38不等式及其性质(提高)知识讲解

合集下载

高考数学 第一轮复习 第38课时—不等式的概念和性质

高考数学  第一轮复习 第38课时—不等式的概念和性质

课题一:不等式的概念与性质一.复习目标:1.掌握并能运用不等式的性质,灵活运用实数的性质;2.掌握比较两个实数大小的一般步骤.二.知识要点:1.不等式的性质:①对称性: ;②传递性: . ③加法性质; . ④乘法性质: , .⑤乘方性质: ;开方性质 .2.比较两数大小的一般方法是: .三.课前预习:1.命题(1),n n a b ac bc n N *>⇒>∈,(2)22a b a b >⇒>,(3)11a b a b>⇒<,(4)0,0a b c d ac bd <<<<⇒>,(5()a b n N *>⇒>∈(6)a b a c b d c d <⎧+<+⇔⎨<⎩,(7)220a b a ab b <<⇒>> 其中真命题的是 .2.已知01x y a <<<<,则 ( )()A log ()0a xy < ()B 0log ()1a xy << ()C 1log ()2a xy << ()D l o g ()a xy >.3.如果0m b a <<<,则 ( )()A cos cos cos b m b b m a m a a m +-<<+- ()B cos cos cos b b m b m a a m a m -+<<-+ ()C cos cos cos b m b b m a m a a m -+<<-+ ()D cos cos cos b m b m b a m a m a+-<<+-. 四.例题分析:例1.比较11n n x y +++和*(,,)n n x y xy n N x y R ++∈∈的大小.例2.设0,1a a >≠,0t >,比较1log 2a t 和 1log 2a t +的大小,并证明你的结论.例3.在等比数列{}n a 与等差数列{}n b 中,11330,0a b a b =>=>,且31a a ≠, 比较2a 与2b ,5a 与5b 的大小.例4.设数列{}n a 的通项公式是21000n n n a =, (1)讨论数列{}n a 的单调性;(2)求数列中的最大项.五.课后作业:1.设,(,0)a b ∈-∞,则“a b >”是“11a b a b->-”成立的 ( ) ()A 充分非必要条件 ()B 必要非充分条件 ()C 充要条件()D 既不充分也不必要条件2.下列不等式:(1)232()x x x R +≥∈, (2)553223(,)a b a b a b a b R +≥+∈,(3)222(1)a b a b +≥--.其中正确的个数为 ( ) ()A 0()B 1 ()C 2 ()D 33.给出下列条件①1a b <<;②01a b <<<;③01a b <<<.其中,能推出11log log log b a a b b b <<成立的条件的序号是 (填所有可能的条件的序号).4.函数()y f x =是(0,2)上的减函数,且关于x 的函数(2)y f x =+是偶函数, 则15(),(),(3)22f f f 的大小关系是 .5.已知,,,a x y b 依次成等差数列,,,,c x y d 依次成等比数列,其中,0,0x y x y ≠>>, 比较a b +与c d +的大小.6.某人乘坐出租车从A 地到B 地,有两种方案:第一种方案,乘起步价为10元,每Km 价1.2元的出租车;第二种方案,乘起步价为8元,每Km 价1.4元的出租车,按出租车管理条例,在起步价内,不同型号的出租车行驶的里路是相等的,则此人从A 地到B 地选择哪一种方案比较适合?7.设()f x ,比较 11|()()|f x f x -与1212||()x x x x -≠的大小.8.设,m R x R ∈∈,比较21x x -+与222m mx --的大小.9.设()1log 3,()2log 2x x f x g x =+=,其中0,1x x >≠,比较()f x 与()g x 的大小.。

不等式的性质知识点及题型归纳总结

不等式的性质知识点及题型归纳总结

不等式的性质知识点及题型归纳总结知识点精讲一、不等式的基本性质不等式的性质是证明和解不等式的主要依据.运用时,对每一条性质要弄清条件和结论,注意条件加强和放宽厚条件和结论之间的变化;不仅要记住不等式运算法则的结论形式,还要掌握法则成立的条件,避免由于忽略某些限制条件而造成解题失误.1. 两个不等式的同向合成,一律为“”(充分不必要条件)(1)(传递性,注意找中间量)(2)(同向可加性)(3)(同正可乘性,注意条件为正)注:如,其逆命题不成立,如但是.2. 一个不等式的等价变形,一律为“”(充要条件),这是不等式解法的理论依据(1).(2)(对称性)(3)(乘正保号性)(4)(5)(不等量加等量)(6)(乘方保号性,注意条件为正)(7)(开方保号性,注意条件为正)(8)(同号可倒性);.最为重要的3条不等式性质为:①;②;③,在不等式问题中都有重要的应用,但应注意他们的适用条件,可以用口诀“同.向同正可乘.......”来记忆......;同号取倒需反向题型归纳及思路提示题型1 不等式的性质思路提示应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.例7.1 对于实数,有以下命题:①若,则;②若,则;③若则;④若,则;⑤若,则. 其中真命题的个数是()A. 2个B. 3个C. 4个D. 5个分析:判断命题的真假,要紧扣不等式的性质,应注意条件与结论之间的联系.解析:①中值的正负或是否为零未知,因而判断不等关系缺乏依据,故该命题是假命题;②中,由可知,则,故该命题是真命题;③中,不等式两边同乘,可得,若同乘,可得,易知成立,故该命题为真命题;④中,由可知,故有,又因,由“同向同正可乘”性可知成立. 故该命题为真命题;⑤中,由已知,因为,故,又,所以,故该命题为真命题. 综上所述,②③④⑤都是真命题,故选C.评注:准确记忆各性质成立的条件,是正确应用的前提. 在不等式的判断中,特殊值法是非常有效的方法,如变式3.变式1设,若,则下列不等式中正确的是()A. B. C. D.变式2设是非零实数,若,则下列不等式中成立的是()A. B. C. D.变式3 若,则下列结论中正确的是()A. 和均不成立B. 和均不成立C. 不等式和均不成立D. 不等式和均不成立变式4若,且,则下列代数式中值最大的是A. B. C. D.题型2 比较数(式)的大小与比较法证明不等式思路提示比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小. 作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:若,则;;;若,则;;;例7.2若且,试比较与的大小.解析:解法一:,因为且,所以,所以.解法二:,因为且,所以,又,所以.变式1若,试比较与的大小变式2设且,试比较与的大小例7.3 在锐角中,若函数在上单调递减,则下列命题中正确的是()A. B.C. D.解析:因为在锐角中有,由在上为单调递增函数,所以,且,又函数在上单调递减,所以,故选D.变式1 已知函数是上的偶函数,且在区间上是增函数,令,则()A. B. C. D.变式2已知函数,那么的值()A. 一定大于0B. 一定小于0C. 等于0D. 确定题型3 已知不等式的关系,求目标式的取值范围思路提示在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.例7.4已知,且,则的取值范围是.解析:解法一:令得,,解得.即. 由得,所以. 故的取值范围是.解法二:本题还可以利用“线性规划”的方法求解.如图7-1所示,当直线过点时,取最大值,点的坐标为,所以;当直线过点时,取最小值,当的坐标为,所以,又本题不取边界,因此的取值范围是.评注:不能求出独立的范围内,简单利用不等式性质求解,可结合后面线性规划理解并求解.变式1已知且,,求的范围.变式2设为实数,满足,则的最大值是.最有效训练题1. 如果满足,且,那么下列选项中不一定成立的是()A. B. C. D.2. 设,则下列不等式中成立的是()A. B. C. D.3. 已知,并且,那么一定成立的是()A. B. C. D.4. 若为实数,则下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则5. 若,则的值是()A. 大于0B. 等于0C. 小于0D. 符号不能确定6. 已知,下列四个条件中,使得成立的必要而不充分条件是()A. B. C. D.7. 已知四个条件:能推出成立的有个.8. 若,则的取值范围是.9. 已知下列三个不等式:①;②;③,以其中两个作为条件,余下一个作为结论,则可能成个正确命题.10. 已知且,求的取值范围.11. 设,且,求的取值范围.12. 若实数满足,试比较的大小.。

不等式及其性质ppt课件

不等式及其性质ppt课件

位置吗?
(不可随意互换位置)
(3)什么叫不等式?
(用不等号表示不等关系的式子叫不等式)
练习:
1.判断下列式子哪些是不等式?为什么?
√(1)3> 2 √(2)a2+1> 0 (3)3x2+2x
√(4)< 2x+1
(5)x=2x-5
√(6)x2+4x< 3x+1
√(7)a+b≠c
2.用“>”或“<”填空: (1)4>-6 (2)-1<0 (3)-8<-3 (4)-4.5<-4
小结: 1.掌握不等式是否成立的判断方法; 2.依题意列出正确的不等式. (留意:表示不等关系的词语要用
不等号来表示,“不大于〞即“≤”, “不小于〞即“≥” )
1.什么是等式? 2.等式的基本性质是什么? 3.用“>”或“<”填空:
7 + 3 >4 + 3 7 +(-3) >4 +(-3) 7×3 >4×3 7×(-3) < 4×(-3)
2.已知数值:-5, 0.5, 3, 0, 2, -2.5, 5.2 (1)判别:上述数值,哪些使不等式x+3<6
成立?哪些使之不成立? (2)说出几个使不等式x+3<6成立的x的值,
及使之不成立的x的值.
总结:判断不等式是否成立的方法-------不等号两边的大小关系是否与不等号一致
反馈练习:
1.当x取下列数值时,哪些是不等式 x+3>6解?
2.统计全班同学的年龄,年龄最大者为16岁, 可以知道全班每个同学的年龄都小于17岁;
若设物体A的重量为x克;某天的气温为 t℃; 本班某同学的年龄为a岁,上述不等关系能 用式子
思考教材的3个问题

2015届高三数学(文)第一轮总复习课件 第38讲 不等关系与不等式的性质

2015届高三数学(文)第一轮总复习课件 第38讲 不等关系与不等式的性质
26
学海导航
文数
1 1 1 (3)若 abc=1,则 + + a b c = bc+ ac+ ab≤a+b+c,故是充分条件; 反之,不成立.
27
学海导航
文数
28
学海导航
文数
1.(2013· 北京卷)设 a,b,c∈R,且 a>b,则( D ) A.ac>bc C.a2>b2 1 1 B. < a b D.a3>b3
4
学海导航
文数
2.命题p:x>0,y>0,命题q:xy>0,则p是q的( A ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
5
学海导航
文数
解析:因为 xy>0 等价于 x>0,y>0 或 x<0,y<0, 所以 p 是 q 的充分不必要条件,故选 A.
6
学海导航
函数,α,β,γ∈R 且 α+β>0,β+γ>0,γ+α>0. 试说明 f(α)+f(β)+f(γ)的值与 0 的关系.
21
学海导航
文数
解析:由 α+β>0,得 α>-β. 因为 f(x)在 R 上是单调减函数,所以 f(α)<f(-β). 又因为 f(x)为奇函数,所以 f(-β)=-f(β). 所以 f(α)<-f(β),所以 f(α)+f(β)<0. 同理 f(β)+f(γ)<0,f(γ)+f(α)<0. 所以 f(α)+f(β)+f(γ)<0.
22
学海导航
文数
【拓展演练3】 (1)设a>b>c,则下列不等式成立的是( D ) A.ab>ac C.|ab|<|bc| B.a|c|>b|c| D.(a-b)|c-b|>0

不等式及其性质(提高)知识讲解

不等式及其性质(提高)知识讲解

不等式及其性质(提高)知识讲解责编:康红梅【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】知识点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.知识点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.要点诠释:3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;二是确定方向,对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.【高清课堂:一元一次不等式370042不等式的基本性质】知识点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且下图是将糖果与砝码放在等臂天平上的两种情形.判断下列正确的情形是()【思路点拨】根据图示可知1个糖果的质量>5克,3个糖果的质量<16克,依此求出1个糖果的质量取值范围,再在4个选项中找出情形正确的.。

不等式的性质和解法

不等式的性质和解法

不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。

2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。

(2)同向相加:如果a>b且c>d,那么a+c>b+d。

(3)同向相减:如果a>b,那么a-c>b-c。

(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。

二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。

(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。

(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。

(4)合并同类项:将不等式两边同类项合并。

(5)化简:将不等式化简到最简形式。

2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。

(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。

3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。

(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。

4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。

(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。

三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。

2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。

3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。

不等式的基本性质[整理] [其它]

第34课 不等式的基本性质【考点指津】1.不等式的概念用不等号(>、<或≠)联结而成的式子叫做不等式.2.两个实数大小的比较设a 、b ∈R ,则a>b 0>-⇔b a ,0<-⇔<b a b a ,这是比较两个实数大小和运用比较法的根据.3.不等式的性质性质1 a b b a <⇔> (对称性)性质2 a>b ,c a c b >⇒> (传递性)性质3 a>b ,c b c a +⇒+性质4 a>b ,bc ac c >⇒>0,a>b ,bc ac c <⇒<0以上是不等式的基本性质,以下是不等式的运算性质.性质5 a>b ,d b c a d c +>+⇒> (加法法则)性质6 a>b>0,bd ac d c >⇒>>0 (乘法法则)性质7 a>b>0,n n b a N n >⇒∈* (乘方法则)性质8 a>b>0,n n b a N n >⇒∈* (开方法则)不等式性质在证明不等式和解不等式中有广泛的应用,它也是高考的热点,通常是以客观题形式考查某些性质,有时在证不等式或解不等式过程中间接考查不等式性质. 在复习中,对不等式性质的条件与结论,要彻底弄清,特别是对不等式两边平方、开方或同乘上某个数(或式子)时,要注意所得不等式与原不等式是否同向,否则在解题时往往因忽略了某些条件而造成错误. 从知识的联系上看,不等式的性质与函数的单调性是相互联系的,因此比较一些实数大小的问题,从不等式性质与函数性质结合的角度去认识是必要的.【知识在线】1.下列命题中,正确的命题是( )①若a>b ,c>b ,则a>c ; ②a>b ,则0lg >ba ; ③若a>b ,c>d ,则ac>bd ; ④若a>b>0,则b a 11<;⑤若db c a >,则ad>bc ; ⑥若a>b ,c>d ,则a-d>b-c . A . ①② B . ④⑥ C . ③⑥ D . ③④⑤2.下列命题中,正确的命题是( )A .a 3>b 3,ab>0ba 11>⇒ B . m>n>0,a>0a a n m >⇒ C .b ac b c a >⇒> D . a 2>b 2,ab>0ba 11<⇒ 3.下列命题中正确的是( )A .若|a|>b ,则a 2>b 2B . 若a>b>c ,则(a-b)c>(b-a)cC . 若a>b ,c>d ,则a-b>c-dD . 若a>b>0,c>d>0,即c bd a > 4.下列命题中,正确的命题是( )A . 若ac>bc ,则a>bB . 若a 2>b 2,则a>bC . 若ba 11>,则a<b D . 若b a <,则a<b 5.设命题甲:x 和y 满足⎩⎨⎧<<<+<3042xy y x 命题乙:x 和y 满足⎩⎨⎧<<<<3210y x ,那么( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲是乙的充分条件,也不是乙的必要条件【讲练平台】例1(2000年全国卷) 若a>b>1,P=b a lg lg ⋅,)lg (lg 21b a Q +=,)2lg(b a R +=,则( ).A . R<P<QB . p<Q<RC . Q<P<RD . P<Q<R分析一 借助对数函数单调性用基本不等式求解.解法一 ∵ a>b>1,∴ lga>lgb>0. ∴2lg lg lg lg b a b a +<⋅,即P<Q .又∵2b a ab +<, ∴ 2lg lg b a ab +<. ∴ )2lg()lg (lg 21b a b a +<+,即Q<R . ∴ P<Q<R ,故选B .分析二 用特殊值法解解法二 取a=10000,b=100,则lga=4,lgb=2.∴ P=22,Q=3,R=lg5050.显然P<Q ,R=lg5050>lg1000=3=Q .∴可排除A 、C 、D . 故选B .点评 不等式性质的考查常与幂函数、指数函数和对数函数的性质的考查结合起来,一般多以选择题的形式出现. 此类题目要求考生有较好、较全面的基础知识,一般难度不大.例2 若函数f(x),g(x)的定义域和值域为R ,则f(x)>g(x)(x ∈R )成立的充要条件是( ).A . 有1个x ∈R ,使得f(x)>g(x)B . 有无穷多个x ∈R ,使得f(x)>g(x)C . 对R 中任意的x ,都有f(x)>g(x)+1D . R 中不存在x ,使得f(x)≤g(x)分析 4个命题的关系在证明问题过程中经常使用. 原命题:若A 成立,则B 成立,逆命题:若B 成立,则A 成立;否命题:若A 成立则B 成立;逆否命题:若B 成立,则A 成立. 其中A ⇒B 与A B ⇒互为充要条件.由于对任意x ∈R ,f(x)>g(x)成立的逆否命题为:在R 中不存在x ,使f(x)≤g(x)成立. 答 选D .点评 本题也可通过构造特殊函数,采用排除法解决. 值得强调的是:不等式的性质的考查方向将更加注重基础性、全面性. 题型灵活多变.例3 已知1≤a+b ≤5,-1≤a-b ≤3,求3a-2b 的取值范围.分析 本题应视a+b 与a-b 为两个整体.解 设a+b=u ,a-b=v ,则2v u a +=,2v u b -=. ∴v u b a 252123+=-. 由已知1≤u ≤5,-1≤v ≤3,易得-2≤3a-2b ≤10.点评 本题常见的错误解法是:由已知,得0≤a ≤4,-1≤b ≤3.进一步,得0≤3a ≤12,-6≤-2b ≤2.从而,得-6≤3a-2b ≤14.由解题过程知,u 与v 各自独立地在区间[1,5]与[-1,3]内取值,从而知v u 2521+可取[-2,10]内的一切值.在错误解法中,得到的0≤a ≤4,-1≤b ≤3已不表明a 与b 可各自独立地在区间[0,4]与[-1,3]内取值了. 如a=4,b=3,a+b=7已不满足1≤a+b ≤5. 得到的区间[0,4]与[-1,3]应这样理解:对于任意给定的p ∈[1,5]与q ∈[-1,3],存在a ∈[0,4],b ∈[-1,3],使得a+b=p ,a-b=q .不等式的性质与等式的性质不一样,一般不具有可逆性. 掌握不等式性质时要谨防与等式性质做简单类比而致错.【知能集成】1.对不等式性质,关键是正确理解和运用,要弄清每一性质的条件和结论、注意条件的放宽和加强,以及条件与结论之间的相互联系;不等式性质包括“单向性”和“双向性”两个方面. 单向性主要用于证明不等式,双向性是解不等式的基础. 因为解不等式要求的是同解变形.2.高考试题中,对不等式性质的考查主要是:(1) 根据给定的条件,利用不等式的性质、判断不等式或与之有关的结论是否成立.(2) 利用不等式的性质与实数的性质、函数性质的结合,进行数值大小的比较.(3) 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充分必要条件.3.要注意不等式性质成立的条件,例如:在应用“a>b ,ab>0b a 11<⇒”这一性质时. 有些同学要么是弱化了条件得a>b b a b 1<⇒. 要么是强化了条件而得ba b a 110<⇒>>. 【训练反馈】1.(2001年上海春招卷)若a 、b 是实数,则a>b>0是a 2>b 2的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既非充分条件也非必要条件2.若a>b ,c>d ,则下列不等关系中不一定成立的是( )A . a-d>b-cB . a+d>b+cC . a-c>b-cD . a-c<a-d3.已知a 、b 、c ∈R ,则下面推理中正确的是( )A . a>b ⇒am 2>bm 2B .b ac b c a >⇒> C . a 3>b 3,ab>0b a 11<⇒ D . a 2>b 2,ab>0ba 11<⇒ 4.(1999年上海卷)若a<b<0,则下列结论中正确的是( )A .不等式b a 11>和||1||1b a >均不能成立 B .不等式a b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和22)1()1(ab b a +>+均不能成立 D .不等式||1||1b a >和22)1()1(a b b a +>+均不能成立 5.当0<a<b<1时,下列不等式中正确的是( )A . b b a a )1()1(1->-B . (1+a)a >(1+b)bC . a b a a )1()1(->-D . b a b a )1()1(->-6.(2001年北京春招卷)若实数a 、b 满足a+b=2,则3a +3b 的最小值是( )A . 18B . 6C . 32D . 4327.a 、b 为不等的正数,k ∈N*,则(ab k +a k b)-(a k+1+b k+1)的符号为( )A . 恒正B . 恒负C . 与a 、b 大小有关D . 与k 是奇数或偶数有关8.不等式2>+xy y x 成立的充要条件是( ) A . x>y B . x ≠y C . x ≠y 或xy>0 D . x ≠y 且xy>09.(2000年北京春招卷)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图,则( )A . )0,(-∞∈bB . )1,0(∈bC . )2,1(∈bD . ),2(+∞∈b10.已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围为________.11.已知三个不等式:①ab>0,②bd a c ,③bc>ad . 以其中两个作为条件,余下一个作为结论,则可以组成________个正确的命题,请用序号写出它们. 即_______. (把所有正确的命题都填上)12.已知f(x)=ax 2-c ,且-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的最大值与最小值.。

不等式的性质及应用


反证法
定义:反证法是一种通过假设相反的结论成立,然后推导出 矛盾的结论,从而证明原结论正确的方法。
步骤
1. 假设相反的结论成立。
2. 推导出矛盾的结论。
3. 得出原结论正确的结论。
例子:例如,要证明一个数不能被3整除,可以先假设它可 以被3整除,然后推导出一些矛盾的结论,从而证明原结论 正确。
放缩法
不等式的性质及应用
2023-11-09
contents
目录
• 不等式的基本性质 • 不等式的证明方法 • 不等式的应用 • 不等式在数学竞赛中的应用 • 不等式的实际应用
01
不等式的基本性质
传递性
总结词
不等式的传递性是指如果a>b且c>d,那么ac>bd。
详细描述
不等式的传递性是基于实数的有序性质,即如果a>b且c>d ,那么ac>bd。但需要注意的是,不等式的传递性不适用于 所有的数学对象,例如在复数域上就不一定成立。
详细描述
不等式的乘法单调性是指当两个数a和b满足a>b且c>0时,那么a与c的乘积大于 b与c的乘积。这个性质在解决一些实际问题时非常有用,例如在经济学中的收益 问题。
正值不等式与严格不等式
总结词
正值不等式是指a>b时,称a>b;严格不等式是指a>b且a≠b时,称a>b。
详细描述
正值不等式是指当a大于b时,我们称a大于b;严格不等式是指当a大于b且a不等于b时,我们称a大于b。在数学 中,我们通常使用严格不等式来描述两个数之间的关系,以保证它们之间没有相等的情况。
利用不等式解决其他问题竞赛题
总结词
不等式在数学竞赛中还可以用来解决其他问题,如最 优化问题、数列问题、解析几何问题等。

不等式的基本性质


(a b)( a b ) ( a b )( a b )2 ab ab 2 1 2 1 a 2 b 2 (定号) 0 ( ) ( ) a b b a
三、例题分析:
a b 例4:已知a 0, b 0,比较 ( ) ( ) b a 与 a b 的大小。
变式练习
已知 3≤a+b≤4,1≤4a-2b≤2,求 4a
+2b 的取值范围.
解:方法 1:(方程组思想) 1 1 x= a+ b a=3x+6y 令 ,则 y= 4a- 2b b=2x- 1y 3 6
.
1 1 2 1 8 1 ∴ 4a+2b=4( x+ y)+ 2( x- y)= x+ y, 3 6 3 6 3 3 8 32 3≤ x≤ 4 8≤3x≤ 3 又 ⇒ 1≤ y≤ 2 1≤1y≤2 3 3 3 25 8 1 34 ⇒ ≤ x+ y≤ , 3 3 3 3
1 2 2 a, b, , 2ab, a b 从小到大的顺序是 2
1 2 2 a 2ab a b b ______________________ 2 1 3 特殊值法: 取 a , b 4 4
三、例题分析:
2 2 2 x 4 y 1 x y 例2:(2)已知 ,比较
方法 2:(待定系数法)设 f(3)=λf(1)+μf(2), ∴9a-c=λ(a-c)+μ(4a-c). 5 λ =- 3 9=λ+4μ ∴ ,解得 -1=-λ-μ μ=8. 3 5 8 ∴f(3)=- f(1)+ f(2).下同方法 1,略. 3 3
• 【方法总结】 本题把所求的问题用已 知不等式表示,然后利用同向不等式性 质解决.本题常用待定系数法解决,设 出方程,求出待定系数即可.

不等式的基本性质与解法

不等式的基本性质与解法不等式是数学中常见的一种关系表达方式,它常用于描述数值或变量之间的大小关系。

在解决实际问题时,不等式起到了重要的作用。

本文将介绍不等式的基本性质与解法,帮助读者更好地理解和应用不等式。

一、不等式的基本性质1. 不等式的传递性:若a > b且b > c,则有a > c。

这意味着不等式的大小关系具有传递性,可通过多个不等式的关系推导出更多的大小关系。

2. 不等式的加法性:若a > b,则a + c > b + c。

不等式的加法性表明,在不等式两侧同时加上相同的数,不等式的大小关系不变。

3. 不等式的乘法性:(1) 若a > b且c > 0,则ac > bc。

(2) 若a > b且c < 0,则ac < bc。

不等式的乘法性表明,在不等式两侧同时乘以正数(或负数),不等式的大小关系不变,但当乘以负数时,不等号方向需要翻转。

二、不等式的解法1. 加减法解不等式:若给定不等式为a + b > c,则可通过移项,将不等式转化为a > c - b。

同样地,对于a - b > c,可转化为a > c + b。

通过加减法解不等式时,需要注意移项的不等号方向。

2. 乘除法解不等式:通过乘法、除法解不等式时,需要考虑乘除的数是否为正数(或负数)和是否为零。

具体步骤如下:(1) 若给定不等式为ax > b,则根据乘法性,可得到:- 若a > 0,解为x > b/a;- 若a < 0,解为x < b/a,解不等号需要翻转;- 若a = 0,无解。

(2) 若给定不等式为ax < b,则根据乘法性,可得到:- 若a > 0,解为x < b/a;- 若a < 0,解为x > b/a,解不等号需要翻转;- 若a = 0,无解。

3. 绝对值不等式的解法:绝对值不等式的解法需要考虑绝对值函数的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式及其性质(提高)知识讲解
【学习目标】
1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.
2. 知道不等式解集的概念并会在数轴上表示解集.
3. 理解不等式的三条基本性质,并会简单应用.
【要点梳理】
知识点一、不等式的概念
一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.
要点诠释:
(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.
(2)五种不等号的读法及其意义:
符号读法意义
“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小
“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大
“≤”读作“小于或等
于”
即“不大于”,表示左边的量不大于右边的量
“≥”读作“大于或等
于”
即“不小于”,表示左边的量不小于右边的量
(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.
知识点二、不等式的解及解集
1.不等式的解:
能使不等式成立的未知数的值,叫做不等式的解。

2.不等式的解集:
对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.
不等式的解是具体的未知数的值,不是一个范围
不等式的解集是一个集合,是一个范围.其含义:
①解集中的每一个数值都能使不等式成立;
②能够使不等式成立的所有数值都在解集中
3.不等式的解集的表示方法
(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:
要点诠释:
借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;二是确定方向,对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a向左画.
注意:在表示a的点上画空心圆圈,表示不包括这一点.
知识点三、不等式的基本性质
不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.
不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
用式子表示:如果a>b,c>0,那么ac>bc(或a b
c c >).
不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.
用式子表示:如果a>b,c<0,那么ac<bc(或a b
c c <).
要点诠释:不等式的基本性质的掌握应注意以下几点:
(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.
(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】
类型一、不等式的概念
1.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且下图是将糖果与砝码放在等臂天平上的两种情形.判断下列正确的情形是()
【思路点拨】根据图示可知1个糖果的质量>5克,3个糖果的质量<16克,依此求出1个糖果的质量取值范围,再在4个选项中找出情形正确的.
【答案】D
【解析】
解:由图(1)知,每一个糖果的重量大于5克,由图(2)知:3个糖果的重量小于16克,即
每一个糖果的重量小于16
3
克.故A选项错;两个糖果的重量小于
322
10
33
=克故B选项错;
三个糖果的重量大于15克小于16克故C选项错,四个糖果的重量小于16641
421 333
⨯==
克故D选项对.
【总结升华】观察图示,确定大小.本题涉及的知识点是不等式,涉及的数学思想是数形结合思想,解决问题的基本思路是根据图示信息列出不等式.
举一反三:
【变式】
【答案】
类型二、不等式的解及解集
2.若关于x的不等式x≤a只有三个正整数解,求a的取值范围.
【思路点拨】首先根据题意确定三个正整数解,然后再确定a的范围.
【答案】3≤a<4
【解析】
解:∵不等式x≤a只有三个正整数解,
∴三个正整数解为:1,2,3,
∴3≤a<4,
【总结升华】此题主要考查了一元一次不等式的整数解,做此题的关键是确定好三个正整数解.
3.(2015春•安县期末)如图所示,图中阴影部分表示x的取值范围,则下列表示中正确的是( )
A.-3≤x<2 B.-3<x≤2 C.-3≤x≤2 D.-3<x<2
【思路点拨】x表示-3右边的数,即大于-3,并且是2以及2左边的数,即小于或等于2的数.
【答案】B
【解析】
解: A、因为-3≤x<2,在数轴上-3的点应该是实心的圆点;
C、因为-3≤x≤2,在数轴上-3和2的点应该都是实心的圆点;
D、因为-3<x<2,在数轴上-3和2的点应该都是空心的圆点;
故选B.
【总结升华】在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,“>”,“≥”向右画;“<”,“≤”向左画.
举一反三:
【变式】根据如图所示的程序计算,若输入x的值为1,则输出y的值为________.
【答案】4
提示:由程序图可知,计算求值时所使用的数学表达式为224y x =-.把x =1输入求值,若求得的结果大于0,则直接得到输出值y ;若求得的结果小于0,则需要把得到的结果作为输入值再代入计算,循环往复,直到使最终的结果大于0为止.
类型三、不等式的基本性质
4.若关于x 、y 的二元一次方程组3133
x y a x y +=+⎧⎨+=⎩的解满足x+y <2,则a 的取值范围是
________.
【思路点拨】观察方程组不难发现只要把两个方程相加即能求出x+y 的值.因为x+y <2,故可以构建关于a 的不等式.然后利用不等式的性质就能求出a 的取值范围.
【答案】a <4
【解析】
解:将两方程相加得:4x+4y =4+a .
将方程的两边同除以4得 44a x y ++=
. 依题意:424
a +<. 将不等式的两边同乘以4得4+a <8.
将不等式的两边同时减去4得a <4.
故a 的取值范围是a <4.
【总结升华】解关于x 的一元一次不等式,就是要将不等式逐步化为x >a 或x <a 的形式,化简的依据是不等式的性质.
举一反三:
【变式1】(2015春•沙河市期末)若关于x 的不等式(1﹣a )x >3可化为
,则a
的取值范围是 .
【答案】a >1.
解:关于x 的不等式(1﹣a )x >3可化为,1﹣a <0,a >1.
【变式2】a 、b 是有理数,下列各式中成立的是( ).
A .若a >b ,则a 2>b 2;
B .若a 2>b 2,则a >b
C .若a ≠b ,则|a |≠|b|
D .若|a |≠|b|,则a ≠b
【答案】D。

相关文档
最新文档