矢量网络分析仪的原理及测试方法课件
矢量网络分析仪的原理及测试方法[专业知识]
![矢量网络分析仪的原理及测试方法[专业知识]](https://img.taocdn.com/s3/m/2442a05b763231126edb11da.png)
入射波 (Ein)
Ein
傳輸波 (Etr)
Eref
器件网絡电路
反射波 (Eref) Etr
行业相关
3
网絡分析仪原理
(Ex.:Network Analyzer with5Hz to 500MHz)
输入功能块 (×n 通道)
处理器功能块
Sampler
820kHz B.P.F
20kHz L.P.F AMP
O
綫圈
O
电容器
O
O
傳輸綫 O
O
O
O
电纜綫 O
O
O
O
分配器 O
O
天綫
OOOO
磁头 O
O
O
放大器 O O O O O
OO
變压器 O
O
頻率轉換器
O
各種功能模块 O O O O O O O O O
行业相关
6
网絡分析仪原理
矢量网絡分析參數
傳輸 * 幅度響應 * 衰減/增益 * 相位響應 * 群延時 * 前向/反向傳輸
矢量网络分析仪的原理及测试方法
深圳市南方行联业合相关实业有限公司
1
什麼是网絡分析仪的分析對象?
通信
多媒体
Communication
Computer
Neo-Audio Visual
集成电路芯片
电子元器件
High-frequency device
行业相关
电池
2
网絡分析仪原理
器件网絡分析方法
通過每個工作頻點的掃描去測量信号傳輸和反射的幅度与相位變化量 值.
高頻器件
RF Filter
RF AMP
RF Filter IF Filter
网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。
1.DUT对射频信号的响应矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。
图1说明了测试信号通过被测器件(DUT)后的响应。
图1DUT 对信号的响应2.整机原理:矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S 参数测试装置、幅相接收机和显示部分。
合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A 和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。
其原理框图如图2所示:图2矢量网络分析仪整机原理框图矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器(DSP)从数字信号中提取被测网络的幅度信息和相位信息,通过比值运算求出被测网络的S参数,最后把测试结果以图形或数据的形式显示在液晶屏幕上。
◆合成信号源:由3~6GHz YIG振荡器、3.8GHz介质振荡器、源模块组件、时钟参考和小数环组成。
◆测试装置:由定向耦合器和开关构成,用于分离反射信号和入射信号。
矢量网络分析仪工作原理矢网(高清版)

矢量网络分析仪工作原理矢网(高清版)矢网分析仪原理目录1.一类独一无二的仪器2.网络分析仪的发展3.网络分析理论4.网络分析仪测量方法5.网络分析仪架构6.误差和不确定度7.校准8.工序要求9.一台仪器,多种应用10.其它资源:1. 一类独一无二的仪器网络分析仪是一类功能强大的仪器,正确使用时,可以达到极高的精度。
它的应用也十分广泛,在很多行业都不可或缺,尤其对测量射频(RF)元件和设备的线性特性方面非常有用。
现代网络分析仪还可用于更具体的应用,例如,信号完整性和材料测量。
随着NI PXIe - 5632的问世,用户可轻松地将网络分析仪应用于设计验证和生产线测试中,完全摆脱传统网络分析仪成本高、占地面积大的束缚。
2. 网络分析仪的发展矢量网络分析仪,比如图1所示的NI PXIe-5632可用于测量设备的幅度、相位和阻抗。
由于网络分析仪是一种封闭的激励-响应系统,因此可在测量RF特性时实现绝佳的精度。
而充分理解网络分析仪的基本原理对于最大限度地受益于网络分析仪至关重要。
图1.NI PXIe-5632矢量网络分析仪在过去的十年中,矢量网络分析仪由于其较低的成本和高效的制造技术受到越来越多业内人士的青睐,其风头已经盖过标量网络分析仪。
虽然网络分析理论已经存在了数十年,但是直到20世纪80年代初期第一台现代独立台式分析仪才诞生。
在此之前,网络分析仪身形庞大复杂,由众多仪器和外部器件组合而成,且功能有限。
NI PXIe-5632的推出标志着网络分析仪发展的又一个里程碑,它将矢量网络分析功能成功地添加到软件定义的灵活PXI模块化仪器平台。
通常我们需要大量的测量实践,才能精确地测量幅值和相位参数,避免重大错误。
在部分射频仪器中,由于测量的不确定性,小误差很可能会被忽略不计,而对于网络分析仪等精确的仪器,这些小误差却是不容忽视的。
3. 网络分析理论网络是一个高频率使用术语,具有很多种现代的定义。
就网络分析而言,网络指一组内部相互关联的电子元器件。
矢量网络分析仪的校准技术PPT课件

系统误差模型 15误差项模型(四通道)
© Rohde & Schwarz 中国培训中心 – 技术研讨会
©2004/ An Yi / 21
系统误差模型 15误差项模型(四通道)
© Rohde & Schwarz 中国培训中心 – 技术研讨会
T12 b2
T22
0
©2004/ An Yi / 12
系统误差模型
5误差项模型的校准
如采用TOSM四个标准件进行校准,则可以根据由标准件所决定的 端口信号之间的关系确定矩阵[R]和[T]的参数。
match : b1 0 Short : b1 a1 Open : b1 a1 Through :
矢量网络分析仪的校准技术
Rohde&Schwarz Pushing limits
© Rohde & Schwarz 中国培训中心 – 技术研讨会
©2004/ An Yi / 1
罗德与施瓦茨中国有限公司
安毅 产品经理
Tel: 010-6431 2828 Email: Adams.An@
Test set
©2004/ An Yi / 9
概述 测量误差
系统误差
矢量网络分析仪内部测试装置的系统响应 外部测试装置的系统响应
随机误差
测试装置的稳定性 仪器的稳定性
© Rohde & Schwarz 中国培训中心 – 技术研讨会
©2004/ An Yi / 10
系统误差模型 5误差项模型
k11 k12 k13 k14
[K ] k21
k22
k23
k24
矢量网络分析仪原理和使用方法课件

利用矢量网络分析仪自带的软件或第三方软件, 对采集到的数据进行处理和分析。
结果解读
根据测量结果,解读被测设备的性能指标,评估 其性能优劣。
04
矢量网络分析仪应用实例
通信系统测试
通信系统测试
矢量网络分析仪能够测试通信系统的传输性能,如信号的幅度、相 位和群延迟等,以确保系统性能稳定可靠。
信号完整性分析
微波元件测试
对于微波元件,如滤波器、放大器等,矢量网络 分析仪可以测试其频率响应、增益和群延迟等特 性。
可靠性分析
通过矢量网络分析仪,可以对电子元件进行可靠 性分析,如温度循环、湿度试验等,以评估元件 的寿命和稳定性。
雷达系统测试
雷达散射特性测试
01
矢量网络分析仪可以测试雷达系统的散射特性,如RCS(雷达
校准
根据需要,进行系统校准 ,以确保测量精度。
操作界面与设置
界面介绍
熟悉矢量网络分析仪的各 个功能键和显示窗口,了 解其基本功能。
设置参数
根据测量需求,设置合适 的频率范围、扫描参数等 ,确保测量准确度。
保存设置
完成设置后,保存参数, 以便下次使用。
数据采集与分析
数据采集
按照测量需求,选择合适的测试端口和电缆类型 ,进行数据采集。
高精度测试技术
误差校正和补偿技术
高精度测试技术需要采用误差校正和 补偿技术,如校准件校正、误差模型 拟合等,以减小测试误差和提高测试 精度。
信号处理算法优化
高精度测试技术需要优化信号处理算 法,如滤波、插值、拟合等,以提高 数据处理的速度和准确性。
自动化测试技术
自动化校准和测试流程
自动化测试技术需要实现自动化校准 和测试流程,以提高测试效率和降低 人工操作误差。
矢量网络分析仪

矢量网络分析仪矢量网络分析仪是一种广泛应用于通信、无线电设备和电子电路实验的精密测试仪器。
它可以测量电路中各种参数,如反射系数、传输系数和阻抗等,并为分析电路的性能提供数学模型。
本文将对矢量网络分析仪的原理、结构和应用进行详尽介绍。
一、矢量网络分析仪的原理矢量网络分析仪的原理是基于麦克斯韦方程组和电磁场理论。
在基础电磁理论的基础上,矢量网络分析仪将电信号分为正弦波和相位两部分进行测量,通过计算这些部分的幅度和相位差异,可以确定电路中各种参数的值。
这里简单介绍一下矢量网络分析仪的基本工作原理。
1.1 反射系数的测量反射系数是指信号在电路中反射时与源信号之间的关系。
在矢量网络分析仪的测量中,反射系数的测量可以通过向电路输入一个特定频率的正弦信号,并在电路的接收端检测到其反射信号,然后测量两个信号之间的相位和振幅差异,来计算反射系数的值。
1.2 传输系数的测量传输系数是指信号从电路的输入端到输出端的传输效率。
在矢量网络分析仪的测量中,传输系数可以通过在电路的输入端和输出端分别加入正弦信号,并测量两个信号之间的相位和振幅差异,来计算传输系数的值。
1.3 阻抗的测量阻抗是指电路对电流和电势差的响应,其强度和方向受到电路的各种参数的影响。
在矢量网络分析仪的测量中,阻抗可以通过向电路输入一个特定频率的正弦信号,并通过测量电路中的电流和电势差,来计算阻抗的值。
二、矢量网络分析仪的结构矢量网络分析仪的结构主要分为三部分:源信号、接收器和计算机控制系统。
源信号负责向电路中输入正弦信号,接收器负责检测电路中的反射和传输信号,计算机控制系统则负责数据处理和分析。
下面将对这些部分的结构和功能进行详细介绍。
2.1 源信号源信号是矢量网络分析仪的核心部分之一。
它主要通过向电路中输入不同频率和振幅的信号来测量电路的性能。
源信号通常由射频信号发生器(RF signal generator)或特定的示波器(oscilloscope)提供,其输出功率和波形必须具有高度稳定性和可控制性。
矢量网络分析仪的原理及测试方法

矢量网络分析仪在通信测试中的应用
1 2
S参数测量
矢量网络分析仪可以测量散射参数(S参数), 用于描述线性微波网络的反射和传输特性。
阻抗测量
通过测量S参数,可以进一步计算得到设备的阻 抗特性,包括输入阻抗、输出阻抗和特性阻抗等。
3
相位测量
矢量网络分析仪可以测量信号的相位信息,用于 分析信号的传播延迟和相位失真等。
PART 04
矢量网络分析仪在通信领 域的应用
通信系统中的传输线效应
传输线的分布参数特性
传输线具有电阻、电感、电容和电导等分布参数,这些参数会影响 信号的传输性能。
传输线的反射和传输
当信号在传输线上传播时,会遇到反射和传输两种现象,反射系数 和传输系数是描述这两种现象的重要参数。
传输线的阻抗匹配
连接测试设备
将矢量网络分析仪、测试电缆、连接器 等设备和配件按照测试要求连接好,确
保连接稳定可靠。
进行测试
启动矢量网络分析仪,按照设定的测 试参数进行测试,记录测试结果。
设置测试参数
根据测试目标和要求,设置矢量网络 分析仪的测试参数,如频率范围、扫 描点数、中频带宽等。
重复测试
根据需要,对同一测试对象进行多次 重复测试,以获得更准确的测试结果。
接收机对反射信号和传输信号进行幅 度和相位测量,并将测量结果送至处 理器。
DUT对入射信号进行反射和传输,反 射信号和传输信号分别被定向耦合器 接收并送至接收机。
处理器对测量结果进行数字信号处理, 提取幅度和相位信息,并根据需要进 行校准和误差修正,最终输出测试结 果。
关键性能指标解析
频率范围
矢量网络分析仪能够测量的频率范围, 通常覆盖多个频段,如微波、毫米波 等。
5-微波矢量网络分析仪原理详解

第五章矢量网络分析仪的原理5.1 引言微波矢量网络分析仪是对微波网络参数进行全面测量的一种装置。
其早期产品是阻抗图示仪,随着扫频信号源和取样混频器技术上的突破,微波网络分析仪得到了迅速发展。
但其出现初期一段相当长的时间内一直处于手动状态。
直到20世纪60年代,将计算机应用于测量技术,才出现了全自动的网络分析仪---自动网络分析仪。
自动矢量网络分析仪是一种多功能的测量装置,它既能测量反射参数和传输参数,也能自动转换为其他需要的参数;既能测量无源网络,也能测量有源网络;既能点频测量,也能扫频测量;既能手动也能自动;既能荧光屏显示也能保存数据或打印输出。
它是当前较为成熟而全面的一种微波网络参数测量仪器。
微波元器件性能的描述,一般采用散射参数,如双口网络有S11、S21、S12和S22四个参数,它们通常都是复量。
而网络分析仪正是直接测量这些参数的一种仪器,又能方便地转换为其它多种形式的特性参数。
因此网络分析仪大大扩展了微波测量的功能和提高了工作效率。
由于自动网络分析仪采用点频步进式“扫频”测量,因而能逐点修正误差,使扫频测量精确度达到甚至超过手动测量的水平。
因此,自动网络分析仪既能实现高速、宽频带测量,又能达到一般标准计量设备的精确度。
5.2 微波矢量网络分析仪组成与测量原理将微波标量网络分析仪的检波器和比值计改为幅相接收机便组成微波网络分析仪。
其测量原理如下。
5.2-1 幅相接收机框图幅相接收机的方案很多,有外差混频式,取样变频式,单边带式和调制副载波式等。
这里介绍取样变频式幅相接收机的基本原理。
幅相接收机的方框图示于图5.2-1。
由定向耦合器取样的入射波和反射波,分别送入幅相接收机的参考通道和测试通道。
经取样变频器向下变换到恒定不变的中频f IF(20.278MHz),再经过第二混频器,变换到低频(278kHz),得到待显示信号。
要求频率变换过程是线性的,即不能改变原来微波信号的相位信息和振幅信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
电纜綫
* 功分器
*5
振蕩器
网絡分析仪原理
被測器件應用 vs 測量功能
幅度特性 相位特性 延時特性 电平特性 回波損耗 駐波比 阻抗圓圖 极坐标圖 正交阻抗
濾波器 O O O
OOOO
諧振器 O O
OO
O
O
延迟綫 O
O
綫圈
O
电容器
O
O
傳輸綫 O
O
O
O
电纜綫 O
O
O
O
分配器 O
O
天綫
OOOO
磁头 O
O
Ein
入射波 (Ein)
反射波 (Eref)
器件网絡电路
傳輸波 (Etr) Eref
Etr
3
输入功能块
网絡分析仪原理
(×n 通道)
(Ex.:Network Analyzer with5Hz to
500MHz)
处理器功能块
Sampler
820kHz B.P.F 20kHz L.P.F AMP
820k~ 500.82MHz
O
放大器 O O O O O
OO
變压器 O
O
頻率轉換器
O
各種功能模块 O O O O O O O O O
6
网絡分析仪原理
矢量网絡分析參數
傳輸
* 幅度響應 反射系數
* 衰減/增益 抗
* 相位響應 導納
* 群延時 电压駐波比
反射
*
*阻
*
*
7
网絡分析仪原理
S – 參數(散射矩陣)
a1
前向測量
b1 பைடு நூலகம் *1
-駐波比电橋
潛伏的誤差
* 相對於溫度 / 時間的漂移 * 信号源 / 接收器的內部噪 声 * 連接器的重复性
通過仪器的校正過程能最大的減小系統誤差的不確定度.
10
网絡分析仪原理
數據較准
僅做頻率跟踪誤差較正
做幅度方面的頻率特性較正.執行過程簡單,但由於多路反射的原因, 選擇 2 端口全校正能做到更准確的測量.
RF Filter
VCO
VCO
TCXO
VCO
DATA CONT.
MEMORY
SUB CPU
LCD MODULE KEY BOARD
PA
Power Amp RF Filter
MOD
CODE
Microphone
15
网絡分析仪做元器件測試的系統配置
測試方案
VHF band
Semi-microwave
band
800kHz
DSP A/D CPU
Displa y
812.621MHz
812.62~
811.8MHz
1312.62MHz
X’TAL
输出功能块
ATT
ATT
5~500MHz
4
网絡分析仪原理
器件測量應用範圍
* 濾波器
(晶体/电感电容/陶瓷/介貭/声表面波)
* 双工器
*
放大器
* 隔離器
*
負載,終端器
* 环路器
S21
S11
S22
S12
被測器件
S11 S12 SS11= a1 + S12 a2
S21 S22
b2 b*
2 反向測量
a2
b1 =
8
b2 =
网絡分析仪原理
阻抗參數
Z= 件的复數阻抗
1+r
Z : 被測
阻抗Z =
1–r R + jX
1 R w=CsRs
Zo : 特性
1 = G + jB
wLs = -Z
Microwave Mili-wave
band
band
网絡分析仪 做生產綫測試
工位測試
貭檢測試
高產量 低成本 高可靠性
頻率帶寬
网絡分析仪 做產品開發測試
高精度 高性能
進一步各種應用測試
自動設备系統測試
•高頻夾具技術 •自動分選處理裝置
16
需小的曲綫 噪声作諧振 頻率測量
晶体諧振器測量應用
需低的噪声电 平做反諧振頻 率測量
1 Rp
X=
1
Y=
wLp
G=
阻抗复數單位能用數學描述分成实部和虛部,或者幅度和相位兩部分,為了
簡化复數阻抗的解讀,我們採用了實密斯阻抗圓图來分解讀出. B = 9
网絡分析仪原理
誤差
系統誤差
(具有重复性的) * 信号源匹配
-由於信号源,电橋,耦合器,功分 器 * 負載匹配
-由於被測件 * 頻率響應
-連接綫損耗,电橋 * 定向性
反射特性: 在每個端口得到開路/短路/負載的較正數據.每個標准 器具應有与直通器相同的电子長度去消除电長誤差.
傳輸特性: 用直通標准器連接並做直通短路校正.
13
Advantest 网絡分析仪的應用範圍
應用 元器件
通信
車用电子
IT 設备
VHA N/A RF NA
游戲机
TV/DVD
晶体諧振器 晶体濾波器 陶瓷振盪器 陶瓷濾波器
等效电路常數分析
a. 4 元素
L1
SAW 濾波器 介貭濾波器
14
蜂巢式手机的电路框图与使用的主要元器件
高頻器件
VHF NA
RF NA (R3765/R3767CG)
RF Filter RF Filter IF Filter
RF
ANT
AMP
RF AMP
DEM
MAIN CPU
SPEAKER
DPX
Duplexer
RX SYNTHE
RX SYNTHE
RBW 优化測量
17
SUCCESS
THANK YOU
2019/9/4
SUCCESS
THANK YOU
2019/9/4
晶体諧振器的諧振頻率測量实例
(曲綫噪声的改善)
0.02dB (傳統型仪器)
RBW 10kHz
0.01dB (R3754) RBW 10kHz
|Z|
|Z|
20
晶体諧振器等效电路常數的分析應用功能
RF IN S11M
定向性
信号源1匹配
頻率E跟D 踪
Es S11A
S11M: 測E量R 數據 (在校正前)
S11A: 真正數據
S11AER 1 – ES S11A
ED: ES: ER:
12
2 端口全校正
* 定向性 * 信号源匹配 * 負載匹配 * 傳輸跟踪 * 補償反射跟踪 * 高精度校正2端口器件的所有 S 參數 - 需用 開路/短路/負載/直通 4種標准校正器具
*傳輸測量 當移去被測件后,使用一個直通標准器去校正頻率特 性誤差包括連接綫和連接器.
*反射測量 -開路或短路標准器具必須被選用. -當使用開路標准器時,執行 NORMALIZE (THRU)功能. -當使用短路標准器時,執行 NORMALIZE (SHORT)功能.
11
1端口全校正
做反射測量時的定向性,信号源匹配和頻率跟踪的誤差校正. 用於1端口器件或帶有終端器的2端口器件的精度反射測量. 需用三種標准校正器具,開路器,短路器和負載器. 測量端口: 當連接開路,短路和負載器時在每個端口獲得校正數據.
矢量网络分析仪的原理及测试方法
深圳市南方联合实业有限公司
1
什麼是网絡分析仪的分析對象?
通信
多媒体
Communication
Computer
Neo-Audio Visual
集成电路芯片
电子元器件
High-frequency device
电池
2
网絡分析仪原理
器件网絡分析方法
通過每個工作頻點的掃描去測量信号傳輸和反射的幅度与相位變化量 值.