多点温度控制系统

合集下载

第六届“创新杯”大学生科技学术竞赛作品 多点温度控制系统

第六届“创新杯”大学生科技学术竞赛作品 多点温度控制系统

序号————————多点温度控制系统作品类别: 发明制作类作品编号:目录摘要 (3)一、方案设计与论证 (3)1、测量部分 (3)2、主控制部分 (4)3、总结 (4)二、各电路的设计 (5)1、键盘电路 (5)2、加热器控制电路 (8)3、温度测试电路 (8)4、七段数码管显示电路 (9)5、口通讯电路 (10)三、程序设计 (11)概述 (11)1、程序结构分析 (11)2、主程序 (12)四、测试方法和测试结果 (12)1、测试环境 (12)2、测试方法 (12)3、测试结果 (13)4、测试结果分析 (13)五、总结 (13)七、应用举例 (14)【参考文献】 (15)附:使用说明 (15)外观图片 (16)点温度控制系统摘要本文介绍了以AT89S51单片机为核心的温度控制系统的工作原理和设计方法。

温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。

文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路、PC机与单片机串口通讯电路和一些接口电路。

单片机通过对信号进行相应处理,从而实现温度控制的目的。

文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、继电器控制程序、单片机与P C机串口通讯程序。

关键字:单片机DS18B20温度芯片温度控制串口通讯一、方案设计与论证1、测量部分方案一:采用热敏电阻,可满足40摄氏度至90摄氏度测量范围,但热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的。

而且使用热敏电阻,需要用到十分复杂的算法,一定程度上增加了软件实现的难度。

方案二:采用温度芯片DS18B20测量温度。

该芯片的物理化学性很稳定,它能用做工业测温元件,且此元件线形较好。

在0—100摄氏度时,最大线形偏差小于1摄氏度。

该芯片直接向单片机传输数字信号,便于单片机处理及控制。

本制作的最大特点之一就是直接采用温度芯片对温度进行测量,使数据传输和处理简单化。

多点温度控制系统可行性分析及设计方案

多点温度控制系统可行性分析及设计方案

多点温度控制系统可行性分析及设计方案一、可行性分析温度控制系统是一种用于监测和调节温度的系统,广泛应用于各个领域,如工业、医疗、农业等。

以下是对温度控制系统可行性的分析:1.市场需求:随着技术的发展和人们对生活质量的要求提高,对温度控制的需求也在不断增加。

各行各业都有温度控制的需求,因此市场潜力巨大。

2.技术可行性:目前,温度控制系统所需的传感器、控制器和执行器等关键技术已经非常成熟,可以满足各种需求。

同时,温度控制算法的研究也相对成熟,可以提供高精度的温度控制。

3.成本可行性:随着技术的进步,温度控制系统的成本逐渐下降。

同时,多种材料和设备的广泛应用也为温度控制系统提供了更多的选择,降低了成本。

4.政策环境:政府对于环境保护和能源节约的要求越来越高,温度控制系统可以有效地控制能源的消耗和减少对环境的影响,符合国家政策。

二、设计方案基于以上可行性分析,以下是一份300字多点温度控制系统的设计方案:该温度控制系统适用于工业生产中的多点温度监测和调节。

系统的主要组成部分包括传感器、控制器和执行器。

1.传感器:使用高精度的温度传感器,将多个监测点的温度数据实时传输给控制器。

传感器应具有快速响应、高精度和可靠性。

2.控制器:采用先进的控制算法,根据监测到的温度数据进行分析和判断,并通过控制执行器来实现温度的调节。

控制器应具有高速计算能力和稳定性。

3.执行器:根据控制器的指令,控制执行器来调节温度。

执行器可以是电磁阀、加热器、冷却器等,根据具体需求选择合适的执行器。

4.数据记录与报警:系统应具备数据记录功能,将温度数据进行存储和分析,以便进行后续统计和分析。

同时,系统还应具备报警功能,当温度超过设定的范围时,及时发出警报。

5.远程监控与控制:系统应支持远程监控和控制,可以通过网络对温度控制进行实时监测和调节,方便操作人员进行远程管理。

该多点温度控制系统具备可行性,并提供了一个基本的设计方案。

在实际应用中,可以根据具体需求进行调整和改进,以实现更好的温度控制效果。

基于PIC单片机的多点温控系统的设计与实现

基于PIC单片机的多点温控系统的设计与实现

化工 、 材 、 品、 建 食 机械 、 油等 工业 中 , 石 具有 举足 重轻 的作 用。根据不 同生产所 需温度 范围和精度要求 , 采用的测温元 件、 方法 以及对温 度的控制方法 也有所 不同。随着 电子技术
据, 显示温度 数据 , 根据 数据判 断测控对 象要执 行的动作 以 及 发送 控制命令 。在多 点系 统中 , 由于系统复杂度增加且 单 片机性能有限 , 需要简化单片机 的任 务 。单片机只需要接 收 测控对 象的温度数据和转 发控制命令 即可 。 () 2 增加微 型计算机执行运算任 务
电源 电路
H1 I. 图 1 单 点温 度测 控 硬件 电路结 构
由图 l 可知, 除了键盘和 测控对象外 , 点系统与外接没 单 有交互 。 这远远不能满足当前生产 过程 自动化 的控制要求。 自 动化生产要求生产过程中的各个环节紧密配合、 协调一致 , 以 达到最高的生产效率,测控对象的温度控制更是如此 。因此
图 2 多 点 系统体 系结构
在多点系统体 系结构中 , 一个测控部分 与单点系统 比 每 较 类似 , 由测控 器 、 传感 器和 控制 驱动 器 组成 , 为 测控 单 称
作者简介 :方庆黎 , 河南洛阳人 , 男, 讲师, 研究方向:计算机工业应用。

5 — 2
硬件 技术 与 研 究 ■—
述。
硬件 电路设计 、测控器硬 件 电路设计和 控制驱 动器硬件 电
路设计 。下面分别对 它们进行介绍 。
() 信 适 配 器 电路 设 计 1通
5 .软件系统设计
工业系统 的通信 可以采 用多种方式 , 系统采用 RS 3 本 22
多点温度 控 制系统 的软件主 要分为上 位机程 序和 单片 机 程序 。其 中上位机程序 又分为温度显控模 块和通信模块 ; 单片 机程序 分为温度采样 模块 、 信模块和控 制模 块。 通

DAS-Ⅲ型多点温度采集与控制系统使用说明书

DAS-Ⅲ型多点温度采集与控制系统使用说明书

DAS■111型多点温度采集与控制系统使用说明书西安蓝田恒远水电设备有限公司电话:传真:1、概述:DAS・in型多点非电量采集与控制系统是我公司根据我国计算机测控技术的发展要求而设计出来的,既能作为现今DAS系统中的远程智能I/O ,且具有现地显示功能,又能独立组态成发电机组等工业设备运行过程中的保护控制装置。

由于软件中采用了对被测参数的变化进行梯度分析,有效的防止了因传感器及线路传输故障而误发保护或控制信号。

符合我国的国情,完全可以替代同类的进口产品。

与上位机交换数据符合modbus数据通信格式,能够直接与各种pic或其他监控系统实现通信,也可配相应模块,直接与工业以太网相通。

可广泛应用于电力、冶金、化工及其他各个行业中。

2、主要特点:2.1、可任意测量热电偶K、T、E、B、S ,热电阻G、Cu50、PtlOO(BAl x BA2)及标准信号0 ・ 10mA s 4 ・ 20mA、1 ・ 5V 等。

2.2、带16对32个可供自由组态的开关量输出信号。

2.3、最大巡测点数128点。

2.4、模拟信号调理部分采用每路独立的通道,不易出现通道损坏的情况,既提高了抗干扰性,又具有较快的采样速度。

2.5、每点可设置两个独立的报警限,上电时报警继电器具有锁定功能,防止上电或掉电误发信号;线路故障时,对报警限2继电器能够自动锁定;具有梯度运算功能,梯度报警时,可自动锁定报警限2 继电器,输出采用固态继电器,抗干扰能力强。

2.6、数据刷新周期s 3s o2.7、具有参数失电保持功能。

2.8、具有RS232、RS422 ( RS485 )标准串行通信接口,可方便地与上位机通信,通信规约可根据用户要求修改,也可选配网络接口模块。

2.9、带点阵式液晶显示屏,具有汉字显示功能。

2.10、具有非线性等误差修正功能和热电偶的冷端自动补偿。

3、技术指标:3.1. 可巡测输入信号:热电偶K 、T 、E 、B 、S ,热电阻G 、Cu50、 PtlOO (BAl x BA2)及标准信号 0 ・ 10mA 、4 ・ 20mA 、1 ・ 5V 等。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统1. 引言1.1 研究背景在现代社会,温度监控系统在各个领域中发挥着重要作用,例如工业生产、环境监测、医疗保健等。

随着科技的不断发展,基于单片机的多点无线温度监控系统逐渐成为一种趋势。

研究背景部分将深入探讨这一领域的发展现状,以及存在的问题和挑战。

目前,传统的有线温度监控系统存在布线复杂、安装维护困难等问题,限制了其在一些特定场景下的应用。

而无线温度监控系统以其布线简便、实时监测等优势逐渐被广泛应用。

目前市面上的产品多数存在监测范围有限、数据传输不稳定等问题,迫切需要一种更为稳定、可靠的无线温度监控系统。

本文将基于单片机技术设计一种多点无线温度监控系统,旨在解决现有系统存在的问题,提高监测范围和数据传输稳定性。

通过对单片机、温度传感器、通信模块等关键部件的选择和设计,构建一套高性能的无线温度监控系统,为相关领域的应用提供更好的技术支持和解决方案。

1.2 研究意义无线温度监控系统的研究意义在于提高温度监控的效率和精度,实现对多个点位的远程管理和监控。

通过使用单片机技术,可以实现对多个温度传感器的同时监测和数据传输,使监控过程更加智能化和便捷化。

这对于各种需要严格控制温度的场合如实验室、制造业、医疗行业等具有重要意义。

无线温度监控系统的研究也有助于推动物联网技术的发展,为智能家居、智能城市等领域打下基础。

通过建立稳定、高效的多点无线温度监控系统,不仅可以提高生产效率,降低能耗,提升产品质量,还可以有效预防事故发生,保障人员安全。

研究基于单片机的多点无线温度监控系统具有重要的现实意义和应用前景。

1.3 研究目的本文旨在设计并实现基于单片机的多点无线温度监控系统,通过对温度传感器采集的数据进行处理和传输,实现对多个监测点的实时监控。

具体目的包括:1. 提高温度监控系统的便捷性和灵活性,使监控人员可以随时随地实时获取监测点的温度数据,为及时处理异常情况提供有力支持;2. 降低监控系统的成本,利用单片机和无线通信模块取代传统的有线连接方式,减少线缆布线成本和维护成本;3. 提升监控系统的稳定性和可靠性,通过精心选型与设计,以及合理的系统实现过程,确保系统能够持续稳定地运行,并提供准确可靠的数据;4. 探索未来监控系统的发展方向,从实际应用情况出发,进一步优化系统性能,并为未来无线温度监控系统的研究和应用奠定基础。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着物联网技术的不断发展,无线传感器网络在各个领域都得到了广泛应用。

基于单片机的多点无线温度监控系统,不仅可以实现对多个温度点的实时监控,还可以通过无线方式传输监测数据,实现远程监控和管理。

本文将介绍基于单片机的多点无线温度监控系统的原理、设计和实现过程。

一、系统概述基于单片机的多点无线温度监控系统主要由传感器节点、信号处理单元、无线通信模块、监控中心等组成。

传感器节点负责采集温度数据,信号处理单元对采集的数据进行处理和存储,无线通信模块实现数据传输,监控中心则负责接收和显示监测数据。

二、系统设计1. 传感器节点设计传感器节点是系统的核心部分,负责采集温度数据。

为了实现多点监控,传感器节点需要设计成多个独立的模块,每个模块负责监测一个特定的温度点。

传感器节点的设计需要考虑传感器的选择、数据采集和处理电路的设计、以及无线通信模块的接口设计。

传感器节点采用数字温度传感器DS18B20进行温度采集,采集到的数据通过单片机进行处理和存储,然后通过无线通信模块进行数据传输。

2. 信号处理单元设计信号处理单元主要负责对传感器采集到的数据进行处理和存储。

传感器采集到的数据需要进行数字化处理,然后存储到单片机的内部存储器中。

传感器节点采用的是单片机AT89S52作为信号处理单元,通过单片机的A/D转换功能对温度数据进行数字化处理,然后存储到单片机的内部EEPROM中。

3. 无线通信模块设计无线通信模块主要负责将传感器节点采集到的数据传输到监控中心。

传感器节点采用的是nRF24L01无线模块,通过SPI接口与单片机进行通信,并实现数据的传输。

4. 监控中心设计三、系统实现传感器节点采用DS18B20数字温度传感器进行温度采集,通过单片机AT89S52进行数据处理和存储,然后通过nRF24L01无线模块实现数据的传输。

传感器节点的设计需要考虑功耗、尺寸和成本等因素,需要尽量减小功耗和尺寸,降低成本。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着物联网技术的不断发展,无线传感器网络(WSN)在各个领域中的应用越来越广泛。

温度监控系统作为最基本的传感器网络应用之一,在工业控制、环境监测、医疗保健等领域中发挥着重要作用。

本文将介绍一种基于单片机的多点无线温度监控系统,通过这种系统可以实现对多个点位温度数据的实时监测和远程传输。

一、系统设计方案1. 系统硬件设计该温度监控系统的核心部件是基于单片机的无线温度传感器节点。

每个节点由温度传感器、微控制器(MCU)、无线模块和电源模块组成。

温度传感器选用DS18B20,它是一种数字温度传感器,具有高精度、数字输出和单总线通信等特点。

微控制器采用常见的ARM Cortex-M系列单片机,用于采集温度传感器的数据、控制无线模块进行数据传输等。

无线模块采用低功耗蓝牙(BLE)模块,用于与监控中心进行无线通信。

电源模块采用可充电锂电池,以确保系统的长期稳定运行。

系统的软件设计主要包括传感器数据采集、数据处理和无线通信等部分。

传感器数据采集部分通过单片机的GPIO口读取温度传感器的数据,并进行相应的数字信号处理。

数据处理部分对采集到的数据进行滤波、校正等处理,以保证数据的准确性和稳定性。

无线通信部分则通过BLE模块实现与监控中心的无线数据传输。

二、系统工作原理1. 温度传感器节点工作原理每个温度传感器节点通过温度传感器采集环境温度数据,然后通过单片机将数据处理成符合BLE通信协议的数据格式,最终通过BLE模块进行无线传输。

2. 监控中心工作原理监控中心通过接收来自各个温度传感器节点的温度数据,并进行数据解析和处理,最终在界面上显示出各个点位的温度数据。

监控中心还可以设置温度报警阈值,当某个点位的温度超过预设阈值时,监控中心会发出报警信息。

三、系统特点1. 多点监控:系统可以同时监测多个点位的温度数据,实现对多个点位的实时监控。

2. 无线传输:系统采用BLE无线模块进行数据传输,避免了布线的烦恼,使得系统的安装和维护更加便捷。

多点温度监控系统设计

多点温度监控系统的设计一、设计任务与要求基本部分1、主机可监控不少于3个点的温度变化,轮流显示各点温度;2、温度测量精度±2℃;3、显示器分两段,第一段1位十进制数,显示测温点号;第二段2位十进制数,显示对应点的测量温度;4、所连接的测温点中只要有任何一个测量点的温度达到高温值时应给出报警信号,当所有点的温度值降低到安全值后,停止报警。

发挥部分1、温度传感器可在热敏电阻或集成温度传感器之间选择一种。

无论选择哪一种,都不采用A/D转换器进行信号变换2、温度测量精度±1℃。

3、具有温度传感器失效判断与显示功能。

4、其他功能,尽量考虑降低成本。

二、方案设计与论证通过温度传感器LM35将温度转换成电压信号,经模拟开关,A/D转换,七段译码通过数码管显示温度数值;信号放大比较后通过蜂鸣器实现报警。

三、 单元电路设计与参数计算(1)温度传感器采用集成温度传感器LM35,其输出电压和温度线性成正比,其灵敏度为10.0mV/℃,0℃时,输出电压为0V 。

电压放大电压放大电压放大 电压比较电压比较电压比较或门信号放大蜂鸣器(2) 温度输出显示部分计数器输出作为模拟开关的地址对三个传感器的电压信号进行选通,模拟开关输出经过A/D 转换(MC14433)输出。

输出经过七段译码器译码后接数码管显示,DS2,DS3选通个位与十位,三极管Q2、Q3用于提高DS2、DS3驱动能力。

(3)测温点显示和计数器部分1、振荡器计数器的clk信号由555接成的多谐振荡器产生,由于循环显示各测量点的温度时,不能太快,否则肉眼无法分辨,因此选用两个1M的电阻,一个1uF的电容,振荡周期为T=(R42+2R20)C2·ln2=2.08s2、计数器三进制计数器由74ls160置数得到,计数器的输出经7段译码后接数码管显示。

为减少芯片的使用,降低成本,同时考虑到数字电路噪声容限很大的特点,此处的四输入与门采用四个二极管和一个上拉电阻得到,由于实验室没有找到专门的反相器芯片,因此采用带有四个二输入或非门的74HC02代替。

多点温度监控系统的设计.

多点温度监控系统的设计目前许多场合都要对温度进行控制。

如仓库,不同的储藏室储存物品的温度都不同;再比如医院,为了使病人的治疗效果最好,需要对每一个病房的温度进行控制。

该文研究的多点温度监控系统能够对多个位置的温度进行设置、检测,根据温度设置值与检测值来控制调温设备运转,调节温度。

l系统的总体结构及功能本系统的总体结构框图如图1所示,为了满足多通道数据采集和处理,系统采用了一台上位机和多个下位机的集总式结构。

上位机采用AT89目前许多场合都要对温度进行控制。

如仓库,不同的储藏室储存物品的温度都不同;再比如医院,为了使病人的治疗效果最好,需要对每一个病房的温度进行控制。

该文研究的多点温度监控系统能够对多个位置的温度进行设置、检测,根据温度设置值与检测值来控制调温设备运转,调节温度。

l 系统的总体结构及功能本系统的总体结构框图如图1所示,为了满足多通道数据采集和处理,系统采用了一台上位机和多个下位机的集总式结构。

上位机采用AT89S51单片机,下位机采用AT89C2051单片机。

上位机与下位机之间采用RS485总线通信。

其中上位机系统配置液晶显示屏、按键。

按键用于调整各个点的预置温度和系统时间,查询各个点的预置温度值、实际温度值以及调温设备运行情况,输入下位机的控制信息。

液晶显示屏用于显示系统时间,以及各点的预置温度值、实际温度值和调温设备运行情况,如1 min内没有任何操作,则液晶显示屏上开始循环显示各个点的实际温度值、预置温度值以及调温设备运转情况,每一个点的数据在液晶屏上显示的时间是8 s。

下位机负责温度采集和控制调温设备运转,温度传感器采用DSl8820。

上位机首先将预置温度值发送到下位机,下位机将实际温度与预置温度进行比较后输出调温设备控制信号,并将实际温度与调温设备运转状态发送到上位机。

2 硬件电路设计2.1 下位机电路设计下位机电路主要由三部分构成:温度采集电路、RS 485总线接口电路、调温设备的控制电路,其电路原理图如图2所示。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着科技的不断进步,无线技术在各个领域的应用也越来越广泛,其中无线温度监控系统在工业、医疗、环境监测等领域起到了至关重要的作用。

本文将介绍一种基于单片机的多点无线温度监控系统,通过该系统可以实现多个温度点的实时监测和数据传输,为各种场景下的温度监控提供了一种有效的解决方案。

一、系统概述基于单片机的多点无线温度监控系统由传感器节点、单片机节点和接收器节点组成。

传感器节点负责采集温度数据,单片机节点负责数据处理和无线传输,接收器节点负责接收和显示温度数据。

系统采用无线通信技术,可以实现远距离的数据传输,同时具有低功耗、高可靠性的特点。

二、系统设计1. 传感器节点设计传感器节点采用数字温度传感器进行温度数据的采集,通过单片机节点进行数据采集、处理和无线传输。

传感器节点具有较小的体积和低功耗的特点,可以方便地布置在不同位置进行温度监测。

2. 单片机节点设计接收器节点负责接收来自单片机节点的温度数据,并进行处理和显示。

接收器节点通过液晶显示屏展示温度数据,同时可以通过网络等方式将数据上传到云端进行存储和分析。

三、系统工作流程1. 传感器节点采集温度数据,将数据发送给单片机节点;2. 单片机节点接收温度数据,进行处理和编码,然后通过无线通信模块将数据传输给接收器节点;3. 接收器节点接收温度数据,进行解码和处理,然后将数据显示在液晶屏上;4. 用户可以通过接收器节点实时监测各个传感器节点的温度数据,同时也可以通过网络等方式实现对数据的存储和分析。

四、系统特点及优势1. 多点监测:系统可以同时监测多个温度点的数据,满足不同场景下的多点温度监测需求;2. 无线传输:系统采用无线通信技术实现数据的传输,方便布置和维护;3. 低功耗设计:系统中的传感器节点和单片机节点采用低功耗设计,可以长时间稳定运行;4. 数据存储和分析:系统可以将数据上传到云端进行存储和分析,帮助用户了解温度变化的规律和趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序号————————多点温度控制系统作品类别: 发明制作类作品编号:目录摘要 (3)一、方案设计与论证 (3)1、测量部分 (3)2、主控制部分 (4)3、总结 (4)二、各电路的设计 (5)1、键盘电路 (5)2、加热器控制电路 (8)3、温度测试电路 (8)4、七段数码管显示电路 (9)5、口通讯电路 (10)三、程序设计 (11)概述 (11)1、程序结构分析 (11)2、主程序 (12)四、测试方法和测试结果 (12)1、测试环境 (12)2、测试方法 (12)3、测试结果 (13)4、测试结果分析 (13)五、总结 (13)七、应用举例 (14)【参考文献】 (15)附:使用说明 (15)外观图片 (16)点温度控制系统摘要本文介绍了以AT89S51单片机为核心的温度控制系统的工作原理和设计方法。

温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。

文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路、PC机与单片机串口通讯电路和一些接口电路。

单片机通过对信号进行相应处理,从而实现温度控制的目的。

文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、继电器控制程序、单片机与P C机串口通讯程序。

关键字:单片机 DS18B20温度芯片温度控制串口通讯一、方案设计与论证1、测量部分方案一:采用热敏电阻,可满足40摄氏度至90摄氏度测量范围,但热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的。

而且使用热敏电阻,需要用到十分复杂的算法,一定程度上增加了软件实现的难度。

方案二:采用温度芯片DS18B20测量温度。

该芯片的物理化学性很稳定,它能用做工业测温元件,且此元件线形较好。

在0—100摄氏度时,最大线形偏差小于1摄氏度。

该芯片直接向单片机传输数字信号,便于单片机处理及控制。

本制作的最大特点之一就是直接采用温度芯片对温度进行测量,使数据传输和处理简单化。

采用温度芯片DS18B20测量温度,体现了作品芯片化这个趋势。

部分功能电路的集成,使总体电路更简洁,搭建电路和焊接电路时更快。

而且,集成块的使用,有效地避免外界的干扰,提高测量电路的精确度。

所以芯片的使用将成为电路发展的一种趋势。

本方案应用这一温度芯片,也是顺应这一趋势。

2、主控制部分方案一:此方案采用AT89C51八位单片机实现。

单片机软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制。

但是,AT89C51单片机需要用仿真器来实现软硬件的合成在线调试,较为繁琐,很不简便。

而且AT89C51的地位已经渐渐的被AT89S51所取代。

逐渐成为历史。

事实也证明了AT89S51在工业控制上有着广泛的应用。

方案二:此方案采用AT89S51八位单片机实现。

它除了89C51所具有的优点外,还具有可在线编程,可在线仿真的功能,这让调试变得方便。

当与凌阳十六位单片机相比时,AT89S51八位单片机的价格便宜,再编程方便。

而且AT89S51在工业控制中有广泛的应用,编程技术及外围功能电路的配合使用都很成熟。

这对于在网上查找相关资料和在图书馆查找相关资料时非常方便的。

总结:综上所述实际采用电路方案如下图:工作流程说明开始,先接通电源,然后将开关打到开的位置,七段数码管显示器就自动显示出当前温度,并且显示出设置温度的缺省值00。

此时继电器不工作。

按下F1按键,温度控制系统进入温度控制点1的。

按下F2按键,温度控制系统则相应进入温度控制点2的设置。

这个时候,显示设置温度的数码管闪烁。

此时可以通过键盘输入预设置的温度。

当按下“确定”按键的时候,单片机就会根据所写入的程序,对系统进行控制。

当设置的温度高于当前的温度时,单片机通过继电器控制加热电路连通。

温度慢慢升高。

当设置的温度低于当前的温度时,单片机通过继电器控制加热电路断开。

温度慢慢下降。

就这样通过温度芯片的反馈信息,实现水的温度保持在设置温度上,从而达到自动控制温度的功能。

二、各电路的设计1、键盘电路:单片机应用系统中的键输入单片机应用系统中除了复位按键有专门的复位电路,以及专一的复位功能外,其它的按键或键盘都是以开关状态来设置控制功能或输入数据。

键盘有编码和非编码两种。

非编码键盘硬件电路极为简单故本系统采用。

(1)键输入接口与软件解决的任务A.键开关状态的可靠输入为了去抖动我们采用软件方法,它是在检测到有键按下时,执行一个10ms 的延时程序后,再确认该键电平是否仍保持闭合状态电平,如保持闭合状态电平则确认为真正键按下状态,从而消除了抖动影响。

B.对按键进行编码给定键值或给出键号对于按键无论有无编码,以及采用什么编码,最后都要转换成为与累加器中数值相对应的键值,以实现按键功能程序的散转转移。

为使编码间隔小,散转入口地址安排方便,常采用依次序排列的键号。

C. 选择键盘监测方法对是否有键按下的信息输入方式有中断方式与查询方式两种。

(2)行列式键盘本系统用行列式键盘,即用I/O口线组成行列式结构,按键设置在行列的交点上。

在按键数较多时,可节省I/O口线。

本系统键盘采用的工作方式为编程扫描工作方式,它是利用CPU在完成其他工作的空余,调用键盘扫描子程序,来响应键输入要求。

在执行键功能程序时,CPU不再响应键输入要求。

编程扫描工作方式只有在CPU空闲时才调用键盘扫描子程序。

键盘采用的扫描法扫描方式,扫描法是在判定有键按下后逐行(或列)置低电平,同时读入行(或列)状态,如果行(或列)状态出现非全1状态,这时0状态的行、列交点的键就是所按下的键。

在其他的作品中,要改变设置温度时,每按一次按键,相应位上的数字自加一。

当要输入的数字比较大的时候,需要按很多次,使用起来比较麻烦。

然而,键盘就很好地解决了这个问题。

当要修改设置温度时,只需要按两次按键,再加上“确定”按键即可。

所以本电路采用了使用方便的键盘控制电路。

键盘的按键分布如下图所示:键盘设定如下:键盘共有14个按键,用于方便设定温度。

,数字按键,输入数字1----9; 设置的确认,修改设置温度时进行确认; 设置的清除,修改设置温度时进行删除; 显示及设置转换到温度点1,按此按键后,显示预设置温度的数码管 闪烁;,显示及设置转换到温度点2,按此按键后,显示预设置温度的数码管闪烁;采用14按键的键盘代替其他作品的自加1按键和自减1按键,虽然增加了按键的个数,但是却方便了输入所需要设置的温度,使得温度设定操作更为简单。

这也是本作品相对于其它作品改进的一个重要方面。

3、 加热器控制电路单片机通过三极管控制继电器的通断,最后达到控制电热器的目的。

当温度未达到要求时,单片机发送高电平信号使三极管饱和导通,继电器使电源与电热器接通,电热器加热。

温度慢慢升高。

当温度上升到预定温度时,单片机发送低电平信号三极管进入截止状态,继电器的弹片打到另一侧,使电热器与电源断开,电热器停止加热。

继电器电路中有一个三极管8050的保护电路,即将一个二极管反向接到三机管的两端。

连接方法如图所示。

其原理是:当继电器突然断电时,继电器产生很大的反向电流。

二极管的作用是将反向电流分流,使流过三级管8050的电流比较小,达到保护三极管8050的作用。

3、温度测试电路这里我们用到温度芯片DS18B20。

使用集成芯片,能够有效的减小外界的干扰,提高测量的精度,简化电路的结构。

使用集成芯片,已经慢慢的成为设计电路的一种趋势。

本系统使用温度芯片也正是顺应了这一趋势。

DS18B20是DALLAS 公司生产的一线式数字温度传感器,具有3引脚TO -92小体积封装形式;测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU 只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

DS18B20支持“一线总线”接口,测量温度范围为 -55°C~+125°C ,在-10~+85°C 范围内,精度为±0.5°C 。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

温度芯片DS18B20转换速度快,转换精度高,与微处理器的接口简单,给硬件设计工作带来了极大的方便,能有效地降低成本,缩短开发周期。

CBabfcgdeVCC1234567abcdefg8d pd p9DS6abfcgdeVCC1234567abcdefg8d pd p9DS7abfcgdeVCC1234567abcdefg8d pd p9DS8abfcgdeVCC1234567abcdefg8d pd p9DS9abfcgdeVCC1234567abcdefg8d pd p9DS13abfcgdeVCC1234567abcdefg8d pd p9DS16A1B2QA3QB4QC5QD6CLK8CLR9QE10QF11QG12QH13U1674LS164A1B2QA3QB4QC5QD6CLK8CLR9QE10QF11QG12QH13U1374LS164A1B2QA3QB4QC5QD6CLK8CLR9QE10QF11QG12QH13U1274LS164A1B2QA3QB4QC5QD6CLK8CLR9QE10QF11QG12QH13U1474LS164A1B2QA3QB4QC5QD6CLK8CLR9QE10QF11QG12QH13U1574LS164A1B2QA3QB4QC5QD6CLK8CLR9QE10QF11QG12QH13U974LS164 +5V+5V+5V+5V+5V+5VR1R2R3R4R5R6 +5V+5V+5V+5V+5V+5VSDASCL5、串口通讯电路:51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。

进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。

我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。

这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。

串口通讯的硬件电路如上图所示三、程序设计概述整个系统的功能是由硬件电路配合软件来实现的,当硬件基本定型后,软件的功能也就基本定下来了从软件的功能不同可分为两大类:一是监控软件(主程序),它是整个控制系统的核心,专门用来协调各执行模块和操作者的关系。

相关文档
最新文档