光纤余长

合集下载

光缆中光纤余长的问题

光缆中光纤余长的问题

光缆中光纤余长的问题光纤松套时、成缆时、光缆存放后、施工后,还是在运转使用过程中,光纤在 1.55um 窗口衰减对各种因素都特别敏感,生产厂家的套塑、成缆工艺(包括光缆的结构设计)是保证光缆中光纤在1.55um窗口衰减不变化的重要环节。

对绞合式光缆,光缆中光纤余长的获得主要靠光缆中松套管的绞合节距,在松套管中光纤余长为零时,绞合式光缆中光纤余长和所受弯曲半径为ε=2π2DRe/(πD)2+P2;ρ=D(1+(P/πD)2)/2,式中Re为松套管的等效内半径,Re=R-1.16n1/2×r,R是松套管内半径,n为松套管内裸光纤数,r为光纤外半径,P为绞合节距,D为对应松套管中心位置的缆芯直径。

光缆中的光纤余长应该设计多少为好,这是各光缆生产厂家值得考虑的问题,余长设计定了,如何在生产工艺严格控制,使之真正实现则是第二个重要问题。

εi=-(2π/P)2(R-r/2)r×100% (式1)ε0=(2π/P)2(R+r/2)r×100% (式2)εi是光缆受拉伸时光纤的额外余长公式,ε0是光缆收缩时光纤的额外余长公式,式中P为成缆节距,R为成缆有效半径,r为光纤在套管内活动范围的有效半径。

光缆的综合线膨胀系数为ρ=5×10-5/℃;则光缆线性变化量(温度变化原因)为:ε=△T Uρ=ε0-εi=2(2π/P)2rR×100%光缆线性变化量取决于使用环境,而光缆结构尺寸、套塑规格、成缆工艺尤为重要。

当制造时的温度为T m,光纤套塑余长为a,光纤能承受的应变拉伸为b时,则ε1=(T m-T u低) ρ-a (式3)ε2=(T m-T u高) ρ-a-b (式4)对于套管理想状态是保存于恒温状态,但实际很难做到,所以对套塑余长修正:a=a1+ρ△T△其中a1为套塑时光纤余长,ρ△是二次被覆料与光纤线膨胀系数之差,T△是成缆制造与套塑制造温度之差。

当ε1=ε0;ε2=εi时,则光纤处于完美的工作状态,由上述公式推导:((R-r/2)/ (R+r/2))=(δ2-a-b)/ (δ1-a)式中δ1=(T m-T u低) ρ, δ2=(T m-T u高) ρ所以光纤套塑余长为a={(δ1+δ2)/2+(δ2-δ1)r/4R-(1+r/2R)b/2}×100% 一般光纤筛选强度为0.5%,按光纤寿命达到20~40年计算,残余应变不应该大于筛选强度的20~30%,即拉伸应变小于0.1~0.15%.并由a,b代入式3,4求得ε1和ε2,再由式1,2来确定成缆节距P,同时应该考虑光纤最小允许曲率半径:r=R(1+(P/2πR)2),一般认为当曲率半径大于80mm时光纤不会因此产生衰减变化。

OPGW光缆生产中光纤余长的控制研究

OPGW光缆生产中光纤余长的控制研究

OPGW光缆生产中光纤余长的控制研究摘要:在OPGW光缆的生产过程中,光纤余长的控制是一个至关重要的研究领域。

光纤与光缆的连接质量直接影响着光缆的性能和可靠性,而光纤余长是确保连接质量的重要因素之一。

本文将系统地探讨光纤余长的控制方法和技术,在分析光缆制作过程中可能出现的问题的基础上,提出了一种有效的光纤余长控制策略。

通过优化材料选择、工艺参数和生产设备,旨在提高光纤连接的质量,并最大程度地降低光缆制作成本。

关键词:OPGW光缆;光纤余长;控制随着信息技术的迅猛发展,光通信作为一种高速、大容量、低损耗的通信方式,已经在全球范围内得到广泛应用。

光纤是实现光通信的核心组件之一,而光电地线光缆(OPGW)作为一种特殊类型的光纤通信线路,既能提供电力输送,又能传输通信信号,已经成为电力系统的重要组成部分。

一、OPGW光缆的概述光纤复合架空地线(OPGW)是将光纤单元放入架空地线中,以实现光缆和地线的有机整合。

它在保持架空地线原有的电气和机械性能的同时,还能进行音频、视频、数据等信息的传输。

OPGW光缆质量轻、体积小,已被电力系统广泛采用,用于变电站与中心高度所之间传送调度电话、远动信号、继电保护、电视图像等信息。

这种光缆的稳定性和可靠性得到了极大的提高,成为电力系统中不可或缺的组成部分。

OPGW线是由输电线路构成的,通常由电力公司使用,达到接地及通讯的双重目的。

它包含一个管状结构,内部含有一条或多条光缆,外围则由钢和铝组成。

复合光缆地线架设在超高压电塔的最顶端,其导电部分起到接地的功能,作为被雷击的保护屏障。

而内部的光缆则提供高速数据传输的功能,既可以用于电力系统自身的保护和控制,也可以出租给电信业者作为骨干网络[1-3]。

二、光纤余长的重要性光纤余长在光纤复合架空地线(OPGW)中起着至关重要的作用,它是衡量OPGW性能最重要的参数之一。

光纤余长的控制在施工过程中有着严格的要求,因为光纤在放入纵包焊接的不锈钢管内通常很难获得正值的余长,通常在该工序中还要填充冷油膏,所以可设定该工序后光纤在有一定张力条件下。

[doc] 光纤和带纤的二次套塑及其余长控制

[doc] 光纤和带纤的二次套塑及其余长控制

光纤和带纤的二次套塑及其余长控制:1006—1o8(1 Secondarycoatingforfiberandfiberribbonanditsoverlengthcontrol CHENBingyan (CbangzbouShenyanOpticalFiberTelecommunicationCo.,Lid-, ChangzhoutJiangsu213161.China) AbstrattThekeyprocessinmanufacturingloosetubetypefiberopticcableissec ondarycoatingforfiberorfiberribbon.Thispaperinprincipleanalysesanddiscussesthepro ductionline,materia1andprocessforsecondarycoatingKeywords2loosetubefiberopticcable;secondarycoating;PBTresin;overleng th;overlengrhc0ntro】I刚舌柬管型光缆是通信光缆最主要的结构形式之一.它包括层绞式光缆和中心束管式光缆两种形式,柬管式光缆工艺中最关键的工序莫过于二次套塑.光缆的主要性能,包括光纤的损耗,光缆拉伸和温度特性等,在很大程度上取决于二次套塑的质量.而二次套塑工艺中最主要的控制参数是光纤或光纤带在束管中的余长(以下简称余长)二次套塑工艺与其说是一种技术,不如说是一门艺术.我们所追求的不仅是其机械的严格性,而且是设备,工艺,材料三者统一的完美性.本文就二墩套塑工艺中的下列问题进行[对苯二甲酸丁二醇酯),也有采用高密度聚乙烯和改性聚丙烯作为束管材料,但固它们的杨氏模量较低,只适用于制作大R寸束管.本文主要讨论PBT塑料的工艺特性. PBT塑料是一种可以热成型的热塑性材料它在不同温度下的力学聚集态如图1所示这里以标准的二次套塑生产线为例(参见图2).PBT塑料的柬管成型分三个区域: 1)挤塑机内的熔融挤出区;2)从出模口到陈炳炎:光纤和带纤的二次套塑及其余长控制形变破璃态高弹态粘流志.//温度图1PBT塑料在不同温度F的力学聚复忠为脆化温度;丁.为玻璃化温度;l为熔化温度;l为分解温度余长牵引之问束管成形区;3)进入冷水槽到主牵引直到收线之间光纤或带纤的余长形成区三个区域中PBT塑料处于不同的力学聚集态.呈现不同的物理性能状态,分别分析如r2.1PBT塑料在挤塑机内熔融挤出的性能分析PBT塑料的熔化温度在230.C左右,挤塑机中PBT的熔融加工温度为250~270.C之间.聚合物处于粘流态,大分子链活动能图2标准二次套塑生产线示意图1为放线槊;2为油膏充填装置}3为挤塑机}4为电控柜}5为热水稽|6为余长牵弓轮;7为冷水槽{8为主牵引;9为测径仪{10为收线架力增加,链段同时或相继朝同一方向运动在外力作用下.整个大分子链闻互相滑动而产生形变,外力除去后不能恢复原状,此谓不可逆的塑性形变塑料在挤压性主要取决于熔体的流变性,亦即熔体粘度的性状.通常.熔体粘度随着剪切速率的增加以及温度的增高而降低.图3给出一个典型的PBT的流变曲线对于PBT塑料而言.希望熔体粘度高一点,有利于挤出成型的稳定性.如熔体粘度太低,虽然流动性较好.但保持形状的能力较差,容易造成挤出的不稳定陛.通常,PBT塑料的制造商通过提高PBT树脂的本征粘度(Intrinsicviscosity)来提高其熔体粘度.表1给出几种常用牌号的PBT塑料的流变性能.1rJ0’BaverAG根D1800帅速率,s’图3典型的PBT流变曲线表1几种常用牌号的PBT塑料的漶变性能比较光纤与电缆其应用技术1999年第5期从表1可见,PBT塑料的本征粘度愈大.其熔体粘度(Meltviscosity)愈大.而其熔体流动指数(MeltflowIndex)愈小.反之亦然用于二次套塑的PBT塑料250.C时的熔体粘度范围在9∞~t200Pa?s之间为宜美国GE公司的HR326从1995年进人中国市场以来,因其抗水解的优良性能.得到了推广应用.但其熔体粘度太低.用普通的单螺杆挤塑机能稳定地挤出成型.但若采用销钉式(PIN)螺杆.因剪切速率大,造成HR326PBT的熔体粘度太低而难以稳定地挤出成型.鉴于此种情况美国GE公司在1998年下半年推出了改进的HR326PBT塑料,将原来的熔体粘度为430Pa?s(编号为C9)的PET料.改进为熔体粘度为950Pa?s(编号为C1)的PBT料,型号仍为HR326不变.从而使挤出成型稳定性得到提高它和其他型号的PBT塑料一样适用于多种形式的螺杆但作为PBT塑料的二次套塑挤塑机.通常应使用高效均匀又不产生过度剪切效应的螺扦为宜.挤塑机螺杆的长径比从24:l到30:1长径比太大.在高温下的PBT料滞留时间太长,会产生分子链断裂的降解现象,严重的可能导致挤出的束管变成脆性物体2.2PBT塑料在出模口到余长牵引之间的束管成形区的性能分析在这一区间.PBT塑料的温度从熔融状态温度迅速下降,出模口,进入热水槽.到达余长牵引轮.热水槽水温通常在45~75.C之间.高于PBT塑料的玻璃化温度(40~45.C 之间)此时.聚合物的大分子链已不能运动, 但链段尚有活动能力,在外力作用下能产生较大形变,此谓高弹形变这是PBT束管成形过程中的~个重要区域.这---区段决定了束管的拉伸比(DrawDownRate);这一区域的温度和经历时间也决定了PBT京管的结晶程度.PBT塑料是一种半结晶材料,通常在柬管制或时.还不能充分结晶而达到其结晶平衡度.因而在二次套塑束管制成后一段时问内,PET束管还会继续缓慢地结晶,以期达到其结晶平衡度,这就造成PBT束管的挤塑后收缩(PostExtrusionShrinkage).因此束管在长度方向进一步缩短,使得光纤或带纤在束管中的余长增加.为了减小PBT束管的挤塑后收缩,必须提高PBT塑料在束管成型过程中的结晶度由于PBT塑料的结晶主要发生在高于玻璃化温度的热水槽区城,因此适当提高热水槽的温度可以加速结晶或适当增加热水槽长度.在牵引速度不变时则可以增长结晶时间.两者均有利于加速结晶, 减小挤塑舌收缩下面给出一组实验结果.可证实上述情况.热水槽水温对PBT束管挤出后收缩的影响(引自Hoechsr公司技术资料)试样:材料Celanex2001PBT束管2.51.7.长度L一30era样本数/,1—5注:*试验兼件1:试样放在烘箱内,85℃,24h **试验条件2:试样放在烘箱内135.c,24h结果说明:热水槽水温愈高.PBT束管成型过程中结晶度愈高,挤塑后收缩愈小PBT束管的挤塑后收缩,在束管挤出后24h内,在高于玻璃化温度的环境中,束管呈自由状态时可高达0,4~0.5但在二次套塑生产环境中,光纤或带纤束管通常存放在室温下.温度低于玻璃化温度,后结晶很小, 同时,束管是以一定收线张力绕在盘上,限制了束管的进一步收缩,因此.挤塑后收缩比上列实验数据低得多当束管式光缆的挤制护套时,将遇到200~C以上的高温.护套挤出后,尽管护套经冷水槽冷却,但据实验资料表明光缆内还有60~70.C的温度可持续1~陈炳炎:光纤和带纤的二次套塑及其亲长控制19 2天,才能达到与环境温度平衡,此期间束管会产生较大后结晶,由于光缆其它元件的限制,不可能产生较大后收缩.但能转换为较大的PBT柬管的内应力,造成结构的不稳定性囡此,要在工艺上尽量减小束管的挤塑后收缩.以保证光缆的质量关于拉伸比的问题说明如下,当PBT从出模口挤出遇空气迅速冷却,然后进入热水槽.PBT塑料从没有取向的熔融状态,在熔化温度到玻璃化温度之间.沿牵引方向拉伸到原来长度的若干倍.这是一种高弹形变,由于分子取向以及因取向而使分子链之间的吸力增加的结果,PBT柬管在拉伸方向的拉伸强度冲击强度杨氏模量的恢复.均有明显提高在给定的拉伸速度和温度下,拉伸比越大,取向程度越高.通常PBT塑料的最佳拉伸比范围在9~11之间.拉伸比的计算公式为:DDR一(DD;)/(,]—D)(1)式中Dn为模套内径;D为柬管外径;D为模芯外径;D.为束管内径2.3PBT塑料在进入冷水槽后的性能分析通常二次套塑的冷水槽水温在14~2O.C之间,PBT束管从余长牵引进入冷水槽后,塑料处于低于玻璃化温度T,呈玻璃态.聚合物的大分子链和链段均被冻结.在外力作用下,只是链段作瞬间形变,外力去除后. 恢复原状,此即弹性形变.利用PBT管的弹性变形是获得光纤或带纤在束管中余长的方法之~,PBT束管进入冷水槽后,通过冷收缩,形成光纤或带纤在束管中的杂长也是在这一区间发生.当塑料在低于脆化温度T 时,大分子链和链段完全冻结,将出现不能拉仲和压缩的脆性.显然,包古PBT束管的光缆的使用温度是不能低于脆化温度的3余长形成的机理二次套塑工艺中的一个关键是如何做到余长的设计值.不同的光缆结构中,要求光纤或带纤在束管中有不同的余长值余长的定义为:£一(LLr)/L7?100(2)式中L,为光纤(或带纤轴线)的长度;Lr为束管长度.在二次套塑工艺中,余长的形成主要有两种方法:热桩驰(Thermalrelaxation)和弹性拉伸(ControlledStretching),分别说明如下.3.1热松弛法如图4所示.光纤(或带纤)从放线盘放出,通过挤塑机机头,挤上PBT塑料柬管.并在束管中充以油膏,由余长牵引轮进行牵引. 光纤(或带纤)和束管在轮式余长牵引轮上得到锁定.光纤(或带纤)在余长牵引轮上会形成一定的负余长(详见后述)束管在热水槽和余长牵引轮区域,PBT束管温度在4j~75.C之问,高于其玻璃化温度(PBT塑料的玻璃化温度丁g在40~45C之间).进八冷水槽后【温度通常设置在l4~20.C之间), PBT产生冷收缩,不仅补偿了其在余长牵引轮上的负余长,而且得到了所需的正余长此时一主牵引的牵引张力很低,使束管得到充分的热梧弛.主牵引的线速度低于余长牵引到线速度,速度差应按所得到的余长值进行调节这样得到的具有光纤(或带纤)正余长的束管在离开主牵引到收线盘时基本上没有内应力.从而得到一个稳定的光纤(或带纤)引轮牵引至所需束管(或带纤).因为在履带式余长牵引上.束管中外径,束管在轮上绕若干圈.使光纤与束管锁的光纤(或带纤)未锁定.光纤(或带纤)可在定.然后进人冷水槽.由于光纤有一定的张束管中滑行.当PBT束管离开主牵引轮后.力,因此在余长牵引轮上,束管中的光纤会靠高张力消失.PBT束管弹性恢复,长度缩短.向轮的内缘.因而光纤的缠绕直径r必然小从而使管内的光纤(或带纤)得到所需的余长此时,收线盘的张力应适当选定.并保持稳定.使束管在收线盘上不致残留较大的内应力,从而得到稳定的束营成品从上述分析可见:当采用热松驰为主要机理来形成余长的二次套塑生产线的最佳配置为:轮式余长牵引与履带式主牵引的组合;当采用以弹性拉伸为主要机理来形成余长的二次套塑生产线的最佳配置为:履带式余长牵引与双轮主牵引的组合后者的余长值可做得比前者大.4影响余长的主要因素在二次套塑工艺中,影响余长的因素较多,其中有些因素可用作调节余长的工艺手段,有的因素虽能影响余长值.但不宜作为余长的调节手段现以标准二次套塑生产线为例来加以说明(参见图2).4.1光纤放线张力对余长的影响光纤在一定的张力下放出,经挤塑机机头,挤上PBT束管,管内充油膏.经热水槽于柬管的缠绕直径许(如图6所示).所在余长牵引轮上,光纤长度小于束管长度,负余长为:=[纷(F)秆/行?100(3)图6在亲长牵引轮上光纤在柬营中位置的示意图在上式中.显然.秆为常数.它是由牵引轮轮径和束管外径所决定.而许不是常数,竹的大小,亦即光纤向束管内侧靠近的程度.取决于光纤的放线张力以及充在管内的光纤油膏的粘度光纤放线张力F愈大.光纤拉得愈紧,则光纤在管内靠向内侧愈甚,负余长愈大.反之亦然.因此,光纤放线张力愈大,束管成品的正余长愈小;张力愈小,正余长愈大.由此可见,光纤的放线张力是调节余长的有效工艺参数之.陈炳炎:光纤和带纤的二次套塑及其余长控制21 4.2冷热水温差对余长的影响光纤柬管在热水槽和余长牵引轮区的温度在4j~7j℃之间,进人冷水槽后.水温在14~2O℃之间,光纤柬管冷收缩,从而产生正余长,这不仅补偿了在余长牵引轮上的负余长,并得到所需的正余长.可见.这里柬管的冷收缩是得到正余长的主要因素冷收缩得到的正余长值取决于冷热水温差和PBT塑料及光纤的热胀系数.其数学表达式:△r一(—T,j—(丁)一r]’4)式中7’为热水槽水温;7为冷水槽水温;∞为光纤的热胀系数ir为PBT的热胀系数由于PBT塑料的热胀系数是温度的函数,在几十.C的冷热水温差的范围中.PBT塑料的热胀系数有较大的变化,以HUIS的3001/3013为例,其热胀系数与温度的关系曲线如图7所示.图7热胀系数与温度的关系因此,通常只能以一个平均的热胀系数来作定性的估计.作为冷热水温设定的依据例如HULS3001/3013在23~8O口c的范围内取其平均值为1_3×10/.C从数值计算可见,冷热水温的调节是余长控制的最主要因素.水温差愈大,正余长愈大,反之亦然4.3主牵引张力对余长的影响主牵引张力是施加在从余长牵引到主牵引之间的光纤柬管上,这一段正是束管处于冷水槽经受冷收缩的区间因而牵引张力对束管的弹性拉伸作用是对束管的冷收缩起抵制作用,在标准的二次套塑生产线中.正余长主要是由束管的冷收缩程度来决定的,因而, 此时主牵引张力对光纤余长起到局部的调节作用:牵引张力愈大,对冷收缩的牵制愈甚, 正余长愈小;牵引张力愈小,冷收缩愈自由, 正泉长就愈大.5光纤油膏在二次套塑中的性能分析通常在光纤油膏的制作中需加人触变增厚剂使油膏具有…定的触变陛(Thixotropy)光纤油膏在二次套塑工艺中的性状以及其成缆后对柬管中光纤或带纤的机械保护作用在很大程度上与其触变性有关加人触变增厚剂使光纤油膏分子中的硅原子上的表面羟基(一oH)之间有弱氢键将相邻质点相互结合.使油膏形成具有固态的网状结构(如图8所示).从而使光纤油膏在静止状态下.呈现为一种稳定的,非流动的稠粘肢体.当油膏受到扰动时.如在二次套塑工艺中,光纤油膏被泵人挤塑机机头,注人光纤束管过程中.在剪切力的作用下.弱氢键断裂,油膏分子由网状结构变成线状结构,油膏从稠粘肢体变成流体.因此油膏才能均匀地充人柬管内,当加在油膏上的扰动力消除后, 弱氢键又将相邻质点连结起来,光纤油膏叉回到稠粘胶态,从而防止束管中1油膏产生滴流但光纤油膏的扰动力消除后,油膏不可能完全回到扰动前的分子结构.而且回复需要一定的时问.这段时间称为工艺窗口(Pro teSSWindow)通过调节光纤油膏的配方和工艺,可以改变该工艺窗口的时间长短.在二次套塑中.光纤油膏在出模口充人柬管后直到离开主牵引这段过程中,是束管中光纤余长形成的过程,不论是由于PBT束管的热松弛或是通过PBT束管的弹性拉伸形成余长, 光纤或光纤带在柬管内必须产生相对滑动. 因此.在这一过程中,光纤油膏必须有足够的光纤与电缆及其应用技术1999年第5期流动性.亦即具有较低的牯度.不致限制光纤或带纤的滑动.因此.光纤油膏的稠粘性恢复时间即工艺窗口,应当大于二次套塑中余长最终形成的时间.图8抽膏的触变性币意(引自UN[GEI公司技术资料)光纤油膏的触变性可从下列两个流变特性曲线加以阐明.图9是光纤油膏的粘度剪切速率曲线,当剪切速率增大时,弱氢键逐步断裂.粘度下降,当剪切速率逐渐减小时.光纤油膏逐步恢复其粘稠度.但不可能完全回复到原始状态,所以在同剪切速率时,回复曲线的粘度要低于原始粘度.图10是剪切应力与剪切速率的关系曲线,当剪切速率增大. 剪切应力增大;当剪切速率减小时.剪切应力也下降.但如粘度曲线一样.上升和下降曲线不会重合.上升和下降曲线所构成的滞后回线的面积的大小反映了使弱氢键断裂所需要的能量的大小.因而滞后回线的面积即为触变性的度量.图上的屈服应力(YieldPoint)是指油膏离子间的引力开始断裂,油膏开始流动时的剪切应力,流变曲线上的屈服应力应控制在10~50N/m(Pa)之间,屈服应力太小.油膏甚至在重力作用下就会滴流,屈服应力太大,光纤受机械应力时,油膏不能起到缓冲保护作用.由此可见,光纤油膏在束管中的滴流性能,虽与油膏的粘度大小有一定关系,但在很大程度上取决于其屈服应力.屈服应力愈大,愈不易滴流.光纤油膏的漓流性能与其针人度大小并无直接关系.坫度剪叼埋市图9粘度剪讶速率曲线四立刀图10剪切应力一剪切速宰曲线光纤油膏的粘度还随着温度的升高而下降.因而也可以在二次套塑工艺中对光纤油膏加热降低其粘度,更有利于油膏的填充.挤塑机机头中充膏模具的设计和选用,必须保证油膏通路顺畅,充膏均匀平稳.充膏压力不能太大.如果充膏压力过大,加上采用的油膏粘度也较大时,在出模口,油膏会对进入柬管的光纤产生牵引作用,使余长不可控地增大,这是极需避免的6光纤余长的在线测量光纤在柬管中的余长的测量通常有两种方法:一是用手工截取一定基准长度工的柬管.随后.将束管中的光纤拉出,测量光纤的实际长度按式(23即可计算出余长值e.对于叠带式带纤束管,由于带纤在束管中是以一定节距螺旋绞台而成.当手工测量余长时.带纤从束管中抽出,放平后测其长度, 再按原螺旋节距值折算带纤在束管中的长度陈炳炎光纤和带纤的二莰套塑及其泉长控制L,第二种方法是将成品光缆进行拉伸试验,测出光缆和光纤的应变一拉力负载曲线. 如图1]所示.比较图中的光缆和光纤的应变曲线,在光纤开始出现直变负载下的光缆应变()即为成品光缆中的光纤余长.但须注意:如样品为中心柬管式光缆,上述余长测量值为光纤或带纤在束管中的余长.如样品为层绞式光缆.上述余长测量值并非光纤或带纤在束管中的余长.而是光缆中光纤或带纤的拉伸应变窗口.它既与光纤在束管中的余长有关,还与束管尺寸,SZ绞式节距等参数有关这是光缆质量的最重要的参数之一.063I0.00一031.0lF图11光纤和光纤的拉伸应变曲线为了将光缆余长的实测值与二次套塑的工艺参数联系起来.以便二次套塑的工艺控制,其最佳的方法是在二次套塑生产线上配有余长在线测量和指示装置这对于叠带式束管的生产尤为重要.美国TSI公司推出一种CB100非接触式光纤在线余长的测量系统.该系统是利用激光多普勒测速原理(LaserDopplerVe loeimetry):当一个物体以一定速度通过激光舟-光束时.其散射光会产生多普勒频移.多普勒频移的大小比例于物体通过激光束的速度而利用两束激光的交叉区形成测量区,该区域通常为宽1.5mm.长20mm.从检测所得光的频率信息计算出速度,再进一步换算到单位时间内通过的长度(AL).该系统用在二次套塑生产线上.如图12所示.需两个CB100测量装置,一个装在机头前测量光纤或带纤的长度△L..另一个装在主牵引后测量束管的长度△.将两个测量数据处理后得到在线余长£一(△L一△Lr)/AL?100(5)从而能在二次套塑的控制屏上连续显示在线余长的测量曲线.应当指出的是.上述在线测量的余长值并不等于真正的束管中光纤或带纤的余长值,更不反映成品光缆中光纤或带纤的拉伸窗口这是因为在线测得的余长值是在光纤或带纤以及束管均处于张力的状态下的余长值而在成品束管中.当用手工测量光纤余长时,束管和光纤均处于自由状态因此.在线余长值和人工实测余长值不仅其绝对数值不相等.而且余长随着其调节因素(如光纤放线张力,束管在线张力,生产线速度及油膏的粘度等)的变化规律也不尽相同例如.成品束管中光纤的余长如前所述随光纤放线张力的增大而减小.但在线测得的余长却随放线张力的增大而增大,其原围如下:在线余长测量中,测得的是挤塑机机头前的光纤长度,该位图12CB100测量系统光纤与电缆及其应用技术1999年第5期置的光纤处于放线张力下.光纤在张力作用下弹性伸张,长度变长.而当光纤在束管中形成正余长时,在束管内的光纤已不受任何张力,因而光纤弹性恢复到原始非伸展状态,长度变短.当人工测量杂长时,将光纤从束管段中抽出,清除油膏,测得的是零张力的光纤长度.因而在线测量的光纤长度大于人工测量的光纤长度.光纤放线张力愈大,其差值愈大,从而造成在线测量余长随放线张力增大而增大,但实测成品束管中光纤杂长随放线张力的增大而减小的现象通过光纤或带纤在线余长测量值和成品束管的测量值或通过拉伸应变测量所得到的光纤或带纤的拉伸窗口之间的相互关系和变化规律的分析和研究,可以对在线余长值进行校准,将这种校准值编人控制的程序中去,使之直接反映真实的余长值,但只能针对某些特定的产品来实施,要找出普遍适用的校准规律是相当困难的.再者,迄今为止其测量精度还不能完全令人满意但无论如何.余长的在线测量和指示作为一种相对指标值以反映二次套塑工艺稳定的情况还是相当有价值的图l3表示叠带式光纤带束管制作时,CB10O系统的在线余长测量值,从图中可见,在升速和降速时余长较大,正常生产速度时, 余长指示值为0.15.束管长度Lm图13在线亲长测量指示7二次套塑生产线中的收线和放线71二次套塑生产线中的收线通常采用转盘式收线.其中可选用单盘收线或可自动切换的双盘收线在某些光缆制造厂家也有采用托盘式收线,即是将成型束管自由地盘绕在托盘上这种收线方式有利于生产流水线的调度和管理,也是线缆行业中传统的收线方式之一.但是对于束管式光缆,这种收线方式似乎并不可取.如前所述,光纤束管有挤塑后收缩的性状,当采用转盘收线时,光纤束管以一定张力绕在中转盘上.束管的卷绕直径受到限制,从而对后收缩起了制约作用.成缆工艺进程受后收缩的影响较小.而在托盘式收线时.由于束管自由盘绕在托盘上,对挤塑后收缩没有限制作用由于后收缩导致光纤或光纤带在束管中的余长变化较大再者由于生产流程的安排.同一光。

光缆余长的形成过程及影响的各种因素解析

光缆余长的形成过程及影响的各种因素解析

相对光缆长度有下面公式计算可得: L=1000/cosα (1) 其中L为每公里缆光缆束管的长度m,α为光缆 成缆的绞合角。 tgα=π(φ1+φ2)/W
(2) φ1为加强件直径,φ2为束管直径,W为成缆节 距。 从上面两式可以看出,每公里光缆实际束管长 度比光缆长度长一些,长的部分可以用来提供部分余长, 加上二套
束管半径,Rc,为加强件外经,Rmin= Rn-Ri+Rf,其中Ri 束管内径,Rf光纤束外经,Rf=1.15*n1/2*0.25,n为束管中 光纤数。光缆在生产、
响余长稳定性的重要因素。我们平时生产中常看挤出机 头和热水槽间的油膏液面的稳定性来判断束管余长的稳 定性。油膏的粘度是决定余长大小的重要因素。 纤膏的粘度和其
加热温度成反比,当温度提高时纤膏粘度降低,纤膏粘 度对束管余长影响的范围很大。当纤膏粘度达到一定程 度时,束管余长就不可控,可能束管各根光纤的余长相 差很大。在生产的
过程中,纤膏在受到剪切力时化学键断裂,粘度大幅度 降低,纤膏有良好的流动性,满足生产的要求。当剪切 力撤消后,过一定时间,其化学键会恢复,达到纤膏不 会从束管中流出的
粘度,纤膏的这种性能叫触变性。这样能够满足束管生 产时纤膏粘度较小,光纤能自由运动,使光纤余长容易 控制。粘度过大使光纤运动困难,光纤余长就很难控制。 市场上常见的纤
是说形成了负余长。由于光纤在受力时有一定的拉伸量 (一般<1%),另一方面光纤在轮牵时光纤靠近束管的 内侧面,相对束管长于光纤为负余长。在冷水槽段是形 成余长的主要阶
段,由于束管在冷却时有很大的收缩而形成余长,抵消 前面的负余长而形成要求的余长。 层绞式光缆绞合 也形成一定的余长,束管相对光缆来说长。给光纤足够 拉伸窗口。其束管
由式1可以看出,

光缆用PBT材料松套管后收缩和光纤余长的影响因素.

光缆用PBT材料松套管后收缩和光纤余长的影响因素.
a2——石英光纤材料的线胀系数(1/℃)
6、主牵引轮
松套光纤被牵引到主牵引轮上后,松
套管会在主牵引轮上绕上若干圈,设松套
管在主牵引轮上绕的圈数为N。由于光纤
是从放线架以一定放线张力放出, 因此在
主牵引轮上, 套管中的光纤会靠在套管的
内侧壁上。
7、套管材料特性
套塑生产线所使用的PBT材料特性, 对 套管中光纤余长的影响也是较大的。不同
4、突出点
• 对于填充油膏的光缆(特别在中国),用改性 PP作为松套管,其价值重要性在于,相对于PBT材 料而言可以节省31.5%; • 对于干式光缆(特别是在欧美),用改性PP作 为松套管,其成本优势,相对于PBT材料而言可以 节省34%以上。
结 论:
简单可靠的控制余长和后收缩的方式; • • • 松套管生产中提供巨大的节约潜能; 与现有水槽集成一体,可以移动; 对现有生产线升级。
2、油膏粘度的大小
当光纤与油膏一起进入松套管中 后,在进入主牵引之前,光纤是通
过与油膏之间的摩擦力与油膏连同 套管一起向前运行。
3、填充模具的选择
填充模具是指光纤经过油膏填 充后,给光纤束和油膏一起定径的模
具,笔者称之为油膏模填充模具。
4、挤出模具的选择
拉伸比的定义公式为: DDR=(D1-D2)/(D3-D4)
9、套管中光纤余长均匀性的控制
影响套管中光纤余长均匀性的因素有: (1)从每个放线架出来的光纤的放线张 力要保持一致; (2)束纤模、油膏模的中心与套塑生产 线的中心重合; (3)在套塑生产过程中, 要求光纤束位 于套管的中心位置。
四、结语
综上所述影响余长的情况比较复杂, 但 是, 只要理解了报告中这些因素对余长的影 响结果, 那么将余长控制在期望的范围内也

光缆结构设计中光纤余长的原理与产生分析

光缆结构设计中光纤余长的原理与产生分析

光缆结构设计中光纤余长的原理与产生分析摘要:光纤余长是光缆设计和生产中的重要参数。

光纤的余长设计及控制对光缆的性能指标影响非常大。

光纤余长的大小直接影响到光纤的抗拉性能、温度性能、直径、重量、成本和工艺参数等许多方面。

本文分别介绍了套管余长中的螺线式余长分布和正弦余长分布余长数学模型,绞和余长和综合余长,讨论了各自余长的产生机理以及光缆的各个参数对余长的具体影响情况,为工业中如何设计和优化光纤余长提供了理论依据。

关键词:光纤余长;松套结构;光缆结构设计1、光纤余长的定义所谓光纤余长是指多于参照对象的光纤的长度,而在实际的应用中光纤余长的定义则为按照最短的路径计算所得的光纤的无纵向应变的物理长度和所参照的对象的物理长度两张只差,通常用百分数来表示。

2、光纤余长的产生机理和作用在松套结构光缆中,光纤在松套管或骨架盆中有一定的活动空间,同时光纤呈现自由弯曲状态。

当光纤因受到纵向应力(或拉力)或由于温度变化,光纤会产生一定的长度应变。

所谓的光纤余长,是指以最短路径计算的光纤无纵应变物理长度与参照物理长度之差以百分数表示的相对值。

因此,光纤余长在光缆受到外应力时,可以为光纤提供一定的受力保护。

光纤余长一般可以由所采用的抗张元件和光缆的受力指标来确定。

同时,根据光纤余长可以进一步确定套管内半径和光纤活动空间。

3、光纤余长的分类光纤在进行二次被覆时,由于套管的冷却收缩,使得套管内的光纤受力收缩,这种余长的产生方式称为套管余长。

通过将含有光纤的松套管以螺线状绞合在中心件上的方式,也可以产生余长,这种方式称为绞合余长。

一般而言,光纤的套管余长主要取决于制造温度和使用温度,而绞合余长主要取决于光缆结构。

3.1 套管余长在一般光缆中,光纤在套管中有正弦和螺旋线两种可能的分布形式。

通常在工程设计中,所谓的曲率半径具体到实际问题中时,对应为光纤的宏弯半径。

因此应考虑在最小曲率半径的条件下进行设计优化,以保证在实际应用中,设计的光缆能够符合应用要求并能正常工作。

光纤余长及作用

光纤余长及作用

光纤余长及作用
光纤是一种能够将光信号传输的通信媒介,它利用在玻璃或其他透明体中的光束传输信息,当光束进入纤维中时,其“余长”过程及其作用就会发挥出重要作用。

光纤余长是指光纤传输过程中,光纤接受到的光束被玻璃或其他透明体反射或反向折射,形成另一束光束,从而使光源光束的位置被前进的过程。

在这个过程中,光束会受到玻璃或其他透明体的反射和折射作用,使其在总光束的方向上前进,其称之为“余长”,也叫“余弦余长”。

“余长”机制可以使光纤在一定程度上不受外界波动等因素影响,进而提高光纤传输效率。

余长反应作用不仅表现在光纤传输中,在其他领域也有普遍应用。

例如,在者激光路由技术中,利用余长作用可以将高能量激光束在特定材料表面反弹,这有助于控制激光光束的路径,从而指导激光束实现高精度的扫描效果。

此外,光纤余长还可用于实现光纤传感方面的应用,例如温度的测量和监控等。

因为光纤传输特性的变化会影响“余长”现象,经过测量和分析,可以得出所需要的温度值,并将其实时传输至远程受控端。

此外,余长机制还可用来实现飞行器或机器人的避障方面的应用,当飞行器或机器人在飞行过程中,可以利用余长原理,把激光束反射到特定的物体上,当反射的激光束返回时,就可以确定飞行器的距离,进而实现前进的避障。

总而言之,光纤余长及其作用非常重要,它不仅可以提高光纤传输效率,还可以用来实现激光路由技术,光纤传感技术,飞行器和机器人等多种应用。

另外,由于光纤余长特性独特,对于解决传统通信系统存在的问题,如信号衰减,噪声干扰等,也具有十分重要的意义。

未来,光纤余长的应用会得到进一步发展和深入研究,可能会开发出更多更高效的应用,使光纤传输技术进一步成熟和发展。

光缆基础知识

光缆基础知识

光缆基础知识光缆,是以一根或多根光纤或光纤束制成符合光学、机械和环境特性的结构。

光缆的结构直接影响系统的传输质量,而且与施工也有较大的关系。

施工人员在敷设光缆前,必须了解光缆的结构和性能。

工程施工应按所选用光缆的结构、性能,采取正确的操作方法,完成传输线路的建设,并确保光缆的正常使用寿命。

1.光缆设计的原则光纤在通信领域内的广泛应用,要求设计制造各种各样结构的光缆。

设计光缆,必须规定光缆的结构尺寸和所用材料。

设计光缆的一般原则如下:(1)光纤的余长:根据每管光纤芯数和余长要求,设计松套管尺寸。

当松套管是用来制作中心束管式光缆时,松套管中光纤余长应在0.25%左右;当松套管是用来制作层绞式光缆时,松套管中光纤余长应在0.02%左右。

(2)机械强度:根据对光缆机械强度要求,合理选择光缆中的加强构件、直径以及护层结构、铠装结构等。

光缆的抗拉强度主要靠加强构件提供;光缆抗侧压力主要靠护层或铠装层提供。

光缆防水防潮,主要靠铝—塑粘结护套或钢—塑粘结护套,以及缆中的阻水油膏和阻水材料提供。

(3)使用场合:根据光缆的使用场合,使用不同结构的光缆,满足使用场合的要求。

(4)阻水:要注意选用阻水油膏,特别是松套光纤用阻水油膏的温度特性要好,不能有淅油等。

(5)光缆结构:合理的光缆结构设计,应使松套管尽量靠近光缆中起支承作用的部件。

同时,合理的光缆结构设计,应对光纤起到最佳的机械保护。

在光缆结构设计中,在保证光缆所要求的特性下,应尽量使光缆横截面积小,单位长度重量轻,发挥光缆本身所应具有的优点。

2.光缆结构中所用材料及其性能光缆是由光纤、高分子材料、金属-塑料复合带及金属加强件等共同构成的光信息传输介质。

光缆结构设计要点是根据系统通信容量、使用环境条件、敷设方式、制造工艺等,通过合理选用各种材料来赋予光纤抵抗外界机械作用力、温度变化、水作用等保护。

图2.5层绞式钢带纵包双层钢丝铠装光缆结构图图2.5 所示的是所用材料种类最多的GYTY53+333层绞式钢带纵包双层钢丝铠装光缆的横。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤余长
光缆余长形成主要来源于二次被覆和成缆工序,它们一起决定了光缆余长的大小。

而二次被覆工序是光缆余长和余长调节的最重要工序,它可以通过调节其他工艺参数来达到调节余长的目的光纤从放线架以一定放线张力下放出,通过油枪进入主机挤出系统,再通过热水槽冷却进入轮牵,在这个过程中光纤是以直线运动。

由于光纤油膏有触变性在受到剪切力的情况下化学键断裂,纤膏粘度降低,具有很好的流动性,光纤在热水槽段是被拉直,没有形成余长或是说形成了负余长。

由于光纤在受力时有一定的拉伸量(一般<1%),另一方面光纤在轮牵时光纤靠近束管的内侧面,相对束管长于光纤为负余长。

在冷水槽段是形成余长的主要阶段,由于束管在冷却时有很大的收缩而形成余长,抵消前面的负余长而形成要求的余长。

光缆余长的形成:
层绞式光缆绞合也形成一定的余长,束管相对光缆来说长。

给光纤足够拉伸窗口。

其束管相对光缆长度有下面公式计算可得:
L=1000/cosα (1)
其中L为每公里缆光缆束管的长度m,α为光缆成缆的绞合角。

tgα=π(φ1+φ2)/W (2)
φ1为加强件直径,φ2为束管直径,W为成缆节距。

从上面两式可以看出,每公里光缆实际束管长度比光缆长度长一些,长的部分可以用来提供部分余长,加上二套形成的余长,两者共同组成了光缆的所有余长,为光缆提供了足够的拉伸窗口。

对于中心束管式光缆由于没有成缆部分的余长,在二次套塑时余长要大一些。

为光缆提供了足够的拉伸窗口。

因此对于不同用途的光缆设定相应的束管余长。

影响余长的因素:
影响余长的因素很多,他们之间是既独立又相互联系。

在二套生产中各个环节都不同程度的影响着余长的大小,具体总结起来有如下几个方面对余长有影响。

放线张力对余长影响是张力越大,其光纤被拉伸的程度越大,相对在热水槽段束管的负余长越大,最终余长就越小。

因此在生产中由于放线架不稳或放线主力过大,都会时束管余长不稳,形成束管中各个光纤长度相差较大。

有的设备为主动放线有的为被动放线,但张力不稳对光纤的余长都有影响,被动放线影响较大。

余长张力是我们日常生产中最常见调节余长的工艺参数之一,他的调节对余长变化比较敏感。

余长张力调大时束管余长变小,相反张力调小时余长变大。

调节余长张力是一种容易控制的调节方式,也有稳定的量度,容易调节,但他的调节范围不是很大,只能将余长在小范围的调节。

热水槽温度也是调节束管余长的主要工艺参数,在其他参数稳定不变的情况下,一般温度提高,余长变大,反之则然。

一般热水的温度都高于45℃,由于PBT的结晶温度一般是高于45~50℃,如果热水温度过低,PBT结晶不好会影响其束管的性能,束管后期收缩会很大。

而热水和冷水的温度差是最终决定束管的余长,一般温差越大,其束管收缩越大,余长越大,反之则然。

油膏的性能也是影响余长稳定性的重要因素。

我们平时生产中常看挤出机头和热水槽间的油膏液面的稳定性来判断束管余长的稳定性。

油膏的粘度是决定余长大小的重要因素。

纤膏的粘度和其加热温度成反比,当温度提高时纤膏粘度降低,纤膏粘度对束管余长影响的范围很大。

当纤膏粘度达到一定程度时,束管余长就不可控,可能束管各根光纤的余长相差很大。

在生产的过程中,纤膏在受到剪切力时化学键断裂,粘度大幅度降低,纤膏有良好的流动性,满足生产的要求。

当剪切力撤消后,过一定时间,其化学键会恢复,达到纤膏不会从束管中流出的粘度,纤膏的这种性能叫触变性。

这样能够满足束管生产时纤膏粘度较小,光纤能自由运动,使光纤余长容易控制。

粘度过大使光纤运动困难,光纤余长就很难控制。

市场上常见的纤膏有unigel.、DAE和汉膏等,他们都有不同的粘度和不同产品型号来满足不同设备和不同类型产品的要求。

有的设备生产速度达400m/min,这时就应对纤膏粘度有特殊的要求。

纤膏挤出的模具油针和导纤针对束管余长也有一定的影响。

油针或导纤针的大小,直接影响到纤膏的挤出稳定性。

纤膏挤出稳定性决定了光纤运动轨迹,所以一般纤膏挤出不稳定,则表现在各光纤的余长相差很大。

配置适合的模具也是决定束管余长好坏的主要方面,模具配置不合理,二套时束管内就会包裹进去大量的空气,使束管表面上看有许多真空泡,束管放置一段时间气泡也不消失,说明是由于油膏液面不稳卷入了空气。

在成缆的过程中,余长的形成主要来源于束管和光缆的相对长度。

由式1可以看出,光缆结构固定后,其余长大小和成缆时束管与填芯的绞合角决定。

一般绞合角越大其余长越大。

从式2中看出,决定绞合角的因素是成缆节距,节距越小,绞合角越大,余长就越大。

绞合也是余长的重要来源。

有的公司在二套生产时故意形成零余长,目的是利用成缆形成余长就足够了。

余长在实际应用中的意义:
光缆在生产和使用过程中都需要有一定的拉伸窗口§,一般光缆§为0.5%,自承式光缆§为0.8-1.0%。

拉伸窗口与余长和成缆节距有如下关系,如式(3)。

§=§0(1+4πRn2/Sn2)+2π2 (Rn2-Rmin2) /Sn2 (3)
其中§为光缆的拉伸窗口,§0束管的余长,Sn绞合节距,Rn为绞合半径(Rn= Rc+ Rt))Rt为束管半径,Rc,为加强件外经,Rmin= Rn-Ri+Rf,其中Ri束管内径,Rf光纤束外经,Rf=1.15*n1/2*0.25,n为束管中光纤数。

光缆在生产、安装和工作运行时,受到一定的拉力,缆将被拉伸一
定的长度,在光缆被拉伸时,光纤不能受力,这样就要求光缆有一定的被拉伸窗口。

拉伸窗口的大小直接决定光缆的抗拉试验的好坏,所以拉伸试验是光缆试验中最重要试验之一。

在有些地区,一年四季的温度变化比较大,在光缆工作温度变化时,由于光纤和光缆的其他组成材料间热膨胀系数不同,而光纤又不能受到外界拉力,所以光缆必须有足够的拉伸窗口。

我们生产光缆每年都做的型式实验高低温,其目的就是防止光缆工作温度变化的情况下对光缆有无损坏。

光缆的其他试验如压扁、弯曲和抗冲击等都要求光纤在光缆中有足
够的余长。

当光缆受到外界作用时,光纤能够得到足够的应变空间,以至于光纤不会受到外力的作用损坏。

光纤余长是光缆生产中最重要的控制参数,它的好坏直接决定光缆
质量的好坏和光缆使用的性能,有其重要的意义。

影响余长的因素很多,他们之间相互作用又相互关联。

因此在我们生产过程中必须理解了各个影响因素是如何影响光缆的余长,才能够很好的控制生产。

光缆生产虽然十分成熟,但我们实际生产中还是存在问题给光缆生产带来许多的损失。

光缆生产的各个工艺参数必须严格控制才能生产出一流的产品。

ADSS光缆和OPGW光缆有什么区别?
ADSS光缆特点:
性能特点:
芳纶纱周边加强,防弹性能好,在10米左右距离遭射击光纤不受伤无金属,抗电磁干扰,防雷电,耐强电磁场
优良的机械和环境性能
重量轻,施工方便
利用现有杆塔,节省线路建设费用
可带电架设,减少停电造成的损失
与电力线路互相独立,检修方便
属于自承式光缆,无需吊线等辅助挂线
5)结构特点:
光纤在套管中为松套式结构
缆芯结构为层绞式
其绞合方式为SZ绞合
外护套具有防电腐蚀功能
主要承力部件为芳纶纱
OPGW光缆特点:
结构特征:
光纤单元(不锈钢管、铝包不锈钢管)
金属单丝(铝包钢、铝合金)周边加强
性能特点:
全金属
优良的机械和环境性能
与地线具有良好的匹配性,机械和电气性能几乎一致
实现光纤通信,同时分流短路电流,导引雷击电流
5)适用范围:
适用于电力系统,尤其110KV及以上高压新建线路中,
同时实现光纤通信和地线功能
从应用方面有以下两点重要区别:
1.ADSS属于全介质自承式光缆,其承力单元为芳纶和非金属加强
芯,属于非金属单元。

OPGW属于光纤地线符合光缆,其承力单元为铝包钢导线,属于
金属材质。

2.OPGW光缆架设的环境可以是电力杆塔上,也可以单独架设,且
在中间位置存在。

OPGW光缆架设的环境多应用在电塔上,并且架设在最顶端,起
到避雷作用。

相关文档
最新文档