并联电容器组熔断器

合集下载

一起由熔断器引发的高压并联电容补偿柜事故分析

一起由熔断器引发的高压并联电容补偿柜事故分析

一起由熔断器引发的高压并联电容补偿柜事故分析0 引言在电力系统中,为了降低电网电能传输过程中的损耗,提高电网运行的经济性,电网中大量的感性负荷需要进行容性无功功率就地补偿,实现无功就地平衡。

此变电所为水泥企业,主要负荷为电动机(电动机采用变频器软启动),尽管容性无功功率电源的种类较多,但目前国内用得较普遍的是并联电容器,它可根据需要由若干电容器串联、并联组成,容量可大可小,既可以集中使用,又可以分散使用,且可分相补偿,随时投入、切除部分或全部电容器。

在电力系统的变电站中,由于负荷的自然变化,并联电容器成为投切最频繁的电气设备。

由于产品制造原因或设计、运行、维护不当等因素造成严重的并联电容器损坏事故,会给电网带来巨大的损失[1-4]。

1 事故经过2015年7月14日12时26分,某公司110kV总降变电所10kV电容器柜第一组出现短路事故,导致电容补偿开关柜中的断路器跳闸,过电流Ⅰ段动作。

此次事故造成电容器柜发生爆炸,柜门由于柜内压力而变形,一台电容器外壳出现鼓肚变形。

有一名变电所值班人员在巡检中经过电容器柜时被弧光烧伤,事态较严重。

事故现场照片见图1。

事后对现场发生事故的电容器柜内电容器容值进行测量,第一组3台电容器容值分别为A1:61.5uF、B1:45.5uF、C1:45. 8uF;第二组3台电容器容值分别为A2:45.6uF、B2:45.5uF、C2:45.6uF;第三组3台电容器容值分别为A3:45.6uF、B3:45.5uF、C3:45.5uF;根据单台电容器的额定电容量45.16uF进行判断,只要电容器内部有1串短路,电容量就已达60.21uF,可见有1台电容器已经损坏。

图1 事故现场照片该电容器柜运行方式为自动和手动两种投切方式,事故时投切方式为采用控制器自动投切。

现场查看继电保护设置:电容补偿开关柜微机保护装置中,过电流Ⅰ段、过电流Ⅱ段均投入,详见图2;跳闸时动作值分别为Ia=9522A、Ib=9523A、Ic=9478A,详见图3;但是欠电压、过电压保护均为退出状态,详见图4、图5。

浅析变电站并联电容器组的工作原理

浅析变电站并联电容器组的工作原理

浅析变电站并联电容器组的工作原理摘要:电容器组作为变电站的重要组成部分如今已得到广泛的应用。

电容器组主要分为并联和串联两种,两者的区别是并联耐压值不变,容量升高;串联耐压值升高,容量降低。

本文将以220kV某变电站并联电容器组为主要内容进行展开,从其组成部分、工作原理、运维要求方面对并联电容器组进行浅析,帮助运维人员更好的进行日常运维工作。

关键词:并联电容器组、工作原理、运维要求1、并联电容器组的主要组成部分此次220kV某变电站的并联电容器组电压等级为35kV,布置于变电站低压母线末端。

其电气连接如图-1所示:图-1并联电容器组电气连接图由上图可知,其主要构成部分为:TV:放电线圈;QG:接地开关;C:并联容器;L:串联电抗器;FV:氧化锌避雷器;QS:隔离开关。

电容器组是由多种电气元件组成的电力设备。

电容器组具有容量大、单元数量多、电压等级高等特点。

各部分作用如下:(1)C:并联电容器:用来对电力系统进行无功补偿,以提高电网功率因数,减少线损、改善电压质量等,达到充分发挥供电设备效率的目的。

(2)TV:放电线圈:为了释放断电时的残余电荷和运行中抽取电容器保护用电压,放电线圈在三相电压失衡时,会产生一个开口三角电压,输入电压继电器,然后由保护动作选择跳闸或报警。

(3)FV:氧化锌避雷器:为了预防操作过电压。

(4)L:串联电抗器:用于抑制高次谐波及降低合闸涌流,避免电容器造成过电流和受到合闸涌流的冲击。

2、并联电容器组的工作原理并联电容器组的工作原理如下:电力系统运行时,通过将具有容性功率负荷的电容器与感性功率负荷的电抗器并联在同一电路上,纯电感分量不消耗能量在两负荷之间交换。

此时,感性负荷功率所需的无功功率由并联电容器容性负荷输出的无功功率进行补偿,电力系统的感性无功功率等到补偿。

在系统中纯电感分量交换中的产生的功率是容性的无功功率,同一电源下电感电流与电容电流相位差180°,并联电容器组以后,电感能量交换与电容进行,无功功率不再进入电源和远距离输电线路上,从而减少了系统的无功功率,降低线路损耗,提高了系统的功率因数、改善电压的质量。

DL 442-1991 高压并联电容器单台保护用熔断器订货技术条件

DL 442-1991 高压并联电容器单台保护用熔断器订货技术条件

中华人民共和国电力行业标准高压并联电容器单台保护用熔断器DL442-91订货技术条件中华人民共和国能源部1991-09-20发布1992-05-01实施1总则1.1范围本标准适用于频率50Hz的高压并联电容器的单台外部保护用熔断器(以下简称熔断器)。

1.2名词术语1.2.1熔断器当通过电流超过规定值足够长时间时,其熔体熔断并使回路断开的设备。

1.2.2熔体熔断器动作时预定熔化的导电体。

1.2.3熔丝包括熔体的一种部件,在熔断器动作以后和熔断器恢复使用以前要求更换的部件。

1.2.4管体放置熔丝的管状物。

1.2.5指示装置用来指示熔断器动作与否的一种装置。

1.2.6同型号熔断器具有相同的结构、尺寸和材料,用于同一额定电压和开断容量,包含了一定范围内的不同额定电流的熔丝,这些熔丝仅在熔体的尺寸上有所不同,这样的熔断器称为同型号熔断器。

1.2.7熔断器的额定电压(U nf)熔断器的正常工作电压(有效值),其值应与被保护的单台电容器额定电压相一致。

1.2.8熔断器的最高电压(U nf)熔断器可以长期使用的最高电压(有效值)。

1.2.9熔丝的额定电流(I nf)熔丝组装成熔断器后可以长期使用的工作电流(有效值)。

1.2.10熔断器的额定电流熔断器可长期使用的工作电流(有效值),其值应不低于该型号中最大规格的熔丝的额定电流。

1.2.11电容器元件由电介质和电极所构成的电容器的最小单元部件。

1.2.12 单台电容器将电容器元件装于单个外壳中,有引出端子的组装体。

1.2.13 电容器组电气上连接在一起的一组单台电容器。

1.2.14 电容器当不必特别强调“单台电容器”或“电容器组”时的用语。

1.2.15 电容器的耐受爆破能量电容器内部发生极间或极对外壳内部击穿时,不引起电容器外壳及套管破裂的最大能量。

1.2.16 电容器外壳的10%破坏几率曲线在电容器内部电弧作用下,用电流与时间关系来表示的电容器箱壳有10%的几率发生破坏或漏油的曲线。

高压并联电容器外保护用熔断器使用说明书

高压并联电容器外保护用熔断器使用说明书

抗涌流性能
a)能承受不低于 100 倍熔丝额定电流,10min 内放电 5 次, 如表 3 所示的放电频率的涌流冲击; b)能承受不低于 100 倍熔丝额定电流,70min 内放电 100 次,放电频率(8~9.6)kHz 的涌流冲击。
耐爆性能
能承受并开断来自并联电容器 12kJ(膜纸复合)或 15kJ(全 膜)以上的放电能量。
订货、验收与贮存
6
6 订货、验收与贮存
6.1 用户在订货时应确认下列内容: a)名 称:高压并联电容器外保护用熔断器; b)型 号:如BR8-7/20 P /20,BR8(W)-12/50 P /42; c)熔丝额定电流:如 20A、42A; d)数 量:如××套; e)备 品:名称与数量; f)交货期:用户可先提出交货期,由供需双方具体商定; g)如用户对于产品型号规格以及安装使用方面有特殊要求者,可来人来函协商解决。
SU H
A N G ELECT 苏杭电气
RIC
高压并联电容器外保护用熔断器 BR8 型 系 列
喷射式熔断器
使用说明书
吴江市苏杭电气有限公司 Wujiang Suhang Electric Co.,Ltd 苏杭电气 ● 吴江市胜天熔断器厂 Suhang Electric ● Wujiang Shengtian Block Works
结构特征与工作原理
2
2 结构特征与工作原理
2.1 结构特征
熔断器主要由管体、熔丝和防摆装置等三部分组成: a)管体——由环氧酚醛布管、金属管帽和安装螺栓等三部分组成。采取熔管喷涂 防紫外线绝缘漆和金属管帽表面防腐措施或者采用不锈钢材质管帽(用于大电流规格)。 安装时用螺母和垫片将熔断器固定于折成 120º角的接线板上,而后再固定连接在汇流 排上。管体上有熔断器型号等标志。 b)熔丝——由连接端子、双金属复合式熔体、尾线及灭弧管等组成,是熔断器的 关键部分。采取连接端子与管帽紧密螺纹镶嵌并与接线板直接连接方式、熔体与尾线机 械冲压与灭弧管自攻螺纹固定方式等措施(已获得国家专利,专利号:2004200088512), 以改进性能。熔丝上有额定电流标识。 c)防摆装置——由支架、弹簧及环氧酚醛布管等组成。支架和弹簧采用不锈钢材 料适用于户外使用。熔丝的尾线穿过环氧布管与支架端头一起安装在电容器接线端子 上,并使环氧布管受力平衡处于垂直状态。当熔体熔断,尾线在弹簧拉力和气体喷逐力

一起电容器组熔断器群爆事故原因分析

一起电容器组熔断器群爆事故原因分析

其 = 蕊
=r2 /L

( 2 )
() 3
受雷 电波残 压 冲 击 , 生 内部 击 穿 , 熔 断 器 熔 断 发 外 后, 由于雷 电残压 与 工频 电压 的叠 加 , 用 在 B 作 5外 熔断 器 上 的恢 复 电压 很 高 , 使 B 致 5熔 断 器 发 生 重
当 r 2、 c时 《 / /
第1 5卷
V0. 5 1 1
第 4期
No 4 .
重庆电力高等专科学校学报 Junl f hnqn lc i P w r o ee ora o C ogigEetc o e l g r Cl
21 0 0年 8月
Aug 2 0 . 01

起 电容器组熔断器群爆事故原 因分析
试 验检查 情况 :1 路器 绝 缘试 验 、 械 特性 62断 机 试 验合格 , 电缆绝 缘 试 验 合 格 ,5电容器 极 间绝 缘 B
3 设备基本情况
石塔站二 组 电容器组 总容 量 4 0 k a, 有 2 2 0 V r共 1 只电容器 , 每相 7只 , 只容 量 2 0k a , 号 B M 单 0 V r型 A
家 陕西 中杨 电气股 份有 限公 司 , 出厂 日期 20 0 1年 8 月; 避雷 器 型号 Y 5 0 WR 一 . / 2 生产 厂 家 温 州 市 9 12 ,
凯 泰特种 电器 有 限公 司 , 出厂 日期 2 0 0 1年 9月 ;1 62
组 62断路器 过流I 1 段保护 动作 , 开关跳 闸 , 现场 检查 发现 2 电容器组 B相熔 断器发生 “ # 群爆 ”B ,5电容器
刘进胜 , 陈正宇
( 庆市 电力公 司江 津供 电局 , 庆 4 2 6 ) 重 重 020

并联电容器熔断器保护及其与不平衡保护的配合问题

并联电容器熔断器保护及其与不平衡保护的配合问题

史 班 , 周 国 良
( 江 省 电 力 试 验 研 究 所 _ 江 浙 浙
杭 州 3t 1 ) 10 4 )
摘 要 :文 章 重 点讨 论 了并 联 电 容器 内部 故 障 保 护 中广 泛使 用 的熔 断 器保 护配 置及 其 与不 平衡 保 护 的配 合 问题 ,指 出常 用 的配 置原 则 中存 在的 问题 ,并提 出 了修 正意 见 。
性 曲线确定 ,其反 时 限特性对 故 障 电流开 断是有 利
的。
基 于熔 断器的 动作机理 ,在 大 电流下 ,其 熄 弧
能力可充 分发 挥 ,有较 稳定 的开 断性 能 ;在小 电流
下 ,则需在 外 弹簧 的帮助 下开 断 。这些 开 断均必须 是无重击穿 开断过程 。熔 断器 的极 限开 断工 频电流 为 10 80A,极 限 开 断放 电能 量 为 l J( 5k 现行 标 准 规定为 1 J ,这两 个 限值 都可 能 作 为 电容器 组 的 2k)
我 国应 用 十 分 广 泛 。
熔 断器 动作性 能与通 过 的 电流太小 有关 ,其 动 作时间 与电流 的关 系由熔 断器熔 丝 的时 间一 电流 特
4 %的 ,其 中爆 炸 起火 的恶 性事 故 有 上 升的 趋 势 , 仅 19 年 就 发 生 了十余 起 。分 析表 明 :除 了产 品 99 自身 的质 量 问题外 ,运行 中 的操作 过 电压问题 ,加 上设备参 数配 置不合理 、保 护 配置 不 当等等 也是 引 起 恶性事 故多发 的直接 原 因 。事 实 上 ,在 多数 情 况 下 ,事故 是 有 可 能 避 免 的 , 由于保 护 配 置 上 的 问 题 ,主要 是 电容器 内部 故障 保 护 的配置不 当 ,电容

熔断器电流选用

熔断器电流选用

熔断器电流选用工作电流额定值,选用一定要计算。

照明线路安装时,略大全部电流和。

单台电机运行时,小于额流二点五。

多台电机运行时,小于总和二点五。

减压起动电动机,小于二倍额定流。

绕线式的电动机,小于额流一点五。

变压器的低压侧,小于额流一点五。

并联电容器组群,小于额流一点八。

电焊机装的熔体,小于负流二点五。

电子整流元器件,一点五七额定流。

选择熔断器主要是选择其熔体的额定电流。

熔体的额定电流应通过计算合理选择。

(1)照明电路白炽灯:熔体额定电流=1.1×被保护电路上所有白炽灯工作电流之和。

日光灯和高压水银荧光灯:熔体额定电流=1.5×被保护电路上所有日光灯和高压水银荧光灯工作电流之和。

(2)电动机1)单台直接起动电动机:熔体额定电流=(1.5~2.5)×电动机额定电流。

注:对不频繁起动的电动机取较小的系数,频繁起动的电动机取较大的系数。

2)多台小容量电动机共用线路:熔体额定电流=(1.5~2.5)×最大容量的电动机额定电流+所有电动机额定电流之和。

3)减压起动电动机:熔体额定电流=(1.5~2)×电动机额定电流。

4)绕线式电动机:熔体额定电流=(1.2~1.5)×电动机额定电流。

(3)配电变压器低压侧:熔体额定电流=(1.0~1.5)×变压器低压侧额定电流。

高压侧:熔体额定电流=(2~3)×变压器高压侧额定电流(当变压器容量为100~1000kV·A时系数取2,低于100kV·A时系数取大于2小于3的值)。

(4)电力电容器每台高压电力电容器或每台低压电力电容器都单独设熔丝保护,熔体额定电流=(1.5~2.5)×电容器额定电流;电力电容器组,熔体额定电流=(1.3~1.8)×电容器组额定电流。

(5)电焊机熔体额定电流=(1.5~2.5)×负荷电流。

(6)电子整流元件熔体额定电流≥1.57×整流元件额定电流。

铁路供电继电保护-铁路电力变、配电所保护配置及整定原则

铁路供电继电保护-铁路电力变、配电所保护配置及整定原则
第七章铁路电力变、配电所保护配置及整定原则

第一节 线路保护和自动装置
一、线路保护
铁路电力供电线路一般分为架空线路和电缆线路两种。
10kV线路的相间短路保护,可采用两段式电流保护。
对大电流接地系统发生的接地故障,可采用零序电流保护和零序过 电压保护动作于跳闸。对于小电流接地系统发生的接地故障,可采 用绝缘监察装置,动作于信号;有条件采用零序电流保护的,可采 用零序电流保护,动作于信号或跳闸。
二、自动装置
1.自动重合闸 自动重合闸为三相一次重合闸。
当双侧电源供电时合闸方式采用遥控检同期控制合闸,其功能分不检定、检无压、 检同期三种方式。 2.自闭线和贯通线失压备自投
3.备用电源自投
第二节 电力变压器保护、母联保护 和并联电容器组的保护
一、电力变压器保护
1.瓦斯保护和纵联差动保护 800kV·A及以上的油浸式变压器和400kV·A及以上的车间内油
流速断保护、瓦斯保护与过电流保护配合使用,可以起到
良好的保护效果。
3.过电流保护 IACT
K REL K RE
·I N
U ACT
U w.min K REL ·K RE
Ks
U ACT U k.max
4.过负荷保护
I ACT
K REL K RE
·I N
过负荷保护的延时,一般为9s。
二、母联保护
1.过电流保护
一般还装设失压保护以及PT断线告警装置、控制回路异常报警装置 。
1.电流速断保护
I' ACT
K
REL·K
W
·I(3) k . max
2.限时电流速断保护
Ks
(2)
I k . min K · s.re '
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并联电容器组熔断器“群爆”故障的典型案例处理
摘要:首先对变电站内可能引起并联电容器组熔断器“群爆”的因素进行了详细的调研与排查,根据其呈现的特征,提出了故障分析的方法以及整改方案;通过整改方案的落实,避免了该变电站电容器组熔断器“群爆”的情况再次发生。

实践证明:规范地安装电容器组及加强运行的管理和维护,可以避免补偿电容器组熔断器“群爆”的情况发生。

关键词:并联电容器组;熔断器;群爆
礼经电器
1引言
作者实地考察了多次发生并联电容器组熔断器“群爆”的两个变电站,对变电站的运行日志所涉及到的运行参数进行了比较详细的分析研究。

处理问题的态度是十分谨慎的,因为它关系到变电站的稳定运行,影响着电力系统的降损节能、电能质量以及整改措施实施过程中所需的资金等问题。

根据电容器组熔断器“群爆”的特征,提出了与其故障相应的分析方法以及整改方案,整改之后,效果是显著的,没有再发生类似问题。

对于帮助解决并联电容器组熔断器“群爆”的问题是十分有益的。

2发生多次并联电容器组熔断器“群爆”的两个变电站的基本情况
2.1变电站的基本情况
两个变电站的情况基本相似,均靠近城区,污染相对比较严重,属110kV降压变电站,由三种电压等级,即110kV、35kV,10kV。

35kV、10kV都采用单母分段,中压侧负荷较重,低压侧存在一定的有电镀冶炼直供负荷。

2.2变电站并联电容器组与系统的接线、实际布置礼经电器
按照设计要求,在变电站的低压母线上,等容量装设并联电容器组,每组均通过隔离开关、断路器、电抗器等与10kV母线相连。

隔离开关、断路器位于10kV户内配电装置的开关柜内,电抗器、电流互感器、并联电容器组等位于装设电容器的栅栏房内。

每段母线接一组并联电容器,每组按三相星形连接,每相由多个电容器一端经熔断器、另一端在中性点并联。

其中一组的实际布置(半露天)见图1。

3并联电容器组熔断器“群爆”的特征
案例:某一变电站,2001年4月30日8时54分,天气阴,伴有大风暴雨,风向为东南,突然,蜂鸣器响,“10kVⅡ段配电装
置”、“掉牌未复归”光子牌亮。

经检查发现:在主控制室,电容器的速断保护信号继电器动作掉牌;在电容器组房内,靠近外侧的10kVⅡ段与电容器串联的电抗器接地极击断,飞出1米左右,电抗器本体有三处(散热器)喷油着火;A、B相熔断器全部熔断,C相熔断器完好,电容器房内雨水遍地,电容器组A相全部、B相的部分经过了雨水冲刷。

经临时灭火、处理喷油后,分别汇报给低调、工区负责人。

[FS:Page]
4故障分析
我们知道,电容器组的保护分为内部保护和外部保护。

内部保护作为单台电容器串、并联元件的保护,在电容器内部故障时切断电源,防止电容器爆破甚至引起火灾事故。

外部保护用以切断电容器回路中的短路故障,且作为内部保护的后备保护。

单台熔断器保护是电容器组内部保护的一种。

故障分析:经调查1)安装了熔断特性一致的熔断器;2)系统电压的运行长期基本对称;3)在变电站装设了消谐装置;4)尽管低压侧存在一定的电镀冶炼直供负荷,经省电业局中试所定期测定报告查出,电网中高次谐波成分没有超标;5)尽管污染相对比较严重,但在运行中电容器组的中性点还没有直接接地;6)电容器组的保护定期校验工作规范。

从以上情况看出,可以排除熔断特性不一致的熔断器、系统电压的运行不对称、高次谐波成分高、系统共振、由于电容器组中性点直接接地的同时,发生10kV单相接地等因素造成的电容器群
爆。

由于电容器的速断保护动作,可以推断出在电容器组内部发生了相间短路。

在空气相对污染比较严重环境下,由于电容器组的安装屋顶偏小,靠近外侧的电容器组A相全部、B相的部分经过了雨水冲刷,在大风(本站此时为东南方向)暴雨天气,A相全部、B相的部分电容器极间经雨水和污垢接通造成短路,导致了A B 相母线相间短路,其结果造成了电容器的速断保护动作。

一方面电容器组中未经电容器极间短接部分,通过熔断器、AB 相母线经电容器的短路放电,导致了相应相的熔断器部分熔断即“群爆”,其短路回路如图2中1方向所示;另一方面,由于电容器是储能元件,此时存在电压,经电容器极间短接的部分则由电源通过电抗器、熔断器经母线短路,由于电路的瞬间短路,在电抗器上产生了较大的电流变化率di/dt,随之在电抗器线圈与地之间产生了过电压Ldi/dt,在此电压的作用下,电抗器接地极击断,飞出1m左右,电抗器本体有三处
(散热器)喷油着火,其短路回路如图2中2方向所示。

上述的情况造成的损失是惨重的,其一造成了电容器组的A、B相的熔断器全部群爆、电抗器本体有三处(散热器)喷油着火,毁坏了电气设备,影响了电力系统的经济运行;其二造成了10kV母线短路,危及到了电力系统的稳定运行以及电能质量。

5整改方案及实施
礼经电器
从以上分析可知:发生事故的原因是由于在污染比较严重的情况下,大风暴雨冲刷电容器造成的母线短路。

在便于巡视和良好通风的前提下解决问题的途径是:①减少环境污染对电容器组的影响,②避免大风暴雨冲刷电容器组。

[FS:Page]
经过慎重考虑,采取加大电容器组室的房顶,尤其在外侧应注意屋檐的角度。

通过整改方案的落实,该变电站电容器组熔断器“群爆”的情况再也没有发生过。

6结论
为了防止电容器组熔断器群爆问题的发生,做好以下工作是非常必要的:
①安装熔断特性一致的熔断器;②加强系统电压的运行管理;③在变电站装设消谐装置;④加强对电网中高次谐波成分的管理;
⑤加强电容器组的中性点平时的清洁维护;⑥保证电容器组的保护定期校验工作规范化。

同时设计过程中,在便于巡视和良好通
风的前提下,应充分考虑电容器组的防尘、防雨水问题。

这样就可能避免电容器组熔断器群爆以及相关问题的发生。

参考文献:
[1]靳龙章,丁毓山.电网无功补偿实用技术[M].中国水利水电出版社,1993年3月
[2]李致恒等.城乡电力网无功补偿技术[M].水利水电出版社,1988年9月
[3]陈维贤.内部过电压基础[M].电力工业出版社,1981年12月
[4]能源部西北电力设计院.电气工程设计手册电气二次部分[M].水利水电出版社,1990年9月。

相关文档
最新文档