高中数学第二章平面向量第三讲向量的坐标表示1平面向量基本定理学案苏教版必修1
高中数学第二章平面向量第一讲向量的概念及表示学案苏教版必修1(2021年整理)

高中数学第二章平面向量第一讲向量的概念及表示学案苏教版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面向量第一讲向量的概念及表示学案苏教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面向量第一讲向量的概念及表示学案苏教版必修1的全部内容。
向量的概念及表示知识点课标要求题型说明向量的概念及表示1。
了解向量的实际背景,理解平面向量的概念;2. 理解零向量、单位向量、相等向量、共线(平行)向量、相反向量的含义;3. 理解向量的几何表示选择填空高考必考向量是代数和几何的知识交汇点,在选择填空题中向量的几何应用要引起足够的重视二、重难点提示重点:向量的概念、相等向量的概念、向量的几何表示。
难点:向量的概念和共线向量的概念。
一、向量及相关概念(1)向量:既有大小,又有方向的量叫向量,其中向量的大小称为向量的模(也就是用来表示有向线段的长度)。
注意:向量与数量的区别向量有大小有方向,数量只有大小没有方向。
故长度能比较大小,而向量不能说哪个大哪个小,只能说相等还是不相等。
(2)零向量:长度为0的向量叫做零向量,记做0。
(3)单位向量:长度等于1个单位长度的向量叫做单位向量。
(4)相等向量:长度相等且方向相同的向量叫做相等向量.(5)相反向量:长度相等且方向相反的向量叫做相反向量。
(6)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量.规定零向量与任一向量平行。
【要点诠释】两个向量共线,不一定相等;而两个向量相等,则一定共线。
向量“共线”的含义不是平面几何里的“共线” 的含义。
高中平面向量的坐标运算

第二讲 平面向量的基本定理及坐标表示【知识网络】1.平面向量的基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任 一向量a ,有且仅有一对实数21,λλ,使2211e e λλ+=a ,不共线向量21,e e 叫做表示这一平面内 所有向量的一组基底。
2.平面向量的坐标表示:把一个向量分解为两个互相垂直的向量,叫做向量的正交分解,在平面 直角坐标系中分别取与x 轴、y 轴方向相同的两个单位向量j i ,作为基底,对于平面上一个向 量a ,有且只有一对实数y x 、,使得j i a y x +=,则有序实数对),(y x 叫做a 的坐标,记作a=),(y x .3.平面向量的坐标运算:),(),,(2221y x y x ==b a ;(1)),(2121y y x x ++=+b a ;),(2121y y x x --=-b a ; (2)2121y y x x ⋅+⋅=⋅b a ;(3)),(11y x =a λ,2221x x +=a知识点一:平面向量的共线【典例精析】例1、设两个非零向量21e e 和不共线.(1)如果21212128,23,e e e e e e --=+=-=,求证:D C A 、、三点共线; (2)如果D C A ke e e e e e 、、且,2,32,212121-=-=+=三点共线,求k 的值.【变式训练】1.设a 、b 是不共线的两个非零向量, (1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线; (2)若8a +k b 与k a +2b 共线,求实数k 的值;知识点二:向量的平面坐标【典例精析】例1、已知A (-2,4),B (3,-1),C (-3,-4).设=a ,=b ,CA =c ,且CM =3c ,=-2b ,(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n.(3)若CM =3,=2,求点M 、N 及的坐标.例2、平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).回答下列问题:(1)若(a +k c )∥(2b -a ),求实数k;(2)设d =(x,y)满足(d -c )∥(a +b )且|d -c |=1,求d .例3、已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且=31,=31.求证:∥.例4、设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,求向量d 的坐标。
高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式学案

2.3.3 向量数量积的坐标运算与度量公式1.向量内积的坐标运算已知a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2.知识拓展非零向量a =(x 1,y 1)与b =(x 2,y 2)夹角θ的范围与坐标运算的数量积的关系是:(1)θ为锐角或零角⇔x 1x 2+y 1y 2>0; (2)θ为直角⇔x 1x 2+y 1y 2=0; (3)θ为钝角或平角⇔x 1x 2+y 1y 2<0.【自主测试1】若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( )A .3B .13C .-13 D .-3解析:由题意,得2x -6x =43,解得x =-13.答案:C2.用向量的坐标表示两个向量垂直的条件已知a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔a 1b 1+a 2b 2=0.名师点拨解决两向量垂直的问题时,在表达方式上有一定的技巧,如a =(m ,n )与b =k (n ,-m )总是垂直的,当两向量的长度相等时,k 取±1.【自主测试2】已知a =(2,5),b =(λ,-3),且a ⊥b ,则λ=__________.解析:∵a ⊥b ,∴a·b =0,即2λ-15=0,∴λ=152.答案:1523.向量的长度、距离和夹角公式(1)向量的长度:已知a =(a 1,a 2),则|a |=a 21+a 22,即向量的长度等于它的坐标平方和的算术平方根.(2)两点之间的距离公式:如果A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.(3)向量的夹角的余弦公式:已知a =(a 1,a 2),b =(b 1,b 2),则两个向量a ,b 的夹角的余弦为cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22b 21+b 22.你会求出与向量a =(m ,n )同向的单位向量a 0的坐标吗?答:a 0=a |a |=1m 2+n 2(m ,n )=⎝ ⎛⎭⎪⎫m m 2+n 2,n m 2+n 2.【自主测试3-1】已知A (1,2),B (2,3),C (-2,5),则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判断解析:由AB →=(1,1),BC →=(-4,2),CA →=(3,-3), 得AB →2=2,BC →2=20,CA →2=18. ∵AB →2+CA →2=BC →2,即AB 2+AC 2=BC 2,∴△ABC 为直角三角形. 答案:B【自主测试3-2】已知m =(3,-1),n =(x ,-2),且〈m ,n 〉=π4,则x 等于( )A .1B .-1C .-4D .4 解析:cos π4=3x +210×x 2+4, 解得x =1. 答案:A【自主测试3-3】已知a =(3,x ),|a |=5,则x =__________. 解析:由|a |2=9+x 2=25,解得x =±4.答案:±41.向量模的坐标运算的实质剖析:向量的模即为向量的长度,其大小应为平面直角坐标系中两点间的距离,如a =(x ,y ),则在平面直角坐标系中,一定存在点A (x ,y ),使得OA →=a =(x ,y ),∴|OA →|=|a |=x 2+y 2,即|a |为点A 到原点的距离;同样若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),∴|AB →|=x 2-x 12+y 2-y 12,即平面直角坐标系中任意两点间的距离公式.由此可知向量模的运算其实质即为平面直角坐标系中两点间距离的运算.2.用向量的数量积的坐标运算来分析“(a·b )·c =a ·(b·c )”不恒成立 剖析:设a =(x 1,y 1),b =(x 2,y 2),c =(x 3,y 3), 则a·b =x 1x 2+y 1y 2, b·c =x 3x 2+y 3y 2.∴(a·b )·c =(x 1x 2+y 1y 2)(x 3,y 3)=(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3),a·(b·c )=(x 1,y 1)(x 3x 2+y 3y 2)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3).假设(a·b )·c =a·(b·c )成立,则有(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3), ∴x 1x 2x 3+y 1y 2x 3=x 1x 3x 2+x 1y 2y 3,x 1x 2y 3+y 1y 2y 3=x 2x 3 y 1+y 1y 2y 3.∴y 1y 2x 3=x 1y 2y 3,x 1x 2y 3=x 2x 3 y 1. ∴y 2(y 1x 3-x 1y 3)=0,x 2(x 1y 3-x 3y 1)=0. ∵ b 是任意向量, ∴x 2和y 2是任意实数. ∴y 1x 3-x 1y 3=0. ∴a ∥c .这与a ,c 是任意向量,即a ,c 不一定共线相矛盾. ∴假设不成立.∴(a·b )·c =a·(b·c )不恒成立. 3.教材中的“思考与讨论”在直角坐标系xOy 中,任作一单位向量OA →旋转90°到向量OB →的位置,这两个向量的坐标之间有什么关系?你能用上述垂直的条件,证明下面的诱导公式吗?cos(α+90°)=-sin α,sin(α+90°)=cos α.反过来,你能用这两个诱导公式,证明上述两个向量垂直的坐标条件吗?把两向量垂直的坐标条件可视化.有条件的同学可用“几何画板”、“Scilab”等数学软件进行可视化研究.剖析:如图所示,在平面直角坐标系中,画出一单位圆,有A (cos α,sin α),B (cosβ,sin β),且β-α=90°,也就是β=α+90°.过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥x 轴于点N ,则△BNO ≌△OMA . ∴|OM →|=|NB →|,|ON →|=|MA →|.当点A 在第一象限时,点B 在第二象限, ∴|ON →|=-cos β,|NB →|=sin β, |OM →|=cos α,|MA →|=sin α,从而有-cos β=-cos(α+90°)=sin α, sin β=sin(α+90°)=cos α, 即cos(α+90°)=-sin α, sin(α+90°)=cos α.题型一 向量数量积的坐标运算【例题1】已知a =(-6,2),b =(-2,4),求a ·b ,|a |,|b |,〈a ,b 〉. 分析:直接套用基本公式a ·b =x 1x 2+y 1y 2,|a |=x 21+y 21,cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21x 22+y 22即可.解:a ·b =(-6,2)·(-2,4)=12+8=20. |a |=a ·a =-6,2×-6,2=36+4=210, |b |=-22+42=20=2 5.∵cos 〈a ,b 〉=a ·b |a ||b |=20210×25=22,且〈a ,b 〉∈[0,π], ∴〈a ,b 〉=π4.反思如果已知向量的坐标,则可以直接用公式来计算数量积、模和夹角等问题;如果向量的坐标是未知的,一般考虑用定义和运算律进行转化.〖互动探究〗设平面向量a =(3,5),b =(-2,1), (1)求a -2b 的坐标表示和模的大小; (2)若c =a -(a ·b )·b ,求|c |. 解:(1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), |a -2b |=72+32=58. (2)∵a ·b =-6+5=-1,∴c =a +b =(1,6),∴|c |=12+62=37. 题型二 平面向量垂直的坐标运算【例题2】在△ABC 中,AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,求k 的值.分析:对△ABC 的三个内角分别讨论,并利用坐标反映垂直关系. 解:当A =90°时,AB →·AC →=0, ∴2×1+3×k =0.∴k =-23.当B =90°时,AB →·BC →=0,BC →=AC →-AB →=(1-2,k -3)=(-1,k -3),∴2×(-1)+3×(k -3)=0.∴k =113.当C =90°时,AC →·BC →=0,∴-1+k (k -3)=0, ∴k =3±132.因此,△ABC 有一个角为直角时,k =-23,或k =113,或k =3±132.反思(1)若a =(x 1,y 1),b =(x 2,y 2),a ≠0,则向量a 与b 垂直⇔a ·b =0⇔x 1x 2+y 1y 2=0.(2)向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,垂直是a ·b =0,而共线是方向相同或相反.题型三 数量积的坐标运算在几何中的应用 【例题3】已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)若四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 的两对角线所夹的锐角的余弦值.解:(1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3). ∴AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD . (2)若四边形ABCD 为矩形, 则AB →⊥AD →,AB →=DC →. 设C 点的坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.∴C 点的坐标为(0,5).从而AC →=(-2,4),BD →=(-4,2),∴|AC →|=25,|BD →|=25,AC →·BD →=8+8=16. 设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →| |BD →|=1625×25=45,∴矩形ABCD 的两条对角线所夹的锐角的余弦值为45.反思用向量法解决几何问题的关键是把有关的边用向量表示,然后把几何图形中的夹角、垂直、长度等问题都统一为向量的坐标运算即可,最后再回归到原始几何图形中进行说明.题型四 利用向量数量积的坐标运算证明不等式【例题4】证明:对于任意的a ,b ,c ,d ∈R ,恒有不等式(ac +bd )2≤(a 2+b 2)(c 2+d 2). 分析:设m =(a ,b ),n =(c ,d ),用m ·n ≤|m |·|n |即可,要注意等号成立的条件. 证明:设m =(a ,b ),n =(c ,d ),两向量夹角为θ,则m ·n =|m ||n |cos θ,∴ac +bd =a 2+b 2·c 2+d 2·cos θ,∴(ac +bd )2=(a 2+b 2)(c 2+d 2)cos 2θ≤(a 2+b 2)(c 2+d 2), 当且仅当m 与n 共线时等号成立. ∴(ac +bd )2≤(a 2+b 2)(c 2+d 2)得证.反思本题直接利用代数方法也易得证.若从不等式的特征构造向量,利用向量的数量积和模的坐标运算来证,显得比较灵活,体现了向量的工具性.题型五 易错辨析【例题5】设平面向量a =(-2,1),b =(λ,-1)(λ∈R ),若a 与b 的夹角为钝角,则λ的取值范围是( )A .⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) B.(2,+∞) C .⎝ ⎛⎭⎪⎫-12,+∞ D .⎝ ⎛⎭⎪⎫-∞,-12 错解:由a 与b 的夹角为钝角,得a ·b <0, 即-2λ-1<0,解得λ>-12.故选C .错因分析:a ·b <0⇔a 与b 的夹角为钝角或平角.因此上述解法中需要对结论进行检验,把a 与b 的夹角为平角的情况舍去.正解:a ·b <0⇒(-2,1)·(λ,-1)<0⇒λ>-12.又设b =t a (t <0),则(λ,-1)=(-2t ,t ),所以t =-1,λ=2,即λ=2时,a 和b 反向,且共线,所以λ∈⎝ ⎛⎭⎪⎫-12,2∪(2,+∞).故选A .1.设m ,n 是两个非零向量,且m =(x 1,y 1),n =(x 2,y 2),则以下等式中,与m ⊥n 等价的个数为( )①m ·n =0;②x 1x 2=-y 1y 2;③|m +n |=|m -n |;④|m +n |=m 2+n 2. A .1 B .2 C .3 D .4解析:①②中的等式显然与m ⊥n 等价;对③④中的等式的两边平方,化简,得m ·n =0,因此也是与m ⊥n 等价的,故选D .答案:D2.已知向量a =(-2,1),b =(-2,-3),则向量a 在向量b 方向上的投影的数量为( )A .-1313 B .1313C .0D .1 答案:B3.(2012·广东广州测试)已知向量a =(1,n ),b =(n,1),其中n ≠±1,则下列结论正确的是( )A .(a -b )∥(a +b )B .(a +b )∥bC .(a -b )⊥(a +b )D .(a +b )⊥b解析:∵a -b =(1-n ,n -1),a +b =(1+n ,n +1), ∴(a -b )·(a +b )=0, ∴(a -b )⊥(a +b ). 答案:C4.已知a =(1,2),b =(1,1),c =b -k a ,若c ⊥a ,则c =__________.解析:根据a 和b 的坐标,求c 的坐标,再利用垂直建立关于k 的方程,求出k 后可得向量c .答案:⎝ ⎛⎭⎪⎫25,-155.已知i =(1,0),j =(0,1),a =i -2j ,b =i +m j ,给出下列命题:①若a 与b 的夹角为锐角,则m <12;②当且仅当m =12时,a 与b 互相垂直;③a 与b不可能是方向相反的向量;④若|a |=|b |,则m =-2.其中正确的命题的序号是__________.答案:①②③6.设向量a =(1,-1),b =(3,-4),x =a +λb ,λ为实数,证明:使|x |最小的向量x 垂直于向量b .证明:因为|x |2=x ·x =|a |2+λ2|b |2+2λa ·b , 所以x 2=25λ2+14λ+2=⎝ ⎛⎭⎪⎫5λ+752+125.当5λ+75=0,即λ=-725时,|x |最小.此时x =a -725b =⎝ ⎛⎭⎪⎫425,325. 又425×3-325×4=0,所以向量x 与b 垂直.。
高中数学第二章平面向量的基本定理及坐标表示(第2课时)平面向量的正交分解及坐标表示教案

第2课时平面向量的正交分解及坐标表示[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P94~P100的内容,回答下列问题.(1)在平面内,规定e1,e2为基底,那么一个向量关于e1,e2的分解是唯一的吗?提示:唯一.(2)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,任作一向量OA.根据平面向量基本定理,OA=x i+y j,那么(x,y)与A点的坐标相同吗?提示:相同.(3)如果向量OA也用(x,y)表示,那么这种向量OA与实数对(x,y)之间是否一一对应?提示:一一对应.(4)已知a=(x1,y1),b=(x2,y2),如何求a+b,a-b,λa的坐标?提示:a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1).(5)若A(x1,y1),B(x2,y2),你能求出AB的坐标吗?提示:能.AB=(x2-x1,y2-y1).2.归纳总结,核心必记(1)平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.(2)平面向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,有且只有一对实数x、y,使得a=x i+y j,则(x,y)叫做向量a的坐标,记作a=(x,y),此式叫做向量的坐标表示.(3)向量i,j,0的坐标表示i=(1,0),j=(0,1),0=(0,0).(4)平面向量的坐标运算,y 2),其中(1)在平面直角坐标系中,若a =b ,那么a 与b 的坐标具有什么特点?为什么?提示:若a =b ,那么它们的坐标相同,根据平面向量基本定理,相等向量在平面直角坐标系中的分解是唯一的,所以相等向量的坐标相同. (2)与坐标轴平行的向量的坐标有什么特点?提示:与x 轴平行的向量的纵坐标为0,即a =(x,0),与y 轴平行的向量的横坐标为0,即b =(0,y ).(3)点的坐标与向量坐标有什么区别和联系?提示:区别:①表示形式不同,向量a =(x ,y )中间用等号连接,而点的坐标A (x ,y )中间没有等号.②意义不同,点A (x ,y )的坐标表示点A 在平面直角坐标系中的位置,向量a =(x ,y )的坐标既表示大小,又表示方向;另外(x ,y )既可以表示点,也可以表示向量,叙述时应指明点(x ,y )或向量(x ,y ).联系:当平面向量的起点在原点时,平面向量的坐标与向量终点坐标相同. (4)两向量a =(x 1,y 1),b =(x 2,y 2)共线的坐标条件能表示为x 1x 2=y 1y 2吗?提示:不一定,为使分式有意义,需分母不为0,可知只有当x 2y 2≠0时才能这样表示. (5)如果两个非零向量共线,你能通过其坐标判断它们是同向还是反向吗?提示:将b 写成λa 的形式,根据λ的符号判断,如a =(-1,2),b =⎝ ⎛⎭⎪⎫16,-13=-16(-1,2)=-16a ,故a ,b 反向.[课前反思](1)平面向量的正交分解:;(2)平面向量的坐标表示:;(3)平面向量的坐标运算:;(4)平面向量共线的坐标表示:.知识点1讲一讲1.(1)已知向量a在射线y=x(x≥0)上,且起点为坐标原点O,又|a|=2,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,则向量a的坐标为( )A.(1,1) B.(-1,-1)C.(2,2) D.(-2,-2)(2)如图所示,在平面直角坐标系中,i,j分别为与两个坐标轴同向的单位向量,OA,a是平面内的向量,且A点坐标为(x,y),则下列说法正确的是______.(填序号)①向量a可以表示为a=m i+n j;②只有当a的起点在原点时a=(x,y);③若a=OA,则终点A的坐标就是向量a的坐标.[尝试解答] (1)由题意,a=(2cos 45°)i+(2sin 45°)j=i+j=(1,1).(2)由平面向量的基本定理知,有且只有一对实数m,n,使得a=m i+n j,所以①正确.当a=OA时,均有a=(x,y),所以②错,③正确.答案:(1)A (2)①③类题·通法求点和向量坐标的常用方法(1)在求一个向量时,可以先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.(2)求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标. 练一练1.在平面直角坐标系xOy 中,向量a ,b ,c 的方向如图所示,且|a |=2,|b |=3,|c |=4,分别计算出它们的坐标.解:设a =(a 1,a 2),b =(b 1,b 2),c =(c 1,c 2), 则a 1=|a |cos 45°=222=2,a 2=|a |sin 45°=222=2, b 1=|b |cos 120°=3⎝ ⎛⎭⎪⎫-12=-32,b 2=|b |sin 120°=332=332, c 1=|c |cos(-30°)=432=23,c 2=|c |sin(-30°)=4⎝ ⎛⎭⎪⎫-12=-2. 因此a =(2,2),b =⎝ ⎛⎭⎪⎫-32,332,c =(23,-2).知识点2讲一讲2.(1)已知向量a ,b 的坐标分别是(-1,2),(3,-5),求a +b ,a -b,3a,2a +3b 的坐标; (2)已知A (-2,4),B (3,-1),C (-3,-4),且CM =3CA ,CN =2CB ,求M ,N 及MN 的坐标.[尝试解答] (1)a +b =(-1,2)+(3,-5)=(2,-3),a -b =(-1,2)-(3,-5)=(-4,7),3a =3(-1,2)=(-3,6),2a +3b =2(-1,2)+3(3,-5)=(-2,4)+(9,-15)=(7,-11). (2)法一:由A (-2,4),B (3,-1),C (-3,-4), 可得CA =(-2,4)-(-3,-4)=(1,8),CB =(3,-1)-(-3,-4)=(6,3),所以CM =3CA =3(1,8)=(3,24),CN =2CB =2(6,3)=(12,6).设M (x 1,y 1),N (x 2,y 2),则CM =(x 1+3,y 1+4)=(3,24),x 1=0,y 1=20;CN =(x 2+3,y 2+4)=(12,6),x 2=9,y 2=2,所以M (0,20),N (9,2),MN =(9,2)-(0,20)=(9,-18).法二:设点O 为坐标原点, 则由CM =3CA ,CN =2CB , 可得OM -OC =3(OA -OC ),ON -OC =2(OB -OC ),从而OM =3OA -2OC ,ON =2OB -OC , 所以OM =3(-2,4)-2(-3,-4)=(0,20),ON =2(3,-1)-(-3,-4)=(9,2),即点M (0,20),N (9,2),故MN =(9,2)-(0,20)=(9,-18).类题·通法(1)平面向量坐标运算的方法①若已知向量的坐标,则直接利用向量和、差及向量数乘运算的坐标运算法则求解. ②若已知有向线段两端点的坐标,则可先求出向量的坐标,再利用向量的坐标运算法则求解. (2)坐标形式下向量相等的条件及其应用①条件:相等向量的对应坐标相等;对应坐标相等的向量是相等向量.②应用:利用坐标形式下向量相等的条件,可以建立相等关系,由此可求某些参数的值. 练一练2.(1)已知3a -2b =(3,-2),a =(x,2),b =(0,y ),则x ,y 的值分别为( ) A .-1,2 B .1,-4C .1,4 D .-1,4(2)设点N 的坐标为(1,2),点M 的坐标为(3,2),则向量NM 的坐标为________. 解析:(1)由3a -2b =3(x,2)-2(0,y )=(3x,6)-(0,2y )=(3x,6-2y )=(3,-2),可得⎩⎪⎨⎪⎧3x =3,6-2y =-2,解得⎩⎪⎨⎪⎧x =1,y =4.(2)NM =(3,2)-(1,2)=(3-1,2-2)=(2,0). 答案:(1)C (2)(2,0)知识点3讲一讲3.(1)下列各组向量是平行向量的有________.(填序号)①a =⎝ ⎛⎭⎪⎫12,34,b =(-2,-3); ②a =(0.5,4),b =(-8,64); ③a =(2,3),b =(3,4);④a =(2,3),b =⎝ ⎛⎭⎪⎫-43,2. (2)已知A (2,1),B (0,4),C (1,3),D (5,-3),判断AB 与CD 是否共线?如果共线,它们的方向是相同还是相反?[尝试解答] (1)①12(-3)-34(-2)=-32+32=0,∴a∥b .②0.564-4(-8)=32+32=64≠0,∴a ,b 不平行. ③24-33=8-9=-1≠0,∴a ,b 不平行.④22-3⎝ ⎛⎭⎪⎫-43=4+4=8≠0,∴a ,b 不平行.(2)AB =(0,4)-(2,1)=(-2,3),CD =(5,-3)-(1,3)=(4,-6).法一:∵(-2)(-6)-34=0,∴AB 与CD 共线,通过观察可知,AB 和CD 方向相反. 法二:∵CD =-2AB ,∴AB 与CD 共线且方向相反. 答案:(1)①类题·通法(1)向量共线的判定方法①利用向量共线定理,由a =λb (b ≠0)推出a ∥b . ②利用向量共线的坐标表达式x 1y 2-x 2y 1=0直接求解. (2)三点共线的实质与证明步骤①实质:三点共线问题的实质是向量共线问题.两个向量共线只需满足方向相同或相反,两个向量共线与两个向量平行是一致的.②证明步骤:利用向量平行证明三点共线需分两步完成:(ⅰ)证明向量平行;(ⅱ)证明两个向量有公共点. 练一练3.(1)已知a =(1,2),b =(-3,2),当实数k 为何值时,(k a +b )∥(a -3b )?这两个向量的方向是相同还是相反?(2)已知点A (x,0),B (2x,1),C (2,x ),D (6,2x ). ①求实数x 的值,使向量AB 与CD 共线;②当向量AB 与CD 共线时,点A ,B ,C ,D 是否在一条直线上? 解:(1)∵a =(1,2),b =(-3,2),∴k a +b =(k -3,2k +2),a -3b =(10,-4). 由题意得(k -3)(-4)-10(2k +2)=0, 解得k =-13.此时k a +b =-13a +b =-13(a -3b ),∴当k =-13时,(k a +b )∥(a -3b ),并且它们的方向相反.(2)①AB =(x,1),CD =(4,x ). ∵AB ∥CD ,∴x 2=4,x =±2. ②由已知得BC =(2-2x ,x -1), 当x =2时,BC =(-2,1),AB =(2,1),∴AB 和BC 不平行,此时A ,B ,C ,D 不在一条直线上; 当x =-2时,BC =(6,-3),AB =(-2,1), ∴AB ∥BC ,此时A ,B ,C 三点共线.又AB ∥CD ,∴A ,B ,C ,D 四点在一条直线上. 综上,当x =-2时,A ,B ,C ,D 四点在一条直线上.[课堂归纳·感悟提升]1.本节课的重点是平面向量的坐标表示及运算、平面向量共线的坐标表示. 2.本节课要重点掌握以下三个问题 (1)向量的坐标表示,见讲1; (2)向量的坐标运算,见讲2;(3)向量共线的坐标表示,见讲3. 3.要正确理解向量平行的条件(1)a ∥b (b ≠0)⇔a =λb .这是几何运算,体现了向量a 与b 的长度及方向之间的关系. (2)a ∥b ⇔a 1b 2-a 2b 1=0,其中a =(a 1,b 1),b =(a 2,b 2).这是代数运算,由于不需引进参数λ,从而简化代数运算.(3)a ∥b ⇔a 1b 1=a 2b 2,其中a =(a 1,b 1),b =(a 2,b 2)且b 1≠0,b 2≠0.即两向量的对应坐标成比例.通过这种形式较易记忆向量共线的坐标表示,而且不易出现搭配错误.课下能力提升(十八)[学业水平达标练]题组1 向量的坐标表示 1.给出下列几种说法: ①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标; ③一个坐标对应唯一的一个向量;④平面上一个点与以原点为始点,该点为终点的向量一一对应. 其中正确说法的个数是( ) A .1 B .2C .3 D .4解析:选C 由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误. 2.已知向量OA =(1,-2),OB =(-3,4),则12AB 等于( )A .(-2,3)B .(2,-3)C .(2,3)D .(-2,-3)解析:选A AB =OB -OA =(-3,4)-(1,-2)=(-4,6), ∴12AB =12(-4,6)=(-2,3). 3.若A (2,-1),B (4,2),C (1,5),则AB +2 BC =________.解析:∵A (2,-1),B (4,2),C (1,5), ∴AB =(2,3),BC =(-3,3).∴AB +2 BC =(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9). 答案:(-4,9)题组2 平面向量的坐标运算4.已知四边形ABCD 为平行四边形,其中A (5,-1),B (-1,7),C (1,2),则顶点D 的坐标为( )A .(-7,6)B .(7,6)C .(6,7)D .(7,-6)解析:选D 设D (x ,y ),由AD =BC ,得(x -5,y +1)=(2,-5), ∴x =7,y =-6,∴D (7,-6).5.在平行四边形ABCD 中,AC 为一条对角线.若AB =(2,4),AC =(1,3),则BD =( ) A .(-2,-4) B .(-3,-5) C .(3,5) D .(2,4)解析:选B ∵AC =AB +AD , ∴AD =AC -AB =(-1,-1), ∴BD =AD -AB =(-3,-5),故选B.6.已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 解析:由题意得m a +n b =(2m ,m )+(n ,-2n )=(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,所以m -n =-3.答案:-37.已知点A (-1,2),B (2,8)及AC =13AB ,DA =-13BA ,求点C ,D 和CD 的坐标.解:设C (x 1,y 1),D (x 2,y 2).由题意可得AC =(x 1+1,y 1-2),AB =(3,6),DA =(-1-x 2,2-y 2),BA =(-3,-6). ∵AC =13AB ,DA =-13BA ,∴(x 1+1,y 1-2)=13(3,6)=(1,2),(-1-x 2,2-y 2)=-13(-3,-6)=(1,2).则有⎩⎪⎨⎪⎧x 1+1=1,y 1-2=2,⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2,解得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=-2,y 2=0.∴C ,D 的坐标分别为(0,4)和(-2,0), 因此CD =(-2,-4). 题组3 向量共线的坐标表示8.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12C .1D .2 解析:选B 由题意可得a +λb =(1+λ,2).由(a +λb )∥c ,得(1+λ)4-32=0,解得λ=12.9.已知A ,B ,C 三点共线,BA =-38AC ,点A ,B 的纵坐标分别为2,5,则点C 的纵坐标为________.解析:设点C 的纵坐标为y .∵A ,B ,C 三点共线,BA =-38AC ,A ,B 的纵坐标分别为2,5,∴2-5=-38(y -2).∴y =10.答案:1010.已知A (-1,0),B (3,-1),C (1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB .证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC =(2,2),BC =(-2,3),AB =(4,-1).因为AE =13AC ,所以AE =⎝ ⎛⎭⎪⎫23,23,所以(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,故E ⎝ ⎛⎭⎪⎫-13,23;因为BF =13BC ,所以BF =⎝ ⎛⎭⎪⎫-23,1, 所以(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,故F ⎝ ⎛⎭⎪⎫73,0.所以EF =⎝ ⎛⎭⎪⎫83,-23.又因为4⎝ ⎛⎭⎪⎫-23-83(-1)=0,所以EF ∥AB .11.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),回答下列问题: (1)求3a +b -2c ;(2)求满足a =m b +n c 的实数m ,n ;(3)若(a +k c )∥(2b -a ),求实数k .解:(1)3a +b -2c =3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(9-1-8,6+2-2)=(0,6).(2)∵a =m b +n c ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).∴-m +4n =3且2m +n =2,解得m =59,n =89. (3)∵(a +k c )∥(2b -a ),又a +k c =(3+4k,2+k ),2b -a =(-5,2),∴2(3+4k )-(-5)(2+k )=0.∴k =-1613. [能力提升综合练]1.已知向量a =(m,1),b =(m 2,2).若存在λ∈R ,使得a +λb =0,则m =( )A .0B .2C .0或2D .0或-2解析:选C ∵a =(m,1),b =(m 2,2),a +λb =0,∴(m +λm 2,1+2λ)=(0,0),即⎩⎪⎨⎪⎧ m +λm 2=0,1+2λ=0,∴⎩⎪⎨⎪⎧ λ=-12,m =0或2,故选C.2.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析:选D ∵四条有向线段首尾相接构成四边形,则对应向量之和为零向量,即4a +(4b -2c )+2(a -c )+d =0,∴d =-6a -4b +4c =-6(1,-3)-4(-2,4)+4(-1,-2)=(-2,-6).3.已知向量a =(1,0),b =(0,1),c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析:选D ∵a =(1,0),b =(0,1),若k =1,则c =a +b =(1,1),d =a -b =(1,-1),显然c 与d 不平行,排除A 、B.若k =-1,则c =-a +b =(-1,1),d =a -b =-(-1,1),即c ∥d 且c 与d 反向.4.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n等于( )A .-12 B.12C .-2D .2 解析:选A 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12. 5.已知AB =(6,1),BC =(x ,y ),CD =(-2,-3),BC ∥DA ,则x +2y 的值为________.解析:∵AD =AB +BC +CD =(6,1)+(x ,y )+(-2,-3)=(x +4,y -2), ∴DA =-AD =-(x +4,y -2)=(-x -4,-y +2).∵BC ∥DA ,∴x (-y +2)-(-x -4)y =0,即x +2y =0.答案:06.已知向量OA =(3,-4),OB =(6,-3),OC =(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线.∵AB =OB -OA =(3,1),AC =OC -OA =(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12,∴m ≠12. 答案:m ≠127.已知点O (0,0),A (1,2),B (4,5),且OP =OA +t AB ,试问:(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 可能为平行四边形吗?若可能,求出相应的t 值;若不可能,请说明理由. 解:由题可知OA =(1,2),AB =(3,3), OP =(1,2)+t (3,3)=(1+3t,2+3t ).(1)若P 在x 轴上,则有2+3t =0,t =-23; 若P 在y 轴上,则有1+3t =0,t =-13; 若P 在第二象限,则有⎩⎪⎨⎪⎧ 1+3t <0,2+3t >0,解得-23<t <-13.(2)PB =PO +OB =(-1-3t ,-2-3t )+(4,5)=(3-3t,3-3t ).若四边形OABP 是平行四边形,则有OA =PB ,即⎩⎪⎨⎪⎧ 3-3t =1,3-3t =2,方程组显然无解.∴四边形OABP 不可能是平行四边形.8.已知向量u =(x ,y )和v =(y,2y -x )的对应关系可用v =f (u )表示.(1)若a =(1,1),b =(1,0),试求向量f (a )及f (b )的坐标;(2)求使f (c )=(4,5)的向量c 的坐标;(3)对于任意向量a ,b 及常数λ,μ,证明:f (λa +μb )=λf (a )+μf (b )恒成立. 解:(1)由题意知,当a =(1,1)时,f (a )=(1,21-1)=(1,1).当b =(1,0)时,f (b )=(0,20-1)=(0,-1).(2)设c =(x ,y ),则f (c )=(y,2y -x )=(4,5),则⎩⎪⎨⎪⎧ y =4,2y -x =5.解得⎩⎪⎨⎪⎧ x =3,y =4,∴c =(3,4).(3)证明:设a =(x 1,y 1),b =(x 2,y 2),则λa +μb =(λx 1+μx 2,λy 1+μy 2),∴f (λa +μb )=(λy 1+μy 2,2(λy 1+μy 2)-(λx 1+μx 2)).又∵f (a )=(y 1,2y 1-x 1),f (b )=(y 2,2y 2-x 2),∴λf (a )+μf (b )=λ(y 1,2y 1-x 1)+μ(y 2,2y 2-x 2)=(λy 1+μy 2,2(λy 1+μy 2)-(λx 1+μx 2))=f (λa +μb ).∴f (λa +μb )=λf (a )+μf (b )恒成立.。
高二数学《平面向量的坐标表示》说课稿 3篇

高二数学《平面向量的坐标表示》说课稿1各位老师好:我是户县二中的李敏,今天讲的课题是《平面向量的坐标的表示》,本节课是高中数学北师大版必修4第二章第4节的内容,下面我将从四个方面对本节课的教学设计来加以说明。
一、学情分析本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。
而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、高考的考点分析:在历年高考试题中,平面向量占有重要地位,近几年更是有所加强。
这些试题不仅平面向量的相关概念等基本知识,而且常考平面向量的运算;平面向量共线的条件;用坐标表示两个向量的夹角等知识的解题技能。
考查学生在数学学习和研究过程中知识的迁移、融会,进而考查学生的学习潜能和数学素养,为考生展现其创新意识和发挥创造能力提高广阔的空间,相关题型经常在高考试卷里出现,而且经常以选择、填空、解答题的形式出现。
三、复习目标1.会用坐标表示平面向量的加法、减法与数乘运算.2.理解用坐标表示的`平面向量共线的条件.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.教学重难点的确定与突破:根据《20xx高考大纲》和对近几年高考试题的分析,我确定本节的教学重点为:平面向量的坐标表示及运算。
难点为:平面向量坐标运算与表示的理解。
我将引导学生通过复习指导,归纳概念与运算规律,模仿例题解决习题等过程来达到突破重难点。
四、说教法根据本节课是复习课,我采用了“自学、指导、练习”的教学方法,即通过对知识点、考点的复习,围绕教学目标和重难点提出一系列精心设计的问题,在教师的指导下,用做题来复习和巩固旧知识点。
五、说学法根据平时作业中的问题来看,学生会本节课遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算等方面。
【金版学案】2015-2016学年高中数学 2.3.1平面向量基本定理练习(含解析)苏教版必修4

2.3 向量的坐标表示2.3.1 平面向量基本定理情景:“神舟”十号宇宙飞船在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度.在力的分解的平行四边形法则中,我们看到一个力可以分解为两个不共线方向的力的和.思考:平面内任一向量是否可以用两个不共线的向量来表示呢?1.如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使________.这个定理叫________________.答案:a=λ1e1+λ2e2平面向量基本定理2.不共线的向量e1,e2叫做表示这一平面内所有向量的一组________.答案:基底3.基底的特征是________、________.答案:两个向量不共线平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.我们把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.向量的正交分解:一个平面向量用一组基底e1,e2表示成a=λ1e1+λ2e2的形式,我们称它为向量的分解.当e1,e2互相垂直时,就称为向量的正交分解.重点诠释:对平面向量基本定理的理解主要体现在以下几个方面:(1)基底不唯一,关键是两基底不共线;(2)由定理可将任一向量a在给出基底e1,e2的条件下进行分解;(3)基底给定时,分解形式唯一;(4)以共线向量为基础,通过把一个向量在其他两个向量上分解,就可以揭示出该定理的本质,由此定理可以得到一个常用结论:若e1,e2不共线,则λ1e1+λ2e2=0⇔λ1=λ2=0.基础巩固1.e1,e2是平面内的一组基底,则下面四组向量中,不能作为一组基底的是( ) A.e1和e1+e2B.e1-2e2和e2-2e1C.e1-2e2和4e2-2e1 D.e1+e2和e1-e2答案:C2.下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;②一个平面内有无数多对不共线向量可作为表示该平面所有向量的基底;③零向量不可作为基底中的向量.其中正确的说法是________(填序号).答案:②③3.已知向量a,b不共线,且c=λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1=________.答案:04.若3x+4y=a且2x-3y=b,其中a,b为已知向量,则x+y=________(用a,b表示).答案:517a +117b能力升级5.向量OA →,OB →,OC →的终点A 、B 、C 在一条直线上,且AC →=-3CB →,设OA →=p ,OB →=q ,OC →=r ,则以下等式成立的是( )A .r =-12p +32q B .r =-p +2qC .r =32p -12q D .r =-q +2q解析:由AC →=-3CB →,得OC →-OA →=-3(OB →-OC →),2OC →=-OA →+3OB →,OC →=-12OA →+32OB →,即r =-12p +32q .答案:A6.已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,那么AO →=________AD →.解析:由D 为BC 边中点可得: OD →=12(OB →+OC →),又2OA →+OB →+OC →=0,所以2OA →+2OD →=0.故AO →=OD →,从而AO →=12AD →.答案:127.在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.解析:CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,故λ=23.答案:238.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析:依题意可知M 为△ABC 的重心,连接AM 并延长交BC 于点D ,则AM →=23AD →.①因为AD 为中线,所以AB →+AC →=2AD →=mAM →,即2AD →=mAM →.② 联立①②解得m =3.答案:39.用向量证明三角形的三条边的中线共点.证明:设AD 、BE 、CF 是△ABC 的三条中线.设AC →=a ,BC →=b ,AG →=23AD →,则AB →=a -b ,AD →=a -12b ,BE →=-12a +b .设AD 与BE 交于点G 1, 并设AG 1→=λAD →,BG 1→=μBE →, 则AG 1→=λa -λ2b ,BG 1→=-μ2a +μb .又因为AG 1→=AB →+BG 1→=⎝ ⎛⎭⎪⎫1-μ2a +(μ-1)b .所以⎩⎪⎨⎪⎧λ=1-μ2,-λ2=μ-1,解得λ=μ=23,即AG 1→=23AD →.再设AD 与CF 交于点G 2,同理可得AG 2→=23AD →,故点G 1与点G 2重合,即AD 、BE 、CF 相交于一点.所以三角形的三条边的中线共点.10.如右下图,在△ABC 中,M 是边AB 的中点,E 是CM 的中点,AE 的延长线交BC 于点F ,MH ∥AF.求证:BH →=HF →=FC →.证明:设BH →=a ,BM →=b .则BA →=2b ,MH →=a -b ,AF →=2MH →=2a -2b ,BF →=AF →+BA →=2a -2b +2b =2a . 所以HF →=BF →-BH →=a .因此BH →=HF →. 同理可证:HF →=FC →. 因此结论成立.11.如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为60°,OA →与OC →,OB →与OC →的夹角都为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →,求λ+μ的值.解析:过点C 分别作CN ∥OA ,交射线OB 于点N ,作CM ∥OB ,交射线OA 于点M ,则OC →=OM →+ON →=λOA →+μOB →.所以OM →=λOA →,ON →=μOB →.由已知,|OA →|=|OB →|=1, 在平行四边形OMCN 中, ∠MOC =∠NOC =∠NCO =30°, 所以△NOC 为等腰三角形. 所以ON =NC =OM .所以平行四边形OMCN 为菱形.连接MN 交OC 于点H ,则OC ⊥MN ,且H 为O C 中点.在Rt △OHM 中, cos ∠HOM =OH OM =12OC OM,即cos 30°=3OM=32,解得OM =2,所以ON =2.所以λ=|OM →||OA →|=2,μ=|ON →||OB →|=2.故λ+μ=4.12.在一个平面内有不共线的三个定点O 、A 、B ,动点P 关于点A 的对称点为Q ,Q 关于点B 的对称点为R.已知OA →=a ,OB →=b ,用a 、b 表示PR →.解析:如右图所示.方法一 由题意知A 为PQ 的中点,B 为QR 的中点, ∴PR ∥AB 且PR =2AB .∴PR →=2·AB →=2(OB →-OA →)=2(b -a ). 方法二 PR →=OR →-OP →, 在△OQR 中,B 为QR 的中点, ∴2OB →=OR →+OQ →.∴OR →=2OB →-OQ →. 同理有2OA →=OP →+OQ →,∴OP →=2OA →-OQ →.则PR →=2OB →-OQ →-(2OA →-OQ →)=2b -OQ →-2a +OQ →=2b -2a .。
高中数学必修二 专题02 平面向量的基本定理、坐标运算及数量积(重难点突破)(含答案)
专题02 平面向量的基本定理、坐标运算及数量积一、考情分析二、题型分析(一) 平面向量的基本定理与坐标表示知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·四川雅安中学高一月考)以下四组向量能作为基底的是( )A .B .C .D .12(1,2),(2,4)e e ==12(3,1),(1,3)e e =-=-12(2,1),(2,1)e e ==--121(,0),(3,0)2e e ==【答案】B【解析】对于,与共线,不能作为基底;对于,与不共线,能作为基底;对于,与共线,不能作为基底;对于,与共线,不能作为基底,故选B. (2).(2019·江西高一期末)设是平面内的一组基底,则下面四组向量中,能作为基底的是( )A .与B .与C .与D .与 【答案】C【解析】由是平面内的一组基底,所以和不共线,对应选项A :,所以这2个向量共线,不能作为基底;对应选项B :,所以这2个向量共线,不能作为基底; 对应选项D :,所以这2个向量共线,不能作为基底; 对应选项C :与不共线,能作为基底.故选:C .A 114220,e ⨯-⨯=∴2eB ()()1331180,e ⨯--⨯-=≠∴2eC ()()121120,e ⨯--⨯-=∴2eD 110030,2e ⨯-⨯=∴2e 12,e e 21e e -12e e -1223e e +1246e e --12e e +12e e -121128e e -+1214e e -12,e e 1e 2e 21e e -()12e e =--1223e e +()121462e e =---121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭12e e +12e e -(3).(2020·内蒙古高三月考)在正方形中,点为内切圆的圆心,若,则的值为( )A .B .C .D .【答案】D【解析】连并延长到与相交于点,设正方形的边长为1,则,设内切圆的半径为,则,可得. 设内切圆在边上的切点为,则,有,,故. 故选:DABCD O ABC ∆AO xAB yAD =+xy 1434-1412OB AC HABCD 122BH BD ==ABC ∆r)1BH OH OB r r =+=+==r =ABC ∆AB E ()1AO AE EO r AB r AD=+=-+22222112222AB AD AB AD ⎛⎛⎫-=-+=+- ⎪⎪⎝⎭⎝⎭x =1y =-11222xy ⎛⎫=-= ⎪ ⎪⎝⎭【变式训练1】.(2020·北京高三开学考试)在平行四边形ABCD 中,,,,则 .(用表示) 【答案】 【解析】如图:=-=+2=+=-+(-)=-+ =.故本题答案为. 【变式训练2】.(2020·辽宁高考模拟)在中,,,若,则( )A .B .C .D .【答案】D【解析】因为,所以点是的中点,又因为,所以点是的中点,所以有:,因此1AB e =2AC e =14NC AC =12BM MC =MN =12,e e 1225312e e -+MN CN CM CN BM CN 23BC 14AC 23AC AB 214e 212()3e e -1225312e e -+1225312e e -+ABC ∆2AB AC AD +=0AE DE +=EB xAB y AC =+3y x =3x y =3y x =-3x y =-2AB AC AD +=D BC 0AE DE +=E AD 11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+,故本题选D. 31,344x y x y =-=⇒=-(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ).(4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2020·福建高三月考)已知,若,则的坐标为( )A .B .C .D . 【答案】D【解析】设,因为,所以.所以,所以, 解得: ,.所以.故选D. (2).(2019·湖南高一期末)已知,,则( ) A .2 BC .4 D.【答案】C 【解析】由题得=(0,4)所以.故选:C(5,2),(4,3)a b =-=--230a b c -+=c 8(1,)3138(,)33-134(,)33134(,)33--(,)c x y =230a b c -+=(5,2)2(4,3)3(,)(0,0)x y ----+=(583,263)(0,0)x y ++-++=1330,430x y +=+=133x 43y =-134(,)33c =--()0,1A -()0,3B ||AB =AB ||04AB =+=【变式训练1】.(2020·湖北高一期中)已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】(1)(2),∵与共线,∴∴【变式训练2】.(2018·上海市嘉定区封浜高级中学高二期中)已知,为坐标原点.(1) 求向量的坐标及;(2) 若,求与同向的单位向量的坐标. 【答案】(1) ,;(2).【解析】 (1),.(2),, 与同向的单位向量. ()1,2a =()3,2b =-2a b -k ka b +2a b -()7,2-12k =-()()()21,223,27,2a b -=--=-()()()1,23,23,22ka b k k k +=+-=-+()()()21,223,27,2a b -=--=-ka b +2a b -()()72223k k +=--12k =-(3,4),(5,10)A B ---O AB AB OC OA OB =+OC ()8,6AB =-10AB =21010OC n OC ⎛==- ⎝⎭()8,6AB =-2810AB ∴==()()()3,45,102,14OC OA OB =+=--+-=-22OC ==∴OC 21010OC n OC ⎛==- ⎝⎭(三) 平面向量的数量积知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA→=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则(1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|.特别地,a·a =|a|2或|a|=a ·a .(3)cos θ=a·b |a||b|.(4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则(1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.(3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.(4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1)(2020·浙江高一期末)已知向量,,则__________,与方向相反的单位向量__________.【解析】依题意,故与方向相反的单位向量为. (2).(2019·全国高考真题)已知=(2,3),=(3,t ),=1,则= A .-3B .-2C .2D .3 【答案】C 【解析】 由,,得,则,.故选C【变式训练1】.(2019·安徽高三月考(理))已知,,均为单位向量,与的夹角为,则的最大值为( ) ()3,4a =()1,2b =-2a b +=a c =34,55⎛⎫-- ⎪⎝⎭()21,8a b +=2218a b +=+=a c ()()()3,43,434,5553,4a a -----⎛⎫===-- ⎪---⎝⎭AB AC ||BC AB BC ⋅(1,3)BC AC AB t =-=-211BC ==3t =(1,0)BC =(2,3)(1,0)21302AB BC ==⨯+⨯=a b c a b 60()(2)c a c b +⋅-A .BC .2D . 3【答案】B 【解析】设与的夹角为,因为,,所以,所以,所以.故选:B .【变式训练2】.(2020·四川高一月考)已知,若,则实数=__________;=__________. 【答案】0 0【解析】∵,∴,∵,∴,解得. 故答案为.【变式训练3】.(2019·江苏高考真题)如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点.若,则的值是_____. 32c 2a b -θ222|2|443a b a a b b -=-⋅+=|2|3a b -=2()(2)(2)21|||2|cos 1c a c b cc a b a b c a b θ+⋅-=+⋅--⋅=+⋅--()(2)3cos c a c b θ+⋅-=max =cos 1θ=()()1,3,1,2a b ==-0a b λμ+=λμ()()1,3,1,2a b ==-()()()1,31,2,32a b λμλμλμλμ+=+-=+-0a b λμ+=0320λμλμ+=⎧⎨-=⎩0λμ=⎧⎨=⎩0,0λμ==ABC O 6AB AC AO EC ⋅=⋅ABAC. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD ., 得即故. 【变式训练4】.(2020·浙江高一期中)已知为单位向量,. (1)求;(2)求与的夹角的余弦值;()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭2213,22AB AC =3,AB AC =AB AC=,a b 12a b ⋅=2a b +2a b +b θ【答案】(1;(2).【解析】由题得; 由题得与的夹角的余弦值为故答案为:(1;(2.7222=4++4=5+4a b a b a b +⋅⋅2a b +b θ(2)2cos |2|||7a b b a b a b b θ+⋅⋅====+(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)(2020·江西高一期末)已知向量,,若,则( )A .B .C .D .【答案】D 【解析】向量,,且,,解得. 故选:D.(2).(多选题)已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( )A .a 与b 的夹角为钝角()1,a m =()2,5b =//a b m =152-25-52()1,a m =()2,5b =//a b 25m ∴=52m =B .向量a 在bC .2m +n =4D .mn 的最大值为2 【答案】CD对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为22a b b⋅=,错误; 对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12= (2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD.【变式训练1】(2020·浙江高一期中)已知向量满足.若,则 _______; ______.【答案】【解析】因为,所以(1)×m 4=0,所以m= 4.所以故答案为:(1). (2).【变式训练2】.(2020广东高一期末)已知, ;(1) 若,求的值;,a b (1,2),(2,)a b m =-=//a b m =||b =4-//a b ---2||=2+b =(4-)cos ,1(),sin ,1(θθ==b aR ∈θ)0,2(=+b a θθθcos sin 2sin 2+(2)若,,求的值.【答案】(1)(2) 【解析】(1),∴, ……1分∴ ; ……3分∴. ……7分(2), ……8分∴,两边平方得, ……10分 ,且, ∴∴, ……12分 ∴. ……分)51,0(=-b a(,2)θππ∈θθcos sin +12-75-)cos ,1(),sin ,1(θθ==b a)0,2()cos sin ,2(=+=+θθb asin cos 0,tan 1θθθ+=∴=-1tan tan 2tan cos sin cos sin 2sin cos sin 2sin 222222++=++=+θθθθθθθθθθθ21-=)51,0()cos sin ,0(=-=-θθb a51cos sin =-θθ2512cos sin =θθ(,2)θππ∈02512cos sin >=θθ⎪⎭⎫⎝⎛∈ππθ23,0cos sin <+θθ57cos sin 21cos sin -=+-=+θθθθ14。
05-第三节 平面向量基本定理及坐标表示-课时1 平面向量基本定理高中数学必修第二册人教版
1
,与相交于点.
3
(1)用和分别表示和;
【解析】 = + = −
因为 =
1
,所以
3
1
+ .
2
= + = − +
1
.
3
(2)若 = + = + ,求实数 和 的值.
【解析】 = + = + (− +
= + = + (− +
1
)
3
,
3
=
1
)
2
3
1− =
=
由平面向量基本定理,得൞
解得൞
= 1 − ,
=
2
= (1 − ) +
+ (1 − ).
4
,
5
3
.
5
,
2
第三节 平面向量基本定理及坐标
表示
课时1 平面向量基本定理
过能力 学科关键能力构建
2
的中点,为线段上一点,且满足
=
2
A.
3
7
9
+ ,则实数 =( A )
1
B.
3
1
C.−
3
2
D.−
3
【解析】 由题意,得 =
1
,
3
=
1
,且存在实数
2
使得
.
= + (1 − ) = ( + ) + (1 − )( + ) = ( +
4
1
1
向量基本定理
二、平面向量基本定理及坐标表示1.平面向量基本定理如果e 1、e 2是同一平面内的两个________向量,那么对于这一平面内的任意向量a ,_______一对实数λ1、λ2, 使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组-__________.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =_____________,a -b =_____________, λa =_____________,|a |=_____________. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=_____________,|AB →|=_____________. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a 、b 共线⇔_____________. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( ) (3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.()1.设e 1,e 2是平面内一组基底,那么( ) A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对 2.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________.4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案(1,5)题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( ) A.15 B.25 C.35 D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=m AB →+211AC →,则实数m 的值为________.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD→,则AD→=___________________________________________________________.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝⎛⎭⎫1,83B.⎝⎛⎭⎫-133,83C.⎝⎛⎭⎫133,43 D.⎝⎛⎭⎫-133,-43 (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量坐标为________.思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为( )A .(7,4)B .(7,14)C .(5,4)D .(5,14)(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________.思维升华 平面向量共线的坐标表示问题的常见类型及解题策略 (1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量. (3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.11.解析法(坐标法)在向量中的应用典例 (12分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键.2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练(时间:35分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是( )A .①②B .①③C .①④D .③④2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)3.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A .-12a +32b B.12a -32b C .-32a -12bD .-32a +12b4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) A.14 B.12C .1D .2 5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为( )A .2 B.52C .3D .46.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 9.已知A (1,1),B (3,-1),C (a ,b ). (1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC →=2AB →,求点C 的坐标.10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.B 组 专项能力提升 (时间:15分钟)11.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn 等于( )A .-2B .2C .-12 D.1212.已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限,且∠AOC =135°,设OC →=-OA →+λOB →(λ∈R ),则λ的值为________. 13.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.14.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.15.将等腰直角三角板ADC 与一个角为30°的直角三角板ABC 拼在一起组成如图所示的平面四边形ABCD ,其中∠DAC =45°,∠B =30°.若DB →=xDA →+yDC →,则xy的值是__________________.。
苏教版数学高二- 选修2-1教案 3.1.3-4 空间向量基本定理和坐标表示
3.1.3-4空间向量基本定理和坐标表示●三维目标1.知识与技能(1)掌握空间向量基本定理,能恰当地选择基底,用基向量表示空间任一向量.(2)理解空间向量的正交分解,理解向量坐标的意义.(3)掌握向量加法、减法、数乘的坐标运算法则,会应用向量坐标进行线性运算,能判断向量共线.2.过程与方法(1)由平面向量基本定理,类比得出空间向量基本定理,体会定理的条件及内涵;会在具体空间图形中,选取基底表示空间向量.(2)类比平面向量坐标运算法则,得出空间向量坐标运算法则,并运用这些法则进行向量坐标线性运算.(3)运用向量坐标进行向量共线的判定与应用.3.情感、态度与价值观能过教师的引导,学生探究,激发学生求知欲望和学习兴趣,使学生具备探究、归纳、应用的能力,形成严谨的思维习惯.●重点难点重点:用基底表示空间向量,向量线性运算的坐标表示.难点:用基底表示空间向量.教学时,应采用类比思维的方法,先回顾平面向量基本定理及坐标表示,得出空间向量基本定理及坐标表示,降低问题的难度,在具体的常见几何体(正方体、三棱锥、棱柱)中,展示用基底表示空间向量的方法与过程,突出本节的重点,化解教学的难点.●教学建议空间向量基本定理是向量法研究立体几何问题的基石,是本章的重中之重,空间向量的坐标表示及坐标运算,是坐标法研究立体几何的工具.因此本节课是全章内容的工具性内容,为学生学习立体几何提供新角度、新手段、新方法.由于学生已学习了平面向量基本定理及坐标运算,因而本节宜采用类比教学法,多发挥学生自主探究能力,通过回顾→类比→完善→应用的环节获取新知识,应用新知识.除使用常规的教学手段外,还将使用多媒体投影和计算机辅助教学,增加教学的直观性和趣味性.●教学流程回顾平面向量基本定理,类比得出空间向量基本定理,强调基向量的不共面性,线性表示的惟一性,常见几何体中基底的一般选法,定义单位正交基,推导空间向量基本定理的推论.⇒回顾平面向量的坐标表示,得出空间向量的坐标表示,理清向量坐标的实际意义,向量坐标与点坐标的关系.⇒回顾平面向量线性运算的坐标表示,得出空间向量的线性运算的坐标表示,向量坐标与起始点坐标的关系,共线向量的坐标条件.⇒通过例1及变式训练,让学生掌握基底的选取条件,即不共面向量,加深对基底概念的理解.⇒通过例2及变式训练,让学生掌握如何选取基向量,如何用基底表示某一向量,在具体操作中运用向量的线性运算法则.⇒通过例3及变式训练,让学生掌握向量坐标运算法则,掌握如何运用起点、终点坐标表示向量坐标.⇒通过例4及变式训练,让学生掌握向量共线的坐标条件的应用,由此判定向量共线或求值.⇒通过易错易误辨析,让学生分清向量共线与向量同向的区别,以免概念混淆,解题出错.⇒归纳整理,进行课堂小结,整体认识本节所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.课标解读1.了解空间向量的基本定理及其意义,理解空间向量的正交分解,掌握用基底表示空间向量的方法.(重点、难点)2.理解空间向量坐标的定义,掌握其坐标表示,掌握向量加法、减法及数乘的坐标运算法则.(重点)3.基向量的选取及应用.(易错点)空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一的有序实数组(x,y,z),使p=x e1+y e2+z e3.基底基向量123是空间不共面的三个向量,则把1e2,e3}称为空间的一个基底,e1,e2,e3叫做基向量.0不能作为基向量.正交基底单位正交基底如果空间一个基底的三个基向量是两两互相垂直,那么这个基底叫做正交基底.特别地:当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用{i ,j ,k }表示.空间向量基本定理推论设O ,A ,B ,C 是不共面的四点,则对空间任意一点P ,都存在惟一的有序实数组(x ,y ,z),使得OP →=xOA →+yOB →+zOC →.空间向量的坐标【问题导思】空间直角坐标系中,点的坐标与向量坐标有何联系与区别?【提示】 在空间直角坐标系中,当起点为原点时,向量坐标就是其终点坐标;当起点不是原点时,向量坐标是终点坐标减去起点坐标.所以向量坐标不是点的坐标,而是终点坐标与起点坐标的差值.在空间直角坐标系中,设A(a 1,b 1,c 1),B(a 2,b 2,c 2),则AB →=(a 2-a 1,b 2-b 1,c 2-c 1);当空间向量a 的起点移至坐标原点时,其终点坐标就是向量a 的坐标.空间向量的坐标运算空间向量的坐标运算与几何运算相比较,有哪些好处?【提示】 坐标运算实际上是实数间的运算,运算起来更为简捷方便. 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3)向量的加法a +b =(a 1+b 1,a 2+b 2,a 3+b 3)向量的减法a -b =(a 1-b 1,a 2-b 2,a 3-b 3)数乘向量λa =(λa 1,λa 2,λa 3),λ∈R基底的判断已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底?若能,试以此基底表示向量OD →=2e 1-e 2+3e 3;若不能,请说明理由.【思路探究】 判断{OA →,OB →,OC →}能否作为基底,关键是判断它们是否共面,一般假设其共面,利用共面向量定理分析;求OD →的表示式,设OD →=pOA →+qOB →+zOC →,利用待定系数法求系数.【自主解答】 假设OA →、OB →、OC →共面,由向量共面的充要条件知存在实数x 、y 使OA →=xOB →+yOC →成立.∴e 1+2e 2-e 3=x(-3e 1+e 2+2e 3)+y(e 1+e 2-e 3)=(-3x +y)e 1+(x +y)e 2+(2x -y)e 3, ∵{e 1,e 2,e 3}是空间的一个基底, ∴e 1,e 2,e 3不共面, ∴⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解,即不存在实数x 、y 使OA →=xOB →+yOC →, ∴OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底. 设OD →=pOA →+qOB →+zOC →,则有2e 1-e 2+3e 3=p(e 1+2e 2-e 3)+q(-3e 1+e 2+2e 3)+z(e 1+e 2-e 3)=(p -3q +z)e 1+(2p +q +z)e 2+(-p +2q -z)e 3∵{e 1,e 2,e 3}为空间的一个基底, ∴⎩⎪⎨⎪⎧p -3q +z =2,2p +q +z =-1,-p +2q -z =3,解之得⎩⎪⎨⎪⎧p =17,q =-5,z =-30,∴OD →=17OA →-5OB →-30OC →.1.判断三个向量能否作为基底,关键是判断它们是否共面,若从正面判断难以入手,可以用反证法结合共面向量定理或者利用常见的几何图形帮助,进行判断.2.求一向量在不同基底下的表示式(或坐标),一般采用待定系数法,即设出该向量在新基底下的表示式(或坐标),转化为在原基底下的表示式,对比系数.若{a ,b ,c }是空间的一个基底.试判断{a +b ,b +c ,c +a }能否作为空间的一个基底. 【解】 假设a +b ,b +c ,c +a 共面,则存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a )成立,即a +b =μa +λb +(λ+μ)c .∵{a ,b ,c }是空间的一个基底, ∴a ,b ,c 不共面. ∴⎩⎪⎨⎪⎧μ=1λ=1λ+μ=0,此方程组无解.即不存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a )成立,∴a +b ,b +c ,c +a 不共面. 故{a +b ,b +c ,c +a }能作为空间的一个基底.用基向量表示空间向量图3-1-10如图3-1-10,四棱锥P -OABC 的底面为矩形,PO ⊥平面OABC ,设OA →=a ,OC →=b ,OP →=c ,E ,F 分别是PC ,PB 的中点,试用a ,b ,c 表示:BF →,BE →,AE →,EF →.【思路探究】选取基向量→观察空间图形→利用线性运算→用基底表示向量【自主解答】 连结OB ,则BF →=12BP →=12(BO →+OP →)=12(-OA →-OC →+OP →)= -12a -12b +12c . BE →=BC →+CE →=-a +12CP →=-a +12(CO →+OP →)=-a +12(-b +c )=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12PC →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b+12c . EF →=12CB →=12OA →=-12a .1.空间中的任一向量均可用一组不共面的向量来表示,只要基底选定,这一向量用基底表达的形式是惟一的.2.用基底来表示空间中的向量是用向量解决数学问题的关键,解题时注意三角形法则以及平行四边形法则的应用.图3-1-11如图3-1-11,在平行六面体ABCD -A′B′C′D′中,AB →=a ,AD →=b ,=c ,M是CD′的中点,N 是C′D′的中点,用基底{a ,b ,c }表示以下向量:(1)AM →;(2)AN →.【解】 (1)AM →=12(AC →+)=12(AB →+AD →+AD →+)=12(a +2b +c )=12a +b +12c . (2)AN →=12(+)=12[(AB →+AD →+)+(AD →+)]=12(AB →+2AD →+2)=12a +b +c .空间向量的坐标运算已知A ,B ,C 三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),求适合下列条件的点P 的坐标.(1)OP →=12(AB →-AC →);(2)AP →=12(AB →-AC →).【思路探究】 利用向量的坐标等于终点的坐标减去起点的坐标求出AB →,AC →,然后进行坐标运算得到OP →,AP →,从而可确定点P 的坐标.【自主解答】 AB →=(2,6,-3),AC →=(-4,3,1).(1)OP →=12(AB →-AC →)=12(6,3,-4)=(3,32,-2),则点P 的坐标为(3,32,-2).(2)设点P 的坐标为(x ,y ,z),则AP →=(x -2,y +1,z -2). 由(1)知,AP →=12(AB →-AC →)=(3,32,-2),则⎩⎪⎨⎪⎧x -2=3y +1=32z -2=-2,解得⎩⎪⎨⎪⎧x =5y =12z =0,则点P的坐标为(5,12,0).1.牢记运算法则是正确进行向量线性运算的关键.2.涉及已知点的坐标进行向量运算时,注意利用终点的坐标减去起点的坐标得到向量的坐标,这是向量运算的前提.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),求AB →,AC →及2AB →+3AC →. 【解】 AB →=(-1,1,2)-(-2,0,2)=(1,1,0), AC →=(-3,0,4)-(-2,0,2)=(-1,0,2),2AB →+3AC →=2(1,1,0)+3(-1,0,2)=(2,2,0)+(-3,0,6)=(-1,2,6).空间向量平行的坐标表示已知A(1,0,0),B(0,1,0),C(0,0,2),求满足DB ∥AC ,DC ∥AB 的点D的坐标.【思路探究】 由已知条件DB ∥AC ,DC ∥AB ,转化为向量平行,用共线向量定理及空间向量平行的坐标表示,可求得D 点的坐标.【自主解答】 设D(x ,y ,z),则DB →=(-x,1-y ,-z),AC →=(-1,0,2), 由DB ∥AC ,设DB →=λAC →, 即(-x,1-y ,-z)=(-λ,0,2λ), 则⎩⎪⎨⎪⎧-x =-λ,1-y =0,-z =2λ,解得⎩⎪⎨⎪⎧x =λ,y =1,z =-2λ,得D(λ,1,-2λ).∴DC →=(-λ,-1,2+2λ),AB →=(-1,1,0). 又DC →∥AB →,设DC →=μAB →, 即(-λ,-1,2+2λ)=(-μ,μ,0), 则⎩⎪⎨⎪⎧-λ=-μ,-1=μ,2+2λ=0.解得λ=μ=-1.∴点D 的坐标为(-1,1,2).1.本例中,求点D 的坐标,主要是利用两向量平行的坐标条件,列出关于点D 的坐标的方程组,通过解方程组求得.2.两向量平行的充要条件有两个:①a=λb,②⎩⎪⎨⎪⎧x1=λx2y1=λy2z1=λz2,依此,既可以判定两向量共线,也可以通过两向量平行求待定字母的值.设a=(2,3,0),b=(-3,-2,1),计算2a+3b,5a-6b,并确定λ,μ的值,使λa+μb与向量b平行.【解】∵a=(2,3,0),b=(-3,-2,1),∴2a+3b=2(2,3,0)+3(-3,-2,1)=(4,6,0)+(-9,-6,3)=(-5,0,3),5a-6b=5(2,3,0)-6(-3,-2,1)=(10,15,0)-(-18,-12,6)=(28,27,-6).∵λa+μb=λ(2,3,0)+μ(-3,-2,1)=(2λ-3μ,3λ-2μ,μ),且(λa+μb)∥b,∴2λ-3μ-3=3λ-2μ-2=μ1.∴λ=0,μ∈R,即λ=0,μ∈R时,λa+μb与b平行.误解“两向量平行”和“两向量同向”已知向量a=(1,2,3),b=(x,x2+y-2,y),并且a,b同向,求x,y 的值.【错解】由题意知a∥b,则x1=x2+y-22=y3,可得⎩⎪⎨⎪⎧y=3x①x2+y-2=2x ②,把①代入②得x2+x-2=0,解得x=-2或x=1.当x=-2时,y=-6;当x=1时,y=3.【错因分析】“两向量同向”是“两向量平行”的充分不必要条件.错解忽略了“同向”这一条件的限制,扩大了范围.【防范措施】由于向量具有平移不变性,因此有关向量的平行问题与直线的平行是有区别的,并且两向量同向与向量平行也是不等价的,向量平行则两向量可能同向也可能反向,因此,解决这类问题时要特别注意限制条件.【正解】由题意知a∥b,则x1=x2+y-22=y3,可得⎩⎪⎨⎪⎧y=3x①x2+y-2=2x ②,把①代入②得x2+x-2=0,解得x=-2或x=1.当x=-2时,y=-6;当x=1时,y=3.当⎩⎪⎨⎪⎧x=-2y=-6时,b=(-2,-4,-6)=-2a,向量a与b反向,不符合题意,故舍去.当⎩⎪⎨⎪⎧x=1y=3时,b=(1,2,3)=a,向量a与b同向,故⎩⎪⎨⎪⎧x=1y=3.1.用基底表示空间几何体中一向量时,应结合立体图形,根据空间向量线性运算法则,写出要求的向量表达式.2.建立空间直角坐标系后,空间向量都有惟一的坐标(x,y,z),两向量间的线性运算也有相应的坐标运算法则.3.对于两向量a=(x1,y1,z1),b=(x2,y2,z2),a∥b⇔a=λb⇔⎩⎪⎨⎪⎧x1=λx2y1=λy2z1=λz2(b≠0),依此可以判定两向量平行或由两向量平行求待定字母的值.1.下列说法正确的是________.①任何三个不共线的向量都可构成空间的一个基底;②不共面的三个向量就可构成空间的单位正交基底;③单位正交基底中的基向量模为1,且互相垂直;④不共面且模为1的三个向量可构成空间的单位正交基底.【解析】根据基底的有关概念可知:任何三个不共面的向量都可以构成一个基底,当这三个基向量是模为1且两两垂直的向量时,称此基底为单位正交基底,故有③正确,①②④错误.【答案】 ③图3-1-122.如图3-1-12,已知平行六面体OABC -O′A′B′C′中,OA →=a ,OC →=c ,=b ,D 是四边形OABC 的中心,则OD →=________.【解析】 结合图形,充分利用向量加、减的三角形法则和平行四边形法则,利用基向量a 、b 、c 表示OD →.仔细观察会发现OD →与OA →、OC →是共面向量,故它们三者之间具有线性关系,即可得到答案.【答案】 12a +12c3.已知a =(1,-2,1),a +b =(-1,2,-1),则b =______. 【解析】 设b =(x ,y ,z),则a +b =(x +1,y -2,z +1). ∴⎩⎪⎨⎪⎧x +1=-1,y -2=2,z +1=-1.∴⎩⎪⎨⎪⎧x =-2,y =4,z =-2.∴b =(-2,4,-2). 【答案】 (-2,4,-2)4.设a =(1,5,-1),b =(-2,3,5).若(k a +b )∥(a -3b ),求k. 【解】 法一 ∵a =(1,5,-1),b =(-2,3,5).∴k a +b =k(1,5,-1)+(-2,3,5)=(k -2,5k +3,-k +5). a -3b =(1,5,-1)-3(-2,3,5)=(7,-4,-16). ∵(k a +b )∥(a -3b ). ∴k -27=5k +3-4=-k +5-16. ∴k =-13.法二 ∵(k a +b )∥(a -3b ).∴k a+b=λ(a-3b).∴⎩⎪⎨⎪⎧k=λ,1=-3λ,∴k=-13.一、填空题1.设命题p:a,b,c是三个非零向量,命题q:{a,b,c}为空间的一个基底,则命题p是命题q的______条件(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”).【解析】命题q中,{a,b,c}为空间的一个基底,则根据基底的定义,可知a,b,c为非零向量,且为不共面向量.故q⇒p,pD⇒/q,所以命题p是命题q的必要不充分条件.【答案】必要不充分2.设向量a,b,c不共面,则下列可作为空间的一个基底的是________.①{a+b,b-a,a};②{a+b,b-a,b};③{a+b,b-a,c}; ④{a+b+c,a+b,c}.【解析】因为只有③中三个向量不共面,所以可以作为一个基底.【答案】③3.已知{i,j,k}为空间的一个基底,若a=i-j+k,b=i+j+k,c=i+j-k,d=3i +2j-4k,又d=α a+β b+γc,则α=________,β=________,γ=________.【解析】由题意知:⎩⎪⎨⎪⎧α+β+γ=3-α+β+γ=2α+β-γ=-4,解之得:⎩⎪⎨⎪⎧α=12β=-1γ=72.【答案】12-172图3-1-134.如图3-1-13,已知正方体ABCD —A′B′C′D′中,E 是底面A′B′C′D′的中心,a =12AA′→,b =12AB →,c =13AD →,AE →=x a +y b +z c ,则x ,y ,z 的值分别为x =________,y =________,z =________.【解析】 由题意知AA′→,AB →,AD →为不共面向量,而AE →=AA′→+A′E →=AA′→+12(A′B′→+A′D′→)=AA′→+12AB →+12AD →=2a +b +32c ,∴x =2,y =1,z =32.【答案】 2 1 325.已知A(3,2,1),B(-4,5,3),C(-1,2,1),则2AB →+5AC →的坐标为________. 【解析】 2AB →+5AC →=2(-7,3,2)+5(-4,0,0) =(-14-20,6+0,4+0)=(-34,6,4). 【答案】 (-34,6,4) 6.已知a =(λ+1,0,2λ),b =(6,2μ-1,2),a ∥b ,则λ与μ的值分别为________. 【解析】 根据已知a ∥b ,则有λ+16=2λ2且2μ-1=0,解得:λ=15,μ=12.【答案】 15,12图3-1-147.在直三棱柱ABO -A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,则在如图3-1-14所示的空间直角坐标系中,DO →的坐标是________.【解析】 由题意得A 1(4,0,4),B 1(0,2,4),由D 为A 1B 1的中点可得D(2,1,4),故OD →=(2,1,4),所以DO →=-OD →=(-2,-1,-4).【答案】 (-2,-1,-4) 8.有下列命题:①若AB →∥CD →,则A ,B ,C ,D 四点共线; ②若AB →∥AC →,则A ,B ,C 三点共线; ③若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b ;④若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0.其中是真命题的序号是________(把所有真命题的序号都填上).【解析】 ①AB →∥CD →时,四点A ,B ,C ,D 可能共线也可能AB ∥CD ,故①为假命题;②AB →∥AC →时,又AB →,AC →共起点,所以A ,B ,C 三点共线,②为真命题; ③a =4e 1-25e 2=-4(-e 1+110e 2)=-4b ,∴a ∥b ,故③为真命题;④中,k 1e 1+k 2e 2+k 3e 3=0,又e 1,e 2,e 3不共面,根据空间向量基本定理可知,只能k 1=0,k 2=0,k 3=0,所以④为真命题.【答案】 ②③④二、解答题图3-1-159.如图3-1-15所示,M 、N 分别是四面体OABC 的边OA 、BC 的中点,P 、Q 是MN 的三等分点,用向量OA →,OB →,OC →表示OP →和OQ →.【解】 OP →=OM →+MP →=12OA →+23MN →=12OA →+23(ON →-OM →)=12OA →+23(ON →-12OA →)=16OA →+23×12(OB →+OC →) =16OA →+13OB →+13OC →. OQ →=OM →+MQ →=12OA →+13MN →=12OA →+13(ON →-OM →) =12OA →+13(ON →-12OA →) =13OA →+13×12(OB →+OC →) =13OA →+16OB →+16OC →. 10.在正三棱柱ABC —A 1B 1C 1中,已知△ABC 的边长为1,三棱柱的高为2,建立适当的空间直角坐标系,并写出AA 1→,AB 1→,AC 1→的坐标.【解】 分别取BC ,B 1C 1的中点D ,D 1,以D 为原点,分别以DC →,DA →,DD 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示,则A(0,32,0),A 1(0,32,2),B 1(-12,0,2),C 1(12,0,2),所以AA 1→=(0,0,2),AB 1→=(-12,-32,2),AC 1→=(12,-32,2).11.已知A(1,0,0),B(0,1,0),C(0,0,2). (1)若DB →∥AC →,DC →∥AB →,求点D 的坐标.(2)是否存在实数x ,y ,使AC →=xAB →+yBC →成立.若存在,求出x ,y 的值;若不存在,请说明理由.【解】 (1)设D(x ,y ,z),则有 DB →=(-x,1-y ,-z),AC →=(-1,0,2), DC →=(-x ,-y,2-z),AB →=(-1,1,0).∵DB→∥AC→,DC→∥AB→,∴DB→=λ1AC→且DC→=λ2AB→,∴⎩⎪⎨⎪⎧-x=-λ11-y=0-z=2λ1且⎩⎪⎨⎪⎧-x=-λ2,-y=λ2,2-z=0,∴⎩⎪⎨⎪⎧x=λ1y=1z=-2λ1且⎩⎪⎨⎪⎧x=λ2,y=-λ2,z=2,∴⎩⎪⎨⎪⎧x=-1,y=1,z=2,∴D点坐标为(-1,1,2).(2)∵AC→=(-1,0,2),AB→=(-1,1,0),BC→=(0,-1,2),假设满足条件的x,y存在,即AC→=xAB→+yBC→,也即(-1,0,2)=(-x,x,0)+(0,-y,2y)=(-x,x-y,2y),则⎩⎪⎨⎪⎧-1=-x,x-y=0,2=2y,解得x=1,y=1.∴存在实数x=1,y=1,使AC→=xAB→+yBC→成立.如图,在平行六面体ABCD-A1B1C1D1中,M分AC→成的比为1∶2,N分A1D→成的比为2∶1,设AB →=a ,AD →=b ,AA 1→=c ,用基底{a ,b ,c }表示向量MN →.【思路探究】 由于AB →、AD →、AA 1→三个向量不共面,故AB →,AD →,AA 1→可作为一个基底来表示空间中的向量MN →.【自主解答】 如图,连结AN ,则MN →=MA →+AN →. 由已知四边形ABCD 是平行四边形, 可知AC →=AB →+AD →=a +b , 又M 分AC →成的比为1∶2, 故MA →=-13AC →=-13(a +b ).∵N 分A 1D →成的比为2∶1, 故AN →=AD →+DN →=AD →-ND → =AD →-13A 1D →=13(c +2b ),∴MN →=MA →+AN →=-13(a +b )+13(c +2b )=13(-a +b +c ).1.由基底表示空间任一向量,首先明确基底是哪三个向量,然后将所求向量进行分解,分解时主要看三种运算,即相加、相减与数乘(倍数关系).2.用基底表示一个空间向量,要注意数形结合,结合图形逐步转化.如图,已知矩形ABCD 中,P 为面ABCD 外一点,且PA ⊥面ABCD ,M 、N 分别为PC 、PD 上的点,且PM →=2MC →,PN →=ND →,求满足MN →=xAB →+yAD →+zAP →的实数x ,y ,z 的值.【解】 取PC 的中点E ,连结NE , 则MN →=EN →-EM →.∵EN →=12CD →=12BA →=-12AB →,EM →=PM →-PE →=23PC →-12PC → =16PC →, 连结AC ,则PC →=AC →-AP →=AB →+AD →-AP →. ∴MN →=-12AB →-16(AB →+AD →-AP →)=-23AB →-16AD →+16AP →.∴x =-23,y =-16,z =16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
平面向量基本定理
一、考点突破
知识点 课标要求 题型 说明
平面向量基本定理 1. 了解平面向量基本定理及其意义; 2. 了解基底的含义; 3. 会用任意一组基底表示指定的向量; 4. 能应用平面向量基本定理解决一些实际问题 选择 填空 平面向量基本定理体现了平面内向量的“统
一”思想,是向量坐标表示
的基础,注意认真掌握
二、重难点提示
重点:平面向量基本定理及其意义;
难点:平面向量基本定理的应用。
考点一:基底的概念
基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底。
【要点诠释】
1. 对基底的理解——基底的特征
基底具备两个主要特征:①基底是两个不共线向量;
②基底的选择是不唯一的,平面内两向量不共线是这两个向量可以作为这个平面内所有
向量的一组基底的条件。
2. 零向量与任意向量共线,故不能作为基底。
考点二:平面向量基本定理
定理:如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,
有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2。
其中当e1,e2所在直线互相垂直时,这种分解也称为向量a的正交分解。
【难点剖析】准确理解平面向量基本定理
(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线
的方向分解成两个向量和的形式,且分解是唯一的。
(2)平面向量基本定理中,实数λ1、λ2的唯一性是相对于基底e1,e2而言的,平面
内任意两个不共线的向量都可以作为基底,一旦选定一组基底,则给定向量沿着基底的分解
是唯一的。
(3)平面向量基本定理揭示了平面向量的基本结构,即同一平面内任意三个向量之间
的关系是:其中任意一个向量都可以作为其他两个不共线的向量的线性组合。
【核心突破】关于基底的一个结论
设e1,e2是平面内的一组基底,当11e+22e=0时,恒有λ1=λ2=0。
2
注意:这个结论很有用,可以实现向量向代数值的转化。
【随堂练习】已知向量e1,e2不共线,实数x,y满足(3x-4y)e1+(2x-3y)e2=6e1+
3e2,则x-y的值为________。
思路分析:利用结论:“若e1,e2是平面内的一组基底,当11e+22e=0时,恒有
λ1=λ2=0”解决。
答案:3
∵(3x-4y)e1+(2x-3y)e2=6e1+3e2,且e1,e2不共线,
∴,332,643yxyx解得,3,6yx
∴x-y=6-3=3。
技巧点拨:向量是数形结合的知识交汇,注意掌握从向量向代数转化的这个重要结论:
“设e1,e2是平面内的一组基底,当11e+22e=0时,恒有λ1=λ2=0。”
例题1 (用基底表示向量)
如图所示,以向量OA=a,OB=b为邻边作▱AOBD,又BCBM31,CN=CD31,
用a,b表示OM,ON,MN。
思路分析:OMONMNCNOCONBMOBOM,,,再将各量转化为
OA
,OB。
答案:OBOABA=a-b,
∴BCOBBMOBOM31
=6161BAOBa+65b,
又OD=a+b,
ODODCNOCON6121
=3232ODa+32b,
∴OMONMN
=32a+32b-61a-65b=21a-61b。
技巧点拨:
1. 若题目中已给出了基底,求解此类问题时,常利用向量加法三角形法则或平行四边形
法则,结合数乘运算,找到所求向量与基底的关系。
2. 若题目中没有给出基底,常结合已知条件先寻找一组从同一点出发的两不共线向量作
3
为基底,而后用上述方法求解。
例题2 (平面向量基本定理的应用)如图,已知在△OAB中,延长BA到C,使AB=AC,
D是将OB分成2∶1的一个分点(靠近B点),DC和OA交于点E,设OA=a,OB=b
,
(1)用a,b表示向量OC,DC;
(2)若OAOE,求实数λ的值。
思路分析:(1)由题意可知A是BC的中点,利用平行四边形法则求OC,利用三角形
法则求DC;
(2)利用C,D,E三点共线,结合共线向量定理求解。
答案:(1)∵A为BC中点,
∴OCOCOBOA),(212a-b;
OBOCODOCDC32
=2a-b-32b=2a-35b,
(2)设OAOE,
则OCOAOCOECE=λa-2a+b=(λ-2)a+b,
∵CE与CD共线,
∴存在实数m,使得CDmCE,即(λ-2)a+b=m(-2a+35b),即(λ+2m-2)
a+(1-35m)b
=0,
∵a,b不共线且为非零向量,
∴,0351,022mm解得λ=54。
技巧点拨:
1. 此类问题要结合图形条件与所求证的问题,寻求解题思路。本题充分利用三点共线,
即共线向量定理,共面向量定理,建立方程组求解,同时要恰当选择基底简化运算。
2. 应用平面向量基本定理来证明平面几何问题的一般方法是:先选取一组基底,再根据
几何图形的特征应用向量的有关知识解题。
4
【例证】用向量法证明三角形的三条中线交于同一点。
思路分析:令△ABC的中线AD与中线BE交于点G1,中线AD与CF交于点G2,利用向量
说明G1与G2重合,证得三条中线交于一点。
答案:如图,AD,BE,CF是△ABC的三条中线。
令AC=a,BC=b,则BCACCACBAB=a-b,ACAD+CD=a-
21b,CEBCBE=-2
1
a+b
,
令AD与BE交于点G1,并假设ADAG1,BEBG1,则有1AG=λa-2b,
2
1
BG
a+μb
,
∴1AG=1BGAB=(1-2)a+(μ-1)b,
∴,12,21
由此可得λ=μ=32,∴ADAG321,
再令AD与CF相交于G2,同样的方法可得322AGAD,
∴G1与G2重合,
即AD,BE,CF相交于同一点,
∴三角形三条中线交于一点。
技巧点拨:向量方法证明三线共点的思路为:设三条直线l1,l2,l3中l1与l2的交点为
G1,l2与l3的交点为G
2
,在图形中选择两个简单的不共线的向量作为基底,证明共起点的向
量表示唯一,如证21AGAG,则得G1,G2重合。