应力状态下混合模式断裂的倾向性。
它在断裂力学和疲劳断裂力学中起着非常重要的作用。
在ABAQUS软件中,可以通过线性弹性断裂力学方法来计算应力强度因子。
ABAQUS中计算SIF的方法通常分为两步:1.求解应力场2.计算SIF在求解应力场时,可以采用以下几种途径:1.固定边界条件:如果边界条件已知并且不会发生变化,则可以直接固定边界条件来求解应力场。
这种方法适用于简单的几何形状和加载情况。
2.施加约束:对于复杂几何形状和加载情况,可以施加约束来求解应力场。
例如,可以在加载边界上施加位移或力,并在其他边界上施加自由边界条件。
ABAQUS软件将通过求解线性弹性方程来获得应力场。
3.等效边界法:对于无法通过上述两种方法求解应力场的情况,可以采用等效边界法。
该方法将复杂几何体简化为等效的几何体,通过在等效边界上施加约束来求解应力场。
然后,可以使用所得的应力场计算SIF。
在计算SIF时,可以采用两种方法:1.J积分方法:这是一种基于应变能的方法,通过计算闭合路径上的应力和应变来计算SIF。
ABAQUS提供了J积分的计算方法,可以直接计算SIF。
2.基于位移法:这是一种基于位移的方法,通过计算表面位移场的奇异性来计算SIF。
ABAQUS也提供了这种方法的计算选项。
计算SIF的步骤一般如下:1.定义几何模型和输入材料参数。
2.设置边界条件和加载条件。
3.运行ABAQUS求解应力场。
4.运行相应的计算器(如J计算器或位移计算器)以计算SIF。
5.根据得到的SIF结果进行进一步的断裂力学分析。
需要注意的是,计算SIF是一个相对复杂的过程,需要对模型几何形状、边界条件、加载条件和材料参数等进行仔细考虑和设置。
此外,模型的网格划分和数值求解的精度也会对计算结果产生影响,因此需要进行适当的验证和后处理分析。
应力强度因子的计算

M1
1
0.12(1
a )2 2c
M2
(2B
a
tan
a
)
1 2
2B
表面深裂纹的应力强度因子(应为最深点处)
KI
Me
a
23
§2-4 其他问题应力强度因子的计算 一、Ⅰ.Ⅱ型复合问题应力强度因子的计算
复变数: z x iy z x iy
取复变解析函数:x(z) p iq (z) p1 iq1
KI表 KI边 KI埋 KI中
又有
KI边 K I中
(1
0.1sin 2 A 1
W
tan A
)2
W
裂纹长度 板宽度
19
当
A W
1 时,
sin 2 A 2 A
WW
KI边 1.2 1.1 KI中
KI表 1.1 KI埋
tan A A
WW
KI表
1.1KI埋
利用这个方法可以求解很多”无限大”平板中的穿 透裂纹问题.
27
二、无限宽板穿透裂纹应力强度因子的计算
实际情况应看成有限宽板计算.必须考虑自由边界对 裂纹尖端应力场和位移场的影响.在理论上得不到完全解. 通过近似的简化或数值计算方法.
方法:边界配置法,有限单元法等. 边界配置法:将应力函数用无穷级数表达,使其满足 双调和方程和边界条件,但不是满足所有的边界条件,而 是在有限宽板的边界上,选足够多的点,用以确定应力函 数,然后再由这样符合边界条件的应力函数确定 K 值. 边界配置法:只限于讨论直边界问题.
E
KⅠ
r
2
Abaqus 齿轮力和应力计算

Ken Youssefi
Mechanical Engineering Dept.
14
Surface Strength Analysis
The basic surface deterioration Scoring
If the surface asperity welding and tearing cause a transfer of metal from one surface to the other, the resulting surface damage is called scoring. If the local welding of asperities becomes so extensive that the surfaces no longer slide on each other, the resulting failure is called seizure. Initial scoring on 4340 steel helical gear Moderate scoring on a 3310 steel spur gear.
Wt
F
Substituting for x and introducing p (circular pitch),
The form factor y is called Lewis form factor. Substituting P = / p and Y = y
Lewis’ equation, where
Ken Youssefi Mechanical Engineering Dept.
6
Modification of Lewis’ Equation
Assumptions made in deriving Lewis’ equation
第二章 应力强度因子的计算

第二章 应力强度因子的计算K --应力、位移场的度量⇒K 的计算很重要,计算K 值的几种方法: 1.数学分析法:复变函数法、积分变换; 2.近似计算法:边界配置法、有限元法; 3.实验标定法:柔度标定法; 4.实验应力分析法:光弹性法.§2-1 三种基本裂纹应力强度因子的计算一、无限大板Ⅰ型裂纹应力强度因子的计算K Z ξ→=→ⅠⅠ计算K 的基本公式,适用于Ⅱ、Ⅲ型裂纹.1.在“无限大”平板中具有长度为2a 的穿透板厚的裂纹表面上,距离x b =±处各作用一对集中力p .Re Im x Z y Z σ'=-ⅠⅠRe Im y Z y Z σ'=+ⅠⅠRe xy y Z τ'=-Ⅰ选取复变解析函数:222()Z z b π=- 边界条件:a.,0x y xy z σστ→∞===.b.,z a <出去z b =±处裂纹为自由表面上0,0y xy στ==。
c.如切出xy 坐标系内的第一象限的薄平板,在x 轴所在截面上内力总和为p 。
y '以新坐标表示:Z=⇒lim()K Zξξ→==Ⅰ2.在无限大平板中,具有长度为2a的穿透板厚的裂纹表面上,在距离1x a=±的范围内受均布载荷q作用.利用叠加原理:微段→集中力qdx→dK=Ⅰ⇒K=⎰Ⅰ令cos cosx a aθθ==,cosdx a dθθ=⇒111sin()1cos22(cosaa aaaK daθθθ--==Ⅰ当整个表面受均布载荷时,1a a→.⇒12()aaK-==Ⅰ3.受二向均布拉力作用的无限大平板,在x轴上有一系列长度为2a,间距为2b 的裂纹.边界条件是周期的: a. ,y x z σσσ→∞==.b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内0,0y x y στ==c.所有裂纹前端y σσ> 单个裂纹时Z =又Z 应为2b 的周期函数⇒sinzZ πσ=采用新坐标:z a ξ=-⇒sin()a Z πσξ+=当0ξ→时,sin,cos1222bbbπππξξξ==⇒sin()sincos cos sin22222a a a bbbbbπππππξξξ+=+σcossin222a a bbbπππξ=+2222[sin()]()cos 2cos sin(sin)2222222a a a a a bbbbbb bπππππππξξξ+=++22[sin()](sin )2cos sin22222a a a a bbbbbπππππξξ⇒+-=sinaZ ξπσ→⇒=sinlim aK ξπσ→⇒===Ⅰ=取w M =修正系数,大于1,表示其他裂纹存在对K Ⅰ的影响. 若裂纹间距离比裂纹本身尺寸大很多(2125a b ≤)可不考虑相互作用,按单个裂纹计算.二、无限大平板Ⅱ、Ⅲ型裂纹问题应力强度因子的计算 1.Ⅱ型裂纹应力强度因子的普遍表达形式(无限大板):lim (K Z ξξ→=Ⅱ2.无限大平板中的周期性的裂纹,且在无限远的边界上处于平板面内的纯剪切力作用.τsin()zZ z πτ=sin()()a Z πτξξ+=lim ()K ξξ→⇒==Ⅱ3.Ⅲ型裂纹应力强度因子的普遍表达形式(无限大板):lim ()K ξξ→=Ⅲ4.周期性裂纹:K =§2-2 深埋裂纹的应力强度因子的计算1950年,格林和斯内登分析了弹性物体的深埋的椭圆形裂纹邻域内的应力和应变,得到椭圆表面上任意点,沿y 方向的张开位移为:1222022(1)x z y y a c=--其中:202(1)ay E μσ-=Γ.Γ为第二类椭圆积分.有φϕ= (于仁东书) 1222220[sin ()cos ]a d cπϕϕϕ=+⎰(王铎书)1962年,Irwin 利用上述结果计算在这种情况下的应力强度因子σ原裂纹面11cos ,sin z x ρϕρϕ==又222222221111221x z c x a z a c a c+=⇒+= ⇒ρ=假设:椭圆形裂纹扩展时,其失径ρ的增值r 与ρ成正比.r f ρ= (f 远小于1)r f ρ⇒==边缘上任一点(,)p x z ''',有:1()sin (1)sin (1)x r f f x ρϕρϕ'=+=+=+1()cos (1)z r f z ρϕ'=+=+11(,),(,)p x z p x z '''⇒均在0y =的平面内. 222242222(1)c x a z f a c a c ''''''⇒+=+=⇒新的裂纹面仍为椭圆.长轴(1)c f c '=+,短轴(1)a f a '=+. ⇒y 向位移22002(1)2(1)(1)(1)a f a y f y E E μσμσϕϕ'--+'===+原有裂纹面:222220()1x z ya c y ++=扩展后裂纹面:222220()1x z y a c y '''++='''以1x x '=,1z z '=,代入⇒原有裂纹面的边缘y 向位移y ',有2222211112222222011(1)(1)x z x z y y a c f a f c'=-+=--'''++2222221111112222221(12)(12)12()x z x z x z f f f a c a c a c----=--++2f =2222200022(1)2y fy f f y fy ''⇒==+又f =⇒2y '=设各边缘的法向平面为平面应变,有:31)sin sin ]22v k θθ=+- 其中34k μ=-当θπ=时24(1)v K E μ-=222216(1)2I r K E μπ-⇒=22021E ()41I K y acπμ⇒=-又202(1)ay E μσϕ-=14122222()(sin cos )I a K c a cϕϕφ⇒=+在椭圆的短轴方向上,即2πϕ=,有I ImaxK K φ== 危险部位 →椭圆片状深埋裂纹的应力强度因子当a c =时→圆片状裂纹,2πφ=2I K π⇒=§2-3 半椭圆表面裂纹的应力强度因子计算一、表面浅裂纹的应力强度因子当a B (板厚)→线裂纹⇒可以忽略后自由表面对A 点应力强度的影响 欧文假设:半椭圆片状表面线裂纹I K 与深埋椭圆裂纹的I K 之比等于边裂纹平板与中心裂纹平板的I K 值之比。
如何使用ABAQUS计算应力强度因子

如何使用ABAQUS计算应力强度因子ABAQUS是一种广泛使用的有限元分析软件,可用于计算应力强度因子。
应力强度因子用于评估材料中的裂纹扩展性能,是断裂力学中的重要参数。
以下是使用ABAQUS计算应力强度因子的一般步骤:1.准备模型:在使用ABAQUS计算应力强度因子之前,需要先准备好模型。
模型应包含有裂纹的几何形状,以及材料的属性。
2.确定边界条件:要使用ABAQUS计算应力强度因子,必须指定适当的边界条件。
这些条件可以是约束的位移或力。
3.定义材料特性:为了计算应力强度因子,需要定义材料的特性,如弹性模量和泊松比。
这些特性通常可以从实验数据中获取。
4.创建网格:在使用ABAQUS计算应力强度因子之前,需要对模型进行离散化处理,将其划分为有限个单元。
这可以通过使用ABAQUS提供的网格生成工具来完成。
5.应用载荷:定义适当的载荷类型和大小,以便在模型上施加负载。
这可以是施加在边界上的力或位移。
6.定义裂纹:使用ABAQUS的初始裂纹命令或裂纹离散化工具来创建裂纹几何。
裂纹可以是直线裂纹,也可以是不规则或曲线裂纹。
7.定义断裂准则:使用ABAQUS的断裂准则定义工具,指定在何种条件下认为破坏发生。
常用的断裂准则包括应力强度因子法和能量释放率法。
8.运行ABAQUS求解器:在定义了模型、边界条件、材料特性、网格和载荷之后,可以运行ABAQUS求解器。
根据模型的复杂程度,可能需要较长的计算时间。
9.后处理结果:一旦ABAQUS求解器完成计算,可以使用ABAQUS提供的后处理工具来分析结果。
这些工具可以用于计算应力强度因子及其分布。
10.计算应力强度因子:通过使用ABAQUS的应力强度因子计算工具,可以计算裂纹尖端处的应力强度因子。
这些结果可以用来预测裂纹的扩展和破坏行为。
基于ABAQUS的两种应力强度因子计算方法对比

21
50.363 2
5
282.285 291 2
25
1 411.426 456
22
49.705
5.25
285.476 037 7
27.562 5
1 498.749 198
23
49.082 3
5.5
288.533 458 1
30.25
1 586.934 019
24
48.524 8
5.75
291.667 209 7
5.062 5
740.943 363 2
11
74.684 7
2.5
295.999 907 7
6.25
739.999 769 2
12
65.193 5
2.75
270.994 561 2
7.562 5
745.235 043 2
13
59.114 6
3
256.652 390 1
9
769.957 170 4
14
,则其截距
2 ABAQUS中两种SIF计算方法的实 现[5-=]
2.1 ABAQUS内置方法计算SIF
ABAQUS 中建立半宽,=100 ??,半高-=200 mm,
厚度1 mm的平板模型( 2),该平板中心预制有一
条裂纹,其半裂纹长度 20 mm; 弹性模量 2!
105MPa,泊松 0.25的“弹性各向异性”固体材料;
31
K FACTOR ESTIMATES
CRACK CRACKFRONT
CONTOURS
(平均:75%)
NAME
NODE SET
+1.054e+03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆大学
课题:Abaqus计算裂纹应力强度因子
学院:
专业:
学号:
姓名:
一、计算裂纹应力强度因子
问题描述:以无限大平板含有一单边裂纹为例,裂纹长度为a=10mm,平板宽度h=30,弹性模量E=210000Pa,泊松比v=0.33,在远场受双向均布拉应力σ=100mm2。
使用Abaqus计算该问题:
1、进入part模块
建立平板part,平板的尺寸相对于裂纹足够大,本例尺寸为50x30
(mm);使用Partation Face:sketch工具,将part分隔成如图1
形式
图1
2、进入property模块
建立弹性材料;截面选择平面问题的solid,homogeneous;赋予
截面。
3、进入Assembly模块
实体的类型(instance type)选择independent。
4、进入mesh模块
划分单元格如图2所示。
图2
5、进入interaction模块
指定裂纹special/creak/assign seam;生成裂纹crack 1,
special/crack/create;special/crack/edit,对两个裂纹进行应力奇异
的设置。
6、进入step模块
在initial步之后建立static,general步;在
output/history output requests/create/中创建输出变量。
7、进入load模块
定义位移和荷载边界,如图3所示。
图3
8、进入job模块,提交计算
Mises应力分布见图4,在.dat文件中(图5)查看应力强度因子。
图4
图5
计算解析解:
由公式F=1.12−0.23(a/h)+10.6(a/h)2−21.71(a/h)3+30.38(a/h)4 K=Fσ√πa
计算得解析解为k=1001
应力强度因子误差为0.09%
二、误差分析
改变板的长度,其他条件不变
1.当长度L=100时
误差为0.5%
2.当板长L=30
误差为3.2%
结论:当板长改变,板长无法体现无限大的情况,计算结果的误差会变大。