变压器在线监测装置
变压器铁芯接地电流在线监测装置技术规范

在线监测装置的接入不应改变主设备的电气联接方式、密封性能、绝缘性能及机械性能,接地引下线应保证可靠接地,满足相应的通流能力,不应影响现场设备的安全运行。
电流信号取样回路具有防止开路的保护功能,电压信号取样回路具有防止短路的保护功能。
4.3功能要求
变压器铁芯接地电流在线监测装置应满足的基本功能如下:
3
下列术语和定义适用于本标准。
3.1变压器铁芯接地电流在线监测装置
安装在高压设备附近,用于变压器铁芯接地电流特征量连续实时监测的装置。一般由传感器、数据采集和处理模块、通讯控制模块等组成。
4
4.1通用技术要求
变压器铁芯接地电流在线监测装置的基本功能、绝缘性能、电磁兼容性能、环境性能、机械性能要求、外壳防护性能、连续通电性能、可靠性及外观和结构等通用技术要求应满足《变电设备在线监测装置通用技术规范》。
目次
前
为规范输变电设备在线监测系统的规划、设计、建设和运行管理,统一技术标准,促进在线监测技术的应用,提高电网的运行可靠性,特制定本标准。
本标准由中国南方电网有限责任公司生产技术部提出、归口并解释。
本标准起草单位:广东电网公司电力科学研究院。
本标准主要起草人:
本标准由中国南方电网有限责任公司标准化委员会批准。
(1)监测装置可以通过网络连接与主站或者安装了主站通信软件的便携式工作站进行信息交换,监测装置具有按预设程序实时采集并向上一级数据服务器报送被监测设备状态数据的功能;具有接收和执行设备主管部门对其进行远程对时、参数调阅和设置命令的功能;
(2)监测装置具有USB等即插即用型数据交换接口,允许利用便携式工作站等设备实现历史数据的就地查询、数据分析及数据导出;
本标准自XXXX年XX月XX日起实施。
变压器局部放电特高频法在线监测装置技术规范-终稿

试验电压有效值
Ur060V
0.5 kV
250〉Ur〉60 V
2.0 kV
注:与二次设备及外部回路直接连接的接口回路试验电压采用250〉Ur〉60V的要求。
c)冲击电压
在正常试验大气条件下,装置各独立电路与外露的可导电部分之间,以及各独立电路之 间,应能承受1.2/50N s的标准雷电波的短时冲击电压试验。当额定工作电压大于60V时, 开路试验电压为5kV;当额定工作电压不大于60V时,开路试验电压为1kV。试验后设备 应无绝缘损坏和器件损坏。
4.3功能要求
a)应具备长期稳定工作能力,具有断电不丢失数据、自诊断、自复位的功能。
b)应具备现场校验用接口,能够安全、方便地接入标准测量仪器,对监测装置测量结果进 行比对。
c)监测装置应具有较高的抗干扰能力及干扰信号区分能力,能够区分局放信号与内、外界 的干扰信号,如开关操作、无线电、通信信号、自检信号等干扰信号;可通过滤波、屏 蔽、干扰识别或干扰定位等方式,将变压器运行中的周期型干扰、非周期型干扰和白噪 声等现场电磁干扰(雷达信号、电动机干扰、荧光灯等干扰信号)抑制到可接受的水平, 将其影响最小化。
f)室外安装设备应具有防水防潮措施,端子箱内部应安装防凝露除湿设备。
4.1.9
监测装置的设计应充分考虑其工作条件,要求能在变电站户内外工作条件下长期可靠工 作。装置相邻两次故障间的工作时间的平均值不小于8760小时。
4.1.10
监测装置寿命应不低于10年,对内置传感器则应与变压器保持一致。
4.2接入安全性要求
d)装置应能承受GB/T 2423.9规定的恒定湿热试验。试验温度+40℃±2℃、相对湿度 (93±3)%,试验时间为48h。
主变压器在线监测装置配置分析

变压器局放在线监测装置

变压器局放在线监测装置
局部放电的危害
局部放电是引起绝缘老化并导致击穿的主要原因。
虽然局放的的时间短,能量小,但是长时间的积累会对绝缘材料造成很大的损害。
首先,与局部放电相邻的绝缘材料会直接受到放电粒子的轰击。
二是放电产生的热、臭氧、氮氧化物等活性气体的化学作用,使局部绝缘腐蚀老化,电导增大,最终导致热击穿。
在运行中的变压器中,内绝缘的老化和损坏大多是从局部放电开始的.
局部放电的原因
造成局部放电的因素除了设计上考虑不周密外,最主要的原因是由制造生产过程中造成的,一般有如下原因:
1、零部件结构有尖角、毛刺,造成电场畸变,放电起始电压降低;
2、有异物和粉尘,引起电场集中。
在外电场作用下发生电晕放电或击穿放电;
3、有水分或气泡。
因水、气介电系数较低,在电场的作用下,首先发生放电;
4、金属结构件悬浮剂接触不良,就会形成电场集中或产生火花放电。
公众智能研发I1OkV主变压器局部放电在线监测系统选择对主变绝缘状况反映比较及时准确的局部放电进行在线监测,对运行变压器的当前状态及发展趋势进行分析判断,对设备的运行和维护提供决策参考,对设备存在的故障或潜在故隙的判断提供依据。
这对于及时发现变压器故隙,避免运行事故是非常必要的,从而为电力企业提高大型电力变压器安全运行水平和事故预知能力,有效降低事故率,优化检修策略,提高维护检修的技术水平,带来可观的经济效益。
变压器在线监测装置原理

变压器在线监测装置原理嘿,你有没有想过,电是怎么从发电厂跑到我们家里来的呢?这里面啊,变压器可起了大作用。
不过,变压器要是出了问题可就麻烦啦。
那怎么才能知道变压器是不是好好工作呢?这就不得不提到变压器在线监测装置啦。
咱先说说变压器是干啥的吧。
就好比一个大力士,把从发电厂送来的高压电变成我们家里能用的低压电。
但是这个大力士也会累,也会生病呀。
要是它出了问题,那我们可就没电用了。
所以呢,就得有个小助手来时刻盯着它,这个小助手就是变压器在线监测装置。
那这个监测装置是怎么工作的呢?其实啊,它就像一个细心的小侦探。
它会通过各种方法来了解变压器的情况。
比如说,它可以监测变压器的温度。
你想啊,如果一个人发烧了,那肯定是身体不舒服了。
变压器也一样,如果温度过高,那就可能有问题了。
监测装置会随时告诉我们变压器的温度是多少,要是太高了,我们就可以赶紧采取措施。
它还能监测变压器的油。
变压器里面有一种油,就像我们汽车里的机油一样,起着很重要的作用。
如果油的质量不好了,或者有杂质了,也会影响变压器的工作。
监测装置就会看看油的颜色、气味啥的,要是有问题,也会马上提醒我们。
另外呢,它还能监测变压器的声音。
如果变压器发出不正常的声音,那就可能是有故障了。
就像我们的车子,如果发出奇怪的声音,我们就会知道可能哪里出问题了。
有了这个变压器在线监测装置,我们就可以随时了解变压器的工作状态,一旦有问题就能及时处理,这样我们就能放心地用电啦。
所以啊,你看,变压器在线监测装置就像一个守护天使,默默地守护着我们的用电安全。
下次你再看到变压器的时候,就可以想到它身边还有这么一个厉害的小助手呢。
浅谈变压器在线监测装置的技术原理和实际应用

态变 化和 绝缘 缺 陷的数 据 , 通过 分析 系统 给 出合理 的检 修 方式 。 据 总线 与下 位机 进行 数据 交 互 ,把 变 电站 内变压 器及 所 有 电气设 并
由此 形成 了对 设备 的实 时检 测技 术 , 该项技 术 的形成 和完 善 , 电 备的监 测数 据汇 集到 上层 数据 管 理诊 断系统 。系 统 诊断 流程 如 图 为 气 设备 的故 障处 理 和 日常 检修 提 供 了更 为准 确 、 捷 、 效 、 快 高 直观 2所示 。
式 。 被监 测设 备上 安装 智能 化 的本地 监测 单元 实施 就地测 量 , 在 并
通过 现 场 R 4 5 S 8 通信 把 监测 数据 传 送 到站 方 中央 监 测主 机 , 方 站
中央 监 测 主机 再 通 过 R 4 5或 6 8 0总 线 与 局域 网相 连 。用 户 S8 15
( C机 ) 用局 域 网可随 时获 取监 测数 据和 诊断 结果 。 软件架 构 P 利 在 方 面 , 用 模 型一 视 图一控 制 器 模 式 ( c , 得 业务 流 程 分 工 采 Mv ) 使 更 加合 理 。系统 开发 出 了一套针 对 油浸 式变压 器运 行 状态 的 自动 智 能诊 断与 人工 干预 诊 断 ( 家诊 断) 互验 证 的诊 断系统 。 以实 专 相
2 认识 到定 期停 电试 验 的弊端 后 ,动 态化 监 测方 法就 应运 而 现 数据 显示 、 障预警 、 障诊 断 的功能 , 到监测 缺 陷发 展趋 势 , 提 生。 这种 方法 是在 2 0世纪 7 年 代发 展起 来的 , 思 路不 再 以时间 揭 示故 障严 重程 度 , 供措 施 建议 的 目的 。 0 其 系 统 由站方 中央 监测主 机和 本 地监 测单 元组 成 ,本地 监 测单 为衡 量设 备检测 的标 准 ,而是将 重 点放 在对 电气 设备 的运 行状 态 的实 时监 测上 , 其做 法是 根据 设备运 行状 态 、 环境 变化 来监 测 设备 元 包括 局部 放 电监测 单元 、油 色谱 监测 单元 、变 压器 套 管监 测单 变 分 风 油泵 监测 单 元 、 变压 器 的某 种特 性指标 , 握设 备运 行状 态 的变 化 , 把 对设 备 的故 障和 维修 元 、 压器 铁 芯监 测 单元 、 节 开 关 、 机 、 A设 备监 测 单元 等 进行 提前 预判 , 做到 随病 随治 。在 此思 路的基 础 上 , 设备 的在 线监 运 行 工况 监测 单 元 、环 境 工况 监 测单 元和 MO 测技 术也 随之 发展起 来 ,此方 法 可以在 设备 运行 中及 时 反应 其状 组成 。 统组 成示 意 图如 图 1 系 所示 。 方 中央监 测主 机通 过 串行数 站
高压电力变压器安装变压器油色谱在线监测装置的必要性

1、前言.随着电力系统电压等级的提高、设备容量的增大,人们对供电可靠性提出了越来越高的要求。
变压器是电力系统主要设备之一,保证变压器的安全可靠运行,对提高电力系统的供电可靠性具有十分重要的意义。
变压器在运行中虽然采取了必要的保护措施,但由于内部绝缘结构复杂,电场及热场不均匀分布等原因,运行中仍有事故发生。
因此,为确保主变安全运行,人们发展了很多检测方法,油色谱检测是最为有效、灵敏的方法之一,不仅能发现故障、还能判断故障类型,故障的发展快慢。
但是,色谱是定期取样进行分析的,对突发性故障难以发现,且分析过程繁杂,环节多,人为误差大。
为此,为随时掌握设备的运行状态,检出突发性故障。
开展变压器油中溶解气体在线监测技术(DGA)的研究,开发变压器油中溶解气体在线监测系统,对于电力变压器实现状态监测与状态维修具有十分重要的意义。
2、变压器绝缘故障的原理2.1、变压器绝缘故障与特征气体的关系变压器的绝缘状况的优劣是电力系统安全运行的关键因素之一,变压器的主绝缘由绝缘油和固体绝缘材料两大部分组成。
变压器的内部故障主要分为过热性故障、放电性故障及受潮故障三种。
热故障可以分为低于150℃~300℃的低热故障、300~700℃的中热故障以及高于700℃的高热故障;电气故障按能量大小分,有高能量的电弧放电、低能量的间歇火花放电和最低能量的局部放电。
绝缘油和固体绝缘材料由于热或电故障分解出的气体经对流、扩散、不断地溶解在油中。
这些故障气体的组成和含量与故障的类型及其严重程度有密切关系。
因此,分析溶解于油中的气体,就能尽早发现变压器内部存在的潜伏性故障。
不同的故障类型产生的主要和次要特征气体如表1所示。
由上表可以看到,低能量局部放电在油中产生了氢气,过热故障产生了氢气、甲烷、乙烷和乙烯,而电弧故障则导致了氢气和乙炔的增加。
图1.1 油分解产生特征气体随温度变化概要图解在不同热点温度下,不同气体的增长率不同,特征气体的成份也不同。
变压器局部放电(特高频法)在线监测装置技术规范_(终稿)

变压器局部放电(特高频法)在线监测装置技术规范1范围本规范规定了变压器局部放电(特高频法)在线监测装置的术语、技术要求、试验项目及要求、检验规则、标志、包装、运输、贮存要求等。
本规范适用于变压器局部放电(特高频法)在线监测装置。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 191 包装储运图示标志GB/T 7261 继电保护和安全自动装置基本试验方法GB/T 6379.1 测量方法与结果的准确度(正确度与精密度)第1部分:总则与定义GB/T 11287 电气继电器量度继电器和保护装置的振动、冲击、碰撞和地震试验GB 2423 电工电子产品环境试验第2部分:试验方法GB 4208 外壳防护等级(IP代码)GB/T 17626 电磁兼容试验和测量技术DL/T 860 变电站通信网络和系统GB7354 局部放电测量GB/T16927 高电压试验技术3术语和定义下列术语和定义适用于本规范。
3.1特高频法(ultra high frequency(UHF))指采用特定的传感器检测局部放电在特高频频段(300~1500MHz)所产生电磁波信号的方法。
3.2最小可测放电量在检定环境下针对特定典型的局部放电类型所能检出的最小放电量q min(pC)。
为了得到明确的测量结果,q min的测量幅值至少应为背景幅值的2倍。
4技术要求4.1通用技术要求在线监测装置的通信功能、绝缘性能、电磁兼容性能、环境性能、机械性能要求、外壳防护性能、连续通电性能、可靠性及外观和结构等通用技术要求如下。
4.1.1一致性功能应采用标准可靠的现场工业控制总线或以太网络总线,采用统一的通信协议和数据格式,应具备时间同步功能。
上传数据应遵循DL/T 860通信协议。
在线监测装置传输的数据内容和方式,以及进行数据建模时应遵循的原则见附录A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器在线监测装置
我厂2×1000MW机组2组主变(2x3台单相变)及2台三相一体式起备变变压器配置美国Serveron公司生产的变压器在线监测装置的描述。
在该系统装置中,对变压器油中故障气体(TM8)、微水(TMM)、高压套管(TMB)进行在线监测及后台控制,并通过接口与DCS 连接。
1、TM8/TMM变压器在线监测装置工作原理
TM8/TMM变压器在线监测装置是通过油中溶解气体分析(Dissolved Gases Analysis,简称DGA)来对油浸电力设备进行监测。
因能够及时发现变压器内部存在的早期故障,在以往的运行维护中消除了不少事故隐患。
其工作原理是:TM8/TMM通过一台泵来实现变压器油以大约250ml/m的流量在变压器和在线监测仪的萃取系统间循环。
萃取过程不消耗变压器油。
油气分离装置气体侧有一个气密的空间,与油侧的油中气体达到自然平衡。
经过一个典型的4小时采样间隔,大约有60升油穿过了萃取系统,萃取系统中显示的气压反映了变压器中溶解气体的全部气压。
在获得气样后用载气通过色谱柱后,通过TCD获得气体的具体含量。
在色谱柱热区,通过加热的方式使其温度一直保持在73 C。
这样能够使测量准确稳定。
TM8/TMM带有自校验系统,能够自动或人为进行校验。
TM8/TMM共测量8种故障气体及微水,包括氢气,甲烷,乙炔,乙烯,乙烷,一氧化碳,二氧化碳和氧气。
TM8也能对氮气及总烃报数,是唯一全面符合中国标准的DGA。
2、TMB容性设备绝缘在线监测系统工作原理
TMB容性设备绝缘在线监测系统,对电流互感器(CT)、套管(Bushing)、耦合电容器(OY)以及电压互感器(PY)、CVT等进行在线监测,能够发现套管存在的绝缘问题。
本系统利用高灵敏度电流传感器,不失真的采集电力设备末屏对地的电流信号,同时从相应的PT取得电压信号,通过对数字信号的运算和处理,得出介质损耗和电容量等信息。
最终利用专家系统,全方位的分析、判定、预测电气设备绝缘系统的运行状况。
其主要功能是
1.实时或者周期性监测高压套管的介质损耗和等小电容;
2.环境温度、湿度变化趋势以及相应的监测结果的修正;
3.自动跟踪电容及介质损耗变化并分析其趋势;
4.报警功能
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。