2014高考数学新编:第23讲 三角函数的图象与性质
2014年全国高考数学理科(三角函数部分)解析汇编

= sin(x + ϕ) cosϕ + cos(x + ϕ)sinϕ ∴ f (x) = sin(x + ϕ) cosϕ − cos(x + ϕ) sinϕ
= sin[(x + ϕ) −ϕ] = sin x
为
解:由正弦定理 a = b = c = 2R 化简题式得: sin A sin B sin C
∵b−c = 1 a 4
∴b = 3a,c = 1 a
4
2
由余弦定理得:
cos A =
b2
+ c2
− a2
=
9 a2 16
+
1 a2 4
− a2
=−1
2bc
2⋅3a⋅1 a
4
42
= 1 cos x sin x − 3 cos2 x + 3
2
2
4
= 1 sin 2x − 3 (2 cos2 x −1)
= 43.612 + 352 − 2 × 43.61× 35× cos 38.12o ≈26.93 米
【天津市·第 12 题】在△ABC 中,内角 A,B,C 所
对的边分别是 a,b,c,已知 b-c= 1 a,2sinB=3sinC, 4
则 cosA 的值为
解:由正弦定理和 2sinB=3sinC 得: c = 2 b 3
解:由
tan α
=
1+ sin β cos β
得:
sin α cosα
=
1+ sin β cos β
即 sinα cos β − cosα sin β = cosα
∴ sin(α
−β)
2014届高考数学(北师大版)一轮复习讲义课件:2.3三角函数的性质

⑥y=asinxcosx+b(sinx±cosx)+c. 这类问题的一般方法是:
设 t=sinx+cosx,t∈[- 2, 2],则 sinxcosx=t2-2 1转化为求 二次函数在[- 2, 2]上的最值问题.
3.三角函数的周期性 求三角函数的周期,通常应将函数式化为只有一个函数名,且 角度唯一,最高次数为一次的形式,然后借助于常见三角函数的周 期来求解. y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)(A>0,ω≠0) 的最小正周期分别为 T=|2ωπ|,T=|2ωπ|,T=|ωπ|.
所以原函数定义域为: {x|0<x<π2或 π≤x≤4}(如图).
题型二 三角函数的单调性 例 2(1)求函数 y=sin(π3-2x)的单调递减区间; (2)求 y=3tan(π6-x4)的周期及单调区间.
解析 (1)由已知函数得 y=-sin(2x-π3),欲求函数的单调递减 区间,只需求 y=sin(2x-π3)的单调递增区间.
若函数 y=Asin(ωx+φ)中 A>0,ω<0,可用诱导公式将函数变为 y =-Asin(-ωx-φ).则 y=-Asin(-ωx-φ)的增区间为原函数的减区间;
减区间为原函数的增区间,如 y=sin(π4-x)=-sin(x-π4),解 2kπ-π2≤x -π4≤2kπ+π2⇒2kπ-π4≤x≤2kπ+34π为原函数的减区间.
点评 比较三角函数值大小的一般步骤是:(1)先判断正负;(2) 不同名函数化为同名函数;(3)自变量不在同一单调区间的化为同一 单调区间.
变式迁移 2 求函数 y=log 1 (sin2x)的单调性.
2
2014版高考命题探究数学知识点讲座15三角函数的图像与性质(解析版)

考点十五:三角函数的图像与性质2014年河北省某重点中学高三补习理科快班知识点讲座内部资料,请勿外传 主讲人:孟老师加(*)号的知识点为了解内容,供学有余力的学生学习使用一.考纲目标了解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义 二.知识梳理1. 正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈, 递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈, 递减区间是[]πππ+k k 22,)(Z k ∈, tan y x =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心4.由y =sinx 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sinx 的图象向左(ϕ>0)或向右(ϕ<0)平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象 途径二:先周期变换(伸缩变换)再平移变换先将y =sinx 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象5. 由y =Asin(ωx +ϕ)的图象求其函数式给出图象确定解析式y=Asin (ωx+ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置.6.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系7. 求三角函数的单调区间一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负.利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8. 求三角函数的周期的常用方法经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法9.五点法作y=Asin (ωx+ϕ)的简图 五点取法是设x=ωx+ϕ,由x 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图.三.考点逐个突破 1.平移变换问题 例1.定义12142334a a a a a a a a =-,若函数sin 2 cos2x () 1 x f x =,则将()f x 的图象向右平移3π个单位所得曲线的一条对称轴的方程是A .6x π=B .4x π=C .2x π=D .x π=【答案】A 由定义可知,()2cos 22sin(2)6f x x x x π=-=-,将()f x 的图象向右平移3π个单位得到52sin[2()]2sin(2)366y x x πππ=--=-,由52,62x k k Z πππ-=+∈得对称轴为2,32k x k Z ππ=+∈,当1k =-时,对称轴为2326x πππ=-=,选A .例2.关于函数()=2()f x sin x -cos x cos x 的四个结论:P 1:;P 2:把函数()21f x x =-的图象向右平移4π个单位后可得到函数2f (x )(sin x cos x )cos x =-的图 象;P 3:单调递增区间为[71188k ,k ππππ++],k Z ∈; P 4:图象的对称中心为 (128k ,ππ+-),k Z ∈.其中正确的结论有 A .1个 B .2个C .3个D .4个【答案】B【解析】因为2()=22221(2)14f x sin x cos x cos x sin x cos x x π-=--=--,所以最大值为1,所以P 1错误.将()21f x x =-的图象向右平移4π个单位后得到()2()2(2)142f x x x ππ=--=--,所以P 2错误.由222242k x k πππππ-+≤-≤+,解得增区间为388k x k ,k Z ππππ-+≤≤+∈,即3[]88k ,k k Z ππππ-++∈,所以3p 正确.由24x k ,k Z ππ-=∈,得,28k x k Z ππ=+∈,所以此时的对称中心为(1)28k ,ππ+-,所以4p 正确,所以选B .例3. 已知函数()()21cos cos 02f x x x x ωωωω=+->,其最小正周期为.2π(I)求()f x 的表达式;(II)将函数()f x 的图象向右平移8π个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围.【答案】解:(I)21()cos cos 2f x x x x ωωω=⋅+-cos2112sin(2)226x x x ωπωω+=+-=+ 由题意知)(x f 的最小正周期2T π=,222T πωπωπ===所以2=ω 所以()sin 46f x x π⎛⎫=+⎪⎝⎭(Ⅱ)将()f x 的图象向右平移个8π个单位后,得到)34sin(π-=x y 的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到)32sin(π-=x y 的图象.所以)32sin()(π-=x x g 因为02x π≤≤,所以22333x πππ-≤-≤.()0g x k +=在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,即函数()y g x =与y k =-在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个交点,由正弦函数的图象可知22k -≤-<或1k -=所以k <≤1k =-. 2.三角函数的性质 (1)单调性、周期性例4. 设x x x x f cos sin 32cos 6)(2-=. (Ⅰ)求)(x f 的最小正周期及单调递增区间;(Ⅱ)将函数)(x f 的图象向右平移3π个单位,得)(x g y =的图象,求x x g x F 323)()(-=在4π=x 处的切线方程.【答案】解:(Ⅰ)(1cos 2)()62)326x f x x x π+==++,故f (x )的最小正周期π=T , 由ππππk x k 2622≤+≤+-得f (x )的单调递增区间为()Z k k k ∈--]12,127[ππππ (Ⅱ)由题意:())]32336g x x x ππ=-++=+, x x xx g x F 2sin 323)()(=-=, 2'2sin 2cos 2)(x xx x x F -=, 因此切线斜率2'16)4(ππ-==F k , 切点坐标为)4,4(ππ, 故所求切线方程为)4(1642πππ--=-x y , 即08162=-+ππy x(2)最值例5.已知函数2()2sin ()21,,442f x x x x πππ⎡⎤=+--∈⎢⎥⎣⎦,则)(x f 的最小值为_________ 【答案】1【解析】2()2sin ()211cos 2()2144f x x x x x ππ=+-=-+--cos(2)2sin 222sin(2)23x x x x x ππ=-+==-,因为42x ππ≤≤,所以22633x πππ≤-≤,所以sin sin(2)sin 632x πππ≤-≤,即1sin(2)123x π≤-≤,所以12sin(2)23x π≤-≤,即1()2f x ≤≤,所以)(x f 的最小值为1.(3)奇偶性例6. 函数x xy sin 3+=的图象大致是【答案】C【 解析】函数()sin 3xy f x x ==+为奇函数,所以图象关于原点对称,排除B .当x →+∞时,0y >,排除D .1'()cos 3f x x =+,由1'()cos 03f x x =+=,得1cos 3x =-,所以函数()sin 3xy f x x ==+的极值有很多个,所以选C .(4)对称性例7.已知函数()sin()(0)6f x x ωω=+π>的最小正周期为4π,则A .函数()f x 的图象关于点(,03π)对称 B .函数()f x 的图象关于直线3x =π对称C .函数()f x 的图象向右平移3π个单位后,图象关于原点对称D .函数()f x 在区间(0,)π内单调递增【答案】C 因为函数的周期24T ππω==,所以12ω=,所以1()sin()26f x x π=+.当3x π=时,1()sin()sin 32363f ππππ=⨯+==所以A ,B 错误.将函数()f x 的图象向右平移3π个单位后得到11()sin[()]sin()2362f x x x ππ=-+=,此时为奇函数,所以选C .(5)定义域、值域例8.已知函数f (x )=xx x 2cos 1cos 5cos 624+-,求f (x )的定义域,判断它的奇偶性,并求其值域.剖析:此题便于入手,求定义域、判断奇偶性靠定义便可解决,求值域要对函数化简整理. 解:由cos2x ≠0得2x ≠k π+2π,解得x ≠2πk +4π(k ∈Z ).所以f (x )的定义域为{x|x ∈R 且x ≠2πk +4π,k ∈Z}. 因为f (x )的定义域关于原点对称,且f (-x )=)(-)()(x x x 2cos 1cos 5cos 624+---=xx x 2cos 1cos 5cos 624+-=f (x ),所以f (x )是偶函数. 又当x ≠2πk +4π(k ∈Z )时, f (x )=xx x 2cos 1cos 5cos 624+-=x x x 2cos 1cos 31cos 222))((--=3cos 2x -1,所以f (x )的值域为{y|-1≤y <21或21<y ≤2}.3.简单的应用问题例9.已知电流I 与时间t 的关系式为sin()I A t ωϕ=+. (1)右图是sin()I A t ωϕ=+(ω>0,||2πϕ<)在一个周期内的图象,根据图中数据求sin()I A t ωϕ=+的解析式;(2)如果t 在任意一段1150秒的时间内,电流sin()I A t ωϕ=+都能取得最大值和最小值,那么ω的最小正整数值是多少?解:本小题主要考查三角函数的图象与性质等基础知识,考查运算能力和逻辑推理能力.(1)由图可知 A =300.设t 1=-1900,t 2=1180, 则周期T =2(t 2-t 1)=2(1180+1900)=175.∴ ω=2T π=150π.又当t =1180时,I =0,即sin (150π·1180+ϕ)=0,而||2πϕ<, ∴ ϕ=6π.故所求的解析式为300sin(150)6I t ππ=+.(2)依题意,周期T ≤1150,即2πω≤1150,(ω>0) ∴ ω≥300π>942,又ω∈N *,故最小正整数ω=943.。
2014高考数学提分秘籍 必记篇 三角函数的图象与性质

2014高考数学提分秘籍 必记篇:三角函数的图象与性质1.对三角函数的图象和性质的考查中,以图象的变换,函数的单调性、奇偶性、周期性、对称性、最值等作为热点内容,并且往往与三角变换公式相互联系,有时也与平面向量,解三角形或不等式内容相互交汇.2.题型多以小而活的选择题、填空题来呈现,如果设置解答题一般与三角变换、解三角形、平面向量等知识进行综合考查,题目难度为中、低档.1.三角函数定义、同角关系与诱导公式(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x.各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. (2)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(3)诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.2.三角函数的图象及常用性质函数y =sin xy =cos x y =tan x单调性在[-π2+2k π,π2+2k π](k ∈Z )上单调递增;在[π2+2k π,3π2+2k π](k ∈Z )上单调递减 在[-π+2k π,2k π](k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在(-π2+k π,π2+k π)(k ∈Z )上单调递增对称性对称中心:(k π,0)(k ∈Z );对称轴:x =π2+k π(k ∈Z )对称中心:(π2+k π,0)(k ∈Z );对称轴:x =k π(k ∈Z )对称中心:(k π2,0)(k ∈Z )3. 三角函数的两种常见变换考点一 三角函数的概念、诱导公式及同角三角函数的基本关系问题 例1 (1)如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎪⎫32,12,当秒针 从P 0(此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函 数关系为( )A .y =sin ⎝⎛⎭⎪⎫π30t +π6B .y =sin ⎝⎛⎭⎪⎫-π60t -π6C .y =sin ⎝ ⎛⎭⎪⎫-π30t +π6D .y =sin ⎝ ⎛⎭⎪⎫-π30t -π3 (2)已知点P ⎝ ⎛⎭⎪⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4B.3π4C.5π4 D.7π4弄清三角函数的概念是解答本题的关键.答案 (1)C (2)D解析 (1)由三角函数的定义可知,初始位置点P 0的弧度为π6,由于秒针每秒转过的弧度为-π30,针尖位置P 到坐标原点的距离为1,故点P 的纵坐标y 与时间t 的函数关系可能为y =sin ⎝ ⎛⎭⎪⎫-π30t +π6.(2)tan θ=cos 34πsin 34π=-cosπ4sinπ4=-1,又sin 3π4>0,cos 3π4<0,所以θ为第四象限角且θ∈[0,2π),所以θ=7π4.(1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关.(2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.(1)已知α∈(-π,0),tan(3π+α)=13,则cos ⎝ ⎛⎭⎪⎫32π+α的值为( ) A.1010B .-1010 C.31010D .-31010答案 B解析 由tan(3π+α)=13,得tan α=13,cos ⎝ ⎛⎭⎪⎫32π+α=cos ⎝ ⎛⎭⎪⎫π2-α=sin α. ∵α∈(-π,0),∴sin α=-1010. (2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45.求sin 2α+cos 2α+11+tan α的值.解 由三角函数定义, 得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825.考点二 三角函数y =A sin(ωx +φ)的图象及解析式例2 函数f (x )=sin(ωx +φ)(其中|φ|<π2)的图象如图所示,为了得到g (x )=sin ωx 的图象,则只要将f (x )的图象( )A .向右平移π6个单位B .向右平移π12个单位C .向左平移π6个单位D .向左平移π12个单位答案 A解析 由图象可知,T 4=7π12-π3=π4,∴T =π,∴ω=2ππ=2,再由2×π3+φ=π,得φ=π3,所以f (x )=sin ⎝⎛⎭⎪⎫2x +π3.故只需将f (x )=sin 2⎝⎛⎭⎪⎫x +π6向右平移π6个单位,就可得到g (x )=sin 2x .(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.(1)(2013·某某)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部 分图象如图所示,则ω,φ的值分别是( ) A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 ∵34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,又2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,选A.(2)(2012·某某)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )答案 A解析 利用三角函数的图象与变换求解.y =cos 2x +1――→横坐标伸长2倍纵坐标不变 y =cos x +1――→向左平移1个单位长度y =cos(x +1)+1――→向下平移1个单位长度y =cos(x +1).结合选项可知应选A.(3)已知函数f (x )=3sin 2x -2sin 2x +2,x ∈R .①求函数f (x )的最大值及对应的x 的取值集合; ②画出函数y =f (x )在[0,π]上的图象.解 ①f (x )=3sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π6+1, 当2x +π6=2k π+π2 (k ∈Z )时,f (x )取最大值3,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.②列表如下:x0 π6 5π12 2π3 11π12 π 2x +π6π6 π2 π 3π2 2π 13π6 y231-112图象如下:考点三 三角函数的性质 例3 (2012·)已知函数f (x )=sin x -cos x sin 2xsin x.(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.先化简函数解析式,再求函数的性质. 解 (1)由sin x ≠0得x ≠k π(k ∈Z ), 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }. 因为f (x )=sin x -cos x sin 2xsin x=2cos x (sin x -cos x ) =sin 2x -cos 2x -1 =2sin ⎝ ⎛⎭⎪⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ).由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ),得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫k π-π8,k π和⎝ ⎛⎦⎥⎤k π,k π+3π8(k ∈Z ).函数y =A sin(ωx +φ)的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.(1)已知函数f (x )=sin x +cos x ,g (x )=sin x -cos x ,有下列四个命题: ①将f (x )的图象向右平移π2个单位可得到g (x )的图象;②y =f (x )g (x )是偶函数;③f (x )与g (x )均在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增; ④y =f xg x的最小正周期为2π. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 f (x )=2sin(x +π4),g (x )=sin x -cos x =2sin(x -π4),显然①正确;函数y =f (x )g (x )=sin 2x -cos 2x =-cos 2x , 其为偶函数,故②正确;由0≤x +π4≤π2及-π2≤x -π4≤0都可得-π4≤x ≤π4,所以由图象可判断函数f (x )=2sin(x +π4)和函数g (x )=2sin(x -π4)在[-π4,π4]上都为增函数,故③正确; 函数y =f xg x =sin x +cos x sin x -cos x =1+tan x tan x -1=-tan(x +π4),由周期性定义可判断其周期为π,故④不正确.(2)(2013·某某)已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π. ①求ω的值;②讨论f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的单调性.解 ①f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎪⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0. 从而有2π2ω=π,故ω=1.②由①知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4. 当π4≤2x +π4≤π2, 即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π4, 即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎢⎡⎦⎥⎤0,π8上单调递增,在区间⎣⎢⎡⎦⎥⎤π8,π2上单调递减.1.求函数y =A sin(ωx +φ)(或y =A cos(ωx +φ),或y =A tan(ωx +φ))的单调区间(1)将ω化为正.(2)将ωx +φ看成一个整体,由三角函数的单调性求解. 2.已知函数y =A sin(ωx +φ)+B (A >0,ω>0)的图象求解析式(1)A =y max -y min2,B =y max +y min2.(2)由函数的周期T 求ω,ω=2πT.(3)利用与“五点法”中相对应的特殊点求φ.3.函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点. 4.求三角函数式最值的方法(1)将三角函数式化为y =A sin(ωx +φ)+B 的形式,进而结合三角函数的性质求解. (2)将三角函数式化为关于sin x ,cos x 的二次函数的形式,进而借助二次函数的性质求解. 5.特别提醒:进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身.1.假设若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”.给出下列函数:①f (x )=sin x -cos x ;②f (x )=2(sin x +cos x ); ③f (x )=2sin x +2;④f (x )=sin x . 则其中属于“互为生成函数”的是( ) A .①② B.①③ C.③④ D.②④ 答案 B2.已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,某某数k 的取值X 围. 解 (1)f (x )=12sin 2ωx +3×1+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin(2ωx +π3),由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, ∴f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后, 得到y =sin(4x -π6)的图象,再将所得图象所有点的横坐标伸长到原来的2倍, 纵坐标不变,得到y =sin(2x -π6)的图象.所以g (x )=sin(2x -π6).令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数g (t )=sin t 与y =-k 在区间[-π6,5π6]上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.∴-12<k ≤12或k =-1.(推荐时间:60分钟)一、选择题1.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32 D.⎝ ⎛⎭⎪⎫-32,12答案 A解析 记α=∠POQ ,由三角函数的定义可知,Q 点的坐标(x ,y )满足x =cos α=cos 2π3=-12, y =sin α=sin2π3=32. 2.已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53B .-59C.59D.53答案 A解析 因为sin α+cos α=33, 两边平方得1+2sin αcos α=13,所以sin 2α=-23.由于sin α+cos α=2sin ⎝ ⎛⎭⎪⎫α+π4=33>0, 且α为第二象限角,所以2k π+π2<α<2k π+3π4,k ∈Z ,所以4k π+π<2α<4k π+3π2,k ∈Z ,所以cos 2α=-1-sin 22α=-1-49=-53. 3.将函数y =cos ⎝⎛⎭⎪⎫x -π3的图象上各点横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的一条对称轴是( ) A .x =π4 B .x =π6C .x =π D.x =π2答案 D解析 y =cos ⎝⎛⎭⎪⎫x -π3―――――――――→横坐标伸长到原来的2倍纵坐标不变y =cos ⎝ ⎛⎭⎪⎫12x -π3 y =cos ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x +π6-π3,即y =cos ⎝ ⎛⎭⎪⎫12x -π4. 因为当x =π2时,y =cos ⎝ ⎛⎭⎪⎫12×π2-π4=1, 所以对称轴可以是x =π2. 4.若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点与最低点,且OM →·ON →=0,则A ·ω等于( )A.π6B.7π12C.7π6D.7π3答案 C解析 由题中图象知T 4=π3-π12, 所以T =π,所以ω=2.则M ⎝ ⎛⎭⎪⎫π12,A ,N ⎝ ⎛⎭⎪⎫7π12,-A 由OM →·ON →=0,得7π2122=A 2, 所以A =7π12,所以A ·ω=7π6. 5.已知函数f (x )=2sin(ωx +φ) (ω>0)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫π12=0,则ω的最小值为( )A .2B .4C .6D .8答案 A解析 由f ⎝ ⎛⎭⎪⎫π12=0知⎝ ⎛⎭⎪⎫π12,0是f (x )图象的一个对称中心,又x =π3是一条对称轴,所以应有⎩⎪⎨⎪⎧ ω>02πω≤4⎝ ⎛⎭⎪⎫π3-π12,解得ω≥2,即ω的最小值为2,故选A.6.(2013·某某)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 在t=0时与l 2相切于点A ,圆O 沿l 1以1 m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )答案 B解析 方法一 (排除法)当t =0时,y =cos 0=1,否定A 、D.当t =12时,l 2上方弧长为23π. y =cos 23π=-12.∴否定C ,只能选B.方法二 (直接法)由题意知∠AOB =x ,OH =1-t ,cos∠AOH =cos x 2=OH OA=1-t , ∴y =cos x =2cos 2x 2-1 =2(1-t )2-1(0≤t ≤1).∴选B.二、填空题7.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 答案 -8解析 因为sin θ=y 42+y 2=-255, 所以y <0,且y 2=64,所以y =-8.8.函数f (x )=sin πx +cos πx +|sin πx -cos πx |对任意的x ∈R 都有f (x 1)≤f (x )≤f (x 2)成立,则|x 2-x 1|的最小值为________.答案 34解析 依题意得,当sin πx -cos πx ≥0,即sin πx ≥cos πx 时,f (x )=2sin πx ;当sin πx -cos πx <0, 即sin πx <cos πx 时,f (x )=2cos πx . 令f (x 1)、f (x 2)分别是函数f (x )的最小值与最大值,结合函数y =f (x )的图象可知,|x 2-x 1|的最小值是34. 9.已知f (x )=2sin ⎝⎛⎭⎪⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值X 围为________.答案 [1,2)解析 函数f (x )=2sin ⎝⎛⎭⎪⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,等价于方程m =2sin ⎝⎛⎭⎪⎫2x -π6在区间[0,π2]上有两解. 作出如图的图象,由于右端点的坐标是⎝ ⎛⎭⎪⎫π2,1,由图可知, m ∈[1,2).10.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上).答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对; f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错; f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4, 故④错.故填①③.三、解答题11.(2013·某某)设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4. (1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3×1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎪⎫2ωx -π3. 依题意知2π2ω=4×π4,ω>0,所以ω=1. (2)由(1)知f (x )=-sin ⎝⎛⎭⎪⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3. 所以-32≤sin ⎝⎛⎭⎪⎫2x -π3≤1. 所以-1≤f (x )≤32. 故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1. 12.(2012·某某)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,ω>0,0<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x -π12-f ⎝ ⎛⎭⎪⎫x +π12的单调递增区间. 解 (1)由题设图象知,周期T =2⎝⎛⎭⎪⎫11π12-5π12=π, 所以ω=2πT=2.因为点⎝ ⎛⎭⎪⎫5π12,0在函数图象上, 所以A sin ⎝ ⎛⎭⎪⎫2×5π12+φ=0, 即sin ⎝ ⎛⎭⎪⎫5π6+φ=0. 又因为0<φ<π2,所以5π6<5π6+φ<4π3. 从而5π6+φ=π,即φ=π6. 又点(0,1)在函数图象上,所以A sin π6=1,解得A =2. 故函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. (2)g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π6-2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6 =2sin 2x -2sin ⎝⎛⎭⎪⎫2x +π3 =2sin 2x -2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x =sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 所以函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .。
2014版高考数学一轮总复习 第23讲 三角函数的性质课件 理 新人教A版

素材1
1 π 函数 y=2cos( x- )的图象的对称 2 8 5π 中心是 (2kπ+ ,0)(k∈Z) 4 .
1 π 【解析】令 2cos( x- )=0, 2 8 1 π π 得 x- =kπ+ (k∈Z), 2 8 2 5π 即 x=2kπ+ (k∈Z), 4 1 π 所以函数 y=2cos( x- )的图象的对称中心是(2kπ+ 2 8 5π ,0)(k∈Z). 4
17 要使 1≤f(x)≤ 恒成立, 4
a-4≤0 只需 3 9 a- ≥ 4 4
⇔3≤a≤4,所以 a∈[3,4]为所求.
三
三角函数的单调性与周期性
1 π 2x 【例 3】(1)求函数 y= sin( - )的最小正周期和单调区间; 2 4 3 (2)函数 y=xcosx-sinx 在下面哪个区间内是增函数( ) π 3π A.( , ) 2 2 3π 5π C.( , ) 2 2 B.(π,2π) D.(2π,3π)
x π A.y=2sin( + ) 2 3 π C.y=2sin(2x+ ) 6
2π 【解析】根据 T= ,容易得出选项 B、C 中的函数 ω π 周期均为 π, 然后可利用求对称轴的表达式 ωx+φ=kπ+ 2 (k∈Z),将选项 B、C 中的函数依次代入求解验证即可得 答案 B 符合题意.
4.将函数 f(x)= 3sinx-cosx 的图象向右平移 φ(φ>0)个 单位, 所得图象对应的函数为奇函数, φ 的最小值为( 则 π A. 6 2π C. 3 π B. 3 5π D. 6 )
1.三角函数奇偶性的判断与其他函数奇偶性 的判断步骤一致:
1 首先看定义域是否关于原点对称; 2 在满足 1 后,再看f x 与f x 的关系.
三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。
(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。
正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。
4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。
理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。
5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。
高中数学人教新课标A版:三角函数的图象与性质 课件
三、“基本思想”很重要
1.(多选·整体代换)关于函数 y=tan2x-π3,下列说法正确的是
(
)
A.是奇函数
B.在区间0,π3上单调递减 C.π6,0为其图象的一个对称中心 D.最小正周期为π2
) ,对 (k∈Z )
对称中心是
k2π,0(k∈Z
)
性
(k∈Z )
谨记结论·谨防易错 (1)对称与周期 ①正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半 个周期,相邻的对称中心与对称轴之间的距离是14个周期. ②正切曲线相邻两对称中心之间的距离是半个周期. (2)要注意求函数 y=Asin(ωx+φ)的单调区间时 A 和 ω 的符号,尽量化 成 ω>0 的情况,避免出现增减区间的混淆. (3)对于 y=tan x,不能认为其在定义域上为增函数,而是在每个区间 kπ-π2,kπ+π2 (k∈Z )内为增函数.
()
A.-π2,π2
B.[0,π]
C.π,32π
D.32π,2π
解析:将 y=cos x 的图象位于 x 轴下方的部分关于 x 轴对称向上翻折,x
轴上方(或 x 轴上)的部分不变,即得 y=|cos x|的图象(如图).故选 D.
答案:D
四、“基本活动经验”不可少 容易知道,正弦函数 y=sin x 是奇函数,正弦曲线关于原点对称,即原点 是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果 有,那么对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果 是,那么对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述 现象吗?对余弦函数和正切函数,讨论上述同样的问题. 解:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心, 其对称中心坐标为(kπ,0),k∈Z.正弦曲线是轴对称图形,其对称轴方程 是 x=π2+kπ,k∈Z.由余弦函数和正切函数的周期性可知,余弦曲线的对 称中心坐标为π2+kπ,0,k∈Z,对称轴方程是 x=kπ,k∈Z;正切曲线 的对称中心坐标为k2π,0,k∈Z,正切曲线不是轴对称图形.
【优化方案】2014届高考数学(理科-大纲版)一轮复习配套课程:4.5-三角函数性质
【解】 (1)要使原函数有意义,必须有 2sin x-1>0, 即 sin x>12. 作出单位圆中的三角函数线,由图知,原函数的定义域为(2kπ +π6,2kπ+56π)(k∈Z). 又∵0<2sin x-1≤1. ∴y=lg(2sin x-1)≤0,即值域为(-∞,0].
目录
(2)要使函数有意义 sin x+1≠0,∴sin x≠-1, ∴x≠2kπ-π2,k∈Z. ∴原函数的定义域为{x|x≠2kπ-π2,k∈Z}.
目录
例3 已知函数 f(x)=sinx2cosx2+cos2x2-2. (1)将函数 f(x)化简成 Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π)) 的形式,并指出 f(x)的周期; (2)写出 f(x)的单调区间. 【思路分析】 首先化简函数 f(x)为 asin x+bcos x,再提取
目录
法二:y= 2 sin(2x-π4)的对称轴为 2x-π4=kπ+π2, ∴x=k2π+38π(k∈Z). 在 y 轴两侧,与 y 轴最近的两条对称轴为 x=38π 或 x=-π8, ∴向右平移π8个单位,对称轴 x=-π8移到 y 轴位置,成为偶函 数 y=- 2cos 2x.
目录
考点 3 函数的周期性及单调性 求三角函数的周期,一般通过恒等变形为 y=Asin(ωx+φ)(或 y =Atan(ωx+φ))借用公式 T=|2ωπ|(T=|ωπ|).但要注意定义域,否 则,通过周期定义 f(x+T)=f(x)结合图象来求. 对函数 y=Asin(ωx+φ)的单调性,主要思想是将 ωx+φ 视为一 个角度 X,利用 y=Asin X 的单调性求解 x 的区间.
kωπ-ωφ,0(k∈Z).
而 y=Atan(ωx+φ)(A>0,ω>0)的对称中心为(kωπ-ωφ,0)(k∈Z).
2014届高考人教A版数学(理)一轮复习讲义4.3三角函数的图象与性质
第3讲三角函数的图象与性质【2014年高考会这样考】1.考查三角函数的单调性、奇偶性、周期性和对称性.2.考查三角函数的图象在研究三角函数性质中的应用.对应学生56考点梳理正弦、余弦、正切函数的图象与性质(下表中k∈Z).一点提醒求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解,否则将出现错误. 两种方法求三角函数值域(最值)的两种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域;(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决.考点自测1.(2011·新课标全国)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增解析 先将f (x )化为单一函数形式: f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,∵f (x )的最小正周期为π,∴ω=2. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +φ+π4.由f (x )=f (-x )知f (x )是偶函数, 因此φ+π4=k π+π2(k ∈Z ).又|φ|<π2,∴φ=π4,∴f (x )=2cos 2x .由0<2x <π,得0<x <π2时,f (x )单调递减,故选A. 答案 A2.(2012·湖南)函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( ).A .[-2,2]B .[-3,3]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-32,32解析 因为f (x )=sin x -32cos x +12sin x = 3×⎝ ⎛⎭⎪⎫32sin x -12cos x =3sin ⎝ ⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3]. 答案 B3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ).A .关于直线x =π3对称B .关于点⎝ ⎛⎭⎪⎫π3,0对称C .关于直线x =-π6对称D .关于点⎝ ⎛⎭⎪⎫π6,0对称解析 由题意知T =2πω=π,则ω=2,所以f (x )= sin ⎝ ⎛⎭⎪⎫2x +π3,又f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫23π+π3=sin π=0. 答案 B4.(2013·郑州模拟)已知ω是正实数,且函数f (x )=2sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π4上是增函数,那么( ). A .0<ω≤32 B .0<ω≤2 C .0<ω≤247 D .ω≥2解析 由x ∈⎣⎢⎡⎦⎥⎤-π3,π4且ω>0,得ωx ∈⎣⎢⎡⎦⎥⎤-ωπ3,ωπ4.又y =sin x 是⎣⎢⎡⎦⎥⎤-π2,π2上的单调增函数,则⎩⎪⎨⎪⎧ωπ4≤π2,-ωπ3≥-π2,解得0<ω≤32.答案 A5.(2012·全国)当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.解析 y =sin x -3cos x =2⎝ ⎛⎭⎪⎫12sin x -32cos x =2sin ⎝ ⎛⎭⎪⎫x -π3的最大值为2,又0≤x <2π,故当x -π3=π2,即x =5π6时,y 取得最大值. 答案 5π6对应学生57考向一 与三角函数有关的定义域和值域问题【例1】►(1)函数y =sin x -cos x 的定义域为________.(2)函数f (x )=2cos x (sin x -cos x )+1在x ∈⎣⎢⎡⎦⎥⎤π8,3π4上的最大值为________,最小值为________.[审题视点] (1)求使sin x ≥cos x 的x 的集合即可;(2)先化成形如f (x )=A sin(ωx +φ)的形式,再由x 的范围求解. 解析 (1)sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π,k ∈Z ,解得2k π+π4≤x ≤2k π+5π4,k ∈Z .所以定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z. (2)f (x )=2cos x sin x -2cos 2x +1=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,∵x ∈⎣⎢⎡⎦⎥⎤π8,3π4,∴2x -π4∈⎣⎢⎡⎦⎥⎤0,5π4,∴sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故f (x )max =2,f (x )min =-1. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)2 -1(1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)首先把三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域),或用换元法(令t =sin x ,或t =sin x ±cos x )化为关于t 的二次函数求值域(最值).【训练1】 (1)函数y =1tan x -1的定义域为________;(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值为________,最大值为________. 解析(1)由题意知:tan x ≠1,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π,k ∈Z, 又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z , 故函数的定义域为:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z. (2)y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2sin 2x -sin x +1=2⎝ ⎛⎭⎪⎫sin x -142+78.又x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1, ∴当sin x =14时,y min =78; 当sin x =-12时,y max =2. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z (2)78 2考向二 三角函数的单调性【例2】►(2012·北京)已知函数f (x )=(sin x -cos x )sin 2xsin x .(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.[审题视点] 求原函数的定义域,只要使得原函数式有意义即可;先化简原函数为f (x )=A sin(ωx +φ)的形式,再求周期及单调区间. 解 (1)由sin x ≠0,得x ≠k π(k ∈Z ), 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }, 因为f (x )=(sin x -cos x )sin 2xsin x=2cos x (sin x -cos x )=sin 2x -cos 2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π4-1,所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ). 所以f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫k π-π8,k π和⎝ ⎛⎦⎥⎤k π,k π+3π8(k ∈Z ).求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数. 【训练2】 求下列函数的单调递增区间: (1)y =cos ⎝ ⎛⎭⎪⎫2x +π6;(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2.解 (1)将2x +π6看做一个整体,根据y =cos x 的单调递增区间列不等式求解.函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .故y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为k π-7π12,k π-π12(k ∈Z ).(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2=-3sin ⎝ ⎛⎭⎪⎫x 2-π3,∴由π2+2k π≤x 2-π3≤2k π+3π2,k ∈Z , 得4k π+5π3≤x ≤4k π+11π3,k ∈Z . 故y =3sin ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间为⎣⎢⎡⎦⎥⎤4k π+5π3,4k π+11π3(k ∈Z ). 考向三 三角函数的奇偶性、周期性及对称性【例3】►(1)若0<α<π2,g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α是偶函数,则α的值为________.(2)函数y =2sin(3x +φ)⎝ ⎛⎭⎪⎫||φ<π2的一条对称轴为x =π12,则φ=________.[审题视点] (1)只需令π4+α=π2+k π(k ∈Z ); (2)应满足3×π12+φ=k π+π2,k ∈Z .解析 (1)要使g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α为偶函数,则需π4+α=k π+π2,k ∈Z ,α=k π+π4,k ∈Z ,∵0<α<π2,∴α=π4.(2)由y =sin x 的对称轴为x =k π+π2(k ∈Z ), 即3×π12+φ=k π+π2(k ∈Z ),得φ=k π+π4(k ∈Z ), 又|φ|<π2,∴k =0,故φ=π4. 答案 (1)π4 (2)π4函数f (x )=A sin(ωx +φ)(ω≠0),(1)函数f (x )为奇函数的充要条件为φ=k π(k ∈Z );为偶函数的充要条件为φ=k π+π2(k ∈Z ).(2)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;如要求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.【训练3】 (2013·银川联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2 (x ∈R ),下面结论错误的是( ). A .函数f (x )的最小正周期为π B .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称 D .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数解析 f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,D 正确,故选C.答案 C对应学生58规范解答6——如何解决三角函数的值域(或最值)问题【命题研究】 通过近三年的高考试题分析,对三角函数的值域(或最值)的考查特别青睐,主要考查y =A sin(ωx +φ)形式的三角函数在R 上或给定的闭区间[a ,b ]上的值域(或最值),往往作为某一种答题的其中一问,题目难度不大. 【真题探究】► (本小题满分12分)(2012·湖北)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω、λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,3π5上的取值范围.[教你审题] 一审 准确化成形如f (x )=A sin(ωx +φ)+h 的形式; 二审 充分利用对称轴x =π; 三审 确定λ的值.[规范解答] (1)f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6+λ.(3分)由直线x =π是y =f (x )图象的一条对称轴, 可得sin ⎝ ⎛⎭⎪⎫2ωx -π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ), 又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56.(5分)所以f (x )的最小正周期是6π5.(6分)(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0,即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6- 2.(9分)由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin ⎝ ⎛⎭⎪⎫53x -π6≤1,得-1-2≤2sin ⎝ ⎛⎭⎪⎫53x -π6-2≤2-2,(11分)故函数f (x )在⎣⎢⎡⎦⎥⎤0,3π5上的取值范围为[-1-2,2-2].(12分)[阅卷老师手记] (1)将所给函数变换到f (x )=A sin(ωx +φ)+h 的形式时由于变换公式和变换方法不熟造成失分.(2)有的考生混淆了对称轴与对称中心,导致失分.第一步:三角函数式的化简,一般化成形如y =A sin(ωx +φ)+h 的形式或y =A cos(ωx +φ)+k 的形式.第二步:根据题设条件求出y =A sin(ωx +φ)+h 中有关的参数.第三步:由x 的取值范围确定ωx +φ的取值范围,再确定sin(ωx +φ)的取值范围.第四步:求出所求函数的值域(或最值).【试一试】 (2011·北京)已知函数f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.解 (1)因为f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2; 当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.对应学生255A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2011·山东)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=( ).A.23B.32C .2D .3解析 由题意知f (x )的一条对称轴为x =π3,和它相邻的一个对称中心为原点,则f (x )的周期T =4π3,从而ω=32. 答案 B2.已知函数f (x )=sin(x +θ)+3cos(x +θ)⎝ ⎛⎭⎪⎫θ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,则θ的值为( ).A .0B.π6C.π4D.π3解析 据已知可得f (x )=2sin ⎝ ⎛⎭⎪⎫x +θ+π3,若函数为偶函数,则必有θ+π3=k π+π2(k ∈Z ),又由于θ∈⎣⎢⎡⎦⎥⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意. 答案 B3.函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( ).A .2- 3B .0C .-1D .-1- 3解析 ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝ ⎛⎭⎪⎫π6x -π3≤1,∴-3≤2sin ⎝ ⎛⎭⎪⎫π6x -π3≤2.∴函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为2- 3. 答案 A4.(2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( ).A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析 由f (x )=sin(2x +φ),且f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,∴f ⎝ ⎛⎭⎪⎫π6=±1,即sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1. ∴π3+φ=k π+π2(k ∈Z ).∴φ=k π+π6(k ∈Z ). 又f ⎝ ⎛⎭⎪⎫π2>f (π),即sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ.∴sin φ<0.∴对于φ=k π+π6(k ∈Z ),k 为奇数.∴f (x )=sin(2x +φ)=sin ⎝ ⎛⎭⎪⎫2x +k π+π6=-sin ⎝ ⎛⎭⎪⎫2x +π6.∴由2m π+π2≤2x +π6≤2m π+3π2(m ∈Z ), 得m π+π6≤x ≤m π+2π3(m ∈Z ),∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤m π+π6,m π+2π3(m ∈Z ). 答案 C二、填空题(每小题5分,共10分)5.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3的值为________. 解析 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.答案 326.若f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值是2,则ω=________.解析 由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3, 所以ωπ3=π4,解得ω=34. 答案 34三、解答题(共25分) 7.(12分)设f (x )=1-2sin x . (1)求f (x )的定义域;(2)求f (x )的值域及取最大值时x 的值.解 (1)由1-2sin x ≥0,根据正弦函数图象知: 定义域为{x |2k π+56π≤x ≤2k π+13π6,k ∈Z }. (2)∵-1≤sin x ≤1,∴-1≤1-2sin x ≤3, ∵1-2sin x ≥0,∴0≤1-2sin x ≤3, ∴f (x )的值域为[0,3],当x =2k π+3π2,k ∈Z 时,f (x )取得最大值.8.(13分)(2013·东营模拟)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4. (1)求函数f (x )的最小正周期和图象的对称轴; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域.解 (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4 =12cos 2x +32sin 2x +(sin x -cos x )(sin x +cos x ) =12cos 2x +32sin 2x +sin 2x -cos 2x =12cos 2x +32sin 2x -cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π6.∴最小正周期T =2π2=π,由2x -π6=k π+π2(k ∈Z ), 得x =k π2+π3(k ∈Z ).∴函数图象的对称轴为x =k π2+π3(k ∈Z ). (2)∵x ∈⎣⎢⎡⎦⎥⎤-π12,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π3,5π6,∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.即函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域为⎣⎢⎡⎦⎥⎤-32,1.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·新课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π单调递减,则ω的取值范围是( ).A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆85k π+π5,85k π+π,k ∈Z ,排除B ,C.取ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π ⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 答案 A2.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( ).A.π4B.π3C.π2 D.3π4解析 由题意可知函数f (x )的周期T =2×⎝ ⎛⎭⎪⎫5π4-π4=2π,故ω=1,∴f (x )=sin(x+φ),令x +φ=k π+π2(k ∈Z ),将x =π4代入可得φ=k π+π4(k ∈Z ),∵0<φ<π,∴φ=π4. 答案 A二、填空题(每小题5分,共10分)3.(2013·徐州模拟)已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析 f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎪⎨⎪⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象,可得函数的最小值为-1,最大值为22,故值域为⎣⎢⎡⎦⎥⎤-1,22.答案 ⎣⎢⎡⎦⎥⎤-1,224.(2012·西安模拟)下列命题中:①α=2k π+π3(k ∈Z )是tan α=3的充分不必要条件; ②函数f (x )=|2cos x -1|的最小正周期是π;③在△ABC 中,若cos A cos B >sin A sin B ,则△ABC 为钝角三角形; ④若a +b =0,则函数y =a sin x -b cos x 的图象的一条对称轴方程为x =π4. 其中是真命题的序号为________. 解析 ①∵α=2k π+π3(k ∈Z )⇒tan α=3, 而tan α=3⇒/ α=2k π+π3(k ∈Z ),∴①正确. ②∵f (x +π)=|2cos(x +π)-1|=|-2cos x -1|=|2cos x +1|≠f (x ),∴②错误. ③∵cos A cos B >sin A sin B ,∴cos A cos B -sin A sin B >0, 即cos(A +B )>0,∵0<A +B <π,∴0<A +B <π2, ∴C 为钝角,∴③正确.④∵a +b =0,∴b =-a ,y =a sin x -b cos x =a sin x +a cos x =2a sin ⎝ ⎛⎭⎪⎫x +π4,∴x =π4是它的一条对称轴,∴④正确. 答案 ①③④ 三、解答题(共25分)5.(12分)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 解 (1)∵f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3-3cos 2x 8=12cos 2x -14,∴f (x )的最小正周期为2π2=π. (2)由(1)知h (x )=f (x )-g (x )=12cos 2x -12sin 2x =22cos ⎝ ⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )取得最大值22.故h (x )取得最大值时,对应的x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π8,k ∈Z. 6.(13分)已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,又∵a >0,∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1, 因此a =2,b =-5.(2)由(1)得a =2,b =-5,∴f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1 =4sin ⎝ ⎛⎭⎪⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z . 综上,g (x )的递增区间为⎝ ⎛⎦⎥⎤k π,k π+π6(k ∈Z );递减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3(k ∈Z ).。
2014届高考人教A版数学(理)一轮复习讲义:4.3 三角函数的图象与性质
第3讲 三角函数的图象与性质【2014年高考会这样考】1.考查三角函数的单调性、奇偶性、周期性和对称性. 2.考查三角函数的图象在研究三角函数性质中的应用.对应学生56考点梳理正弦、余弦、正切函数的图象与性质 (下表中k ∈Z ). 函数 y =sin xy =cos xy =tan x图象定义域RR{x | x ∈R ,且x ≠⎭⎬⎫k π+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性奇函数偶函数奇函数 单调性2k π-π2,2k π+π2为增;2k π+π2,2k π+3π2为减[2k π,2k π+π]为减;[2k π-π,2k π]为增 k π-π2,k π+π2为增对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2x =k π无一点提醒求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解,否则将出现错误. 两种方法求三角函数值域(最值)的两种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域;(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决.考点自测1.(2011·新课标全国)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增解析 先将f (x )化为单一函数形式: f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,∵f (x )的最小正周期为π,∴ω=2. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +φ+π4.由f (x )=f (-x )知f (x )是偶函数, 因此φ+π4=k π+π2(k ∈Z ).又|φ|<π2,∴φ=π4,∴f (x )=2cos 2x .由0<2x <π,得0<x <π2时,f (x )单调递减,故选A. 答案 A2.(2012·湖南)函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( ).A .[-2,2]B .[-3,3]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-32,32解析 因为f (x )=sin x -32cos x +12sin x = 3×⎝ ⎛⎭⎪⎫32sin x -12cos x =3sin ⎝ ⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3]. 答案 B3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ). A .关于直线x =π3对称 B .关于点⎝ ⎛⎭⎪⎫π3,0对称C .关于直线x =-π6对称D .关于点⎝ ⎛⎭⎪⎫π6,0对称解析 由题意知T =2πω=π,则ω=2,所以f (x )= sin ⎝ ⎛⎭⎪⎫2x +π3,又f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫23π+π3=sin π=0. 答案 B4.(2013·郑州模拟)已知ω是正实数,且函数f (x )=2sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π4上是增函数,那么( ). A .0<ω≤32 B .0<ω≤2 C .0<ω≤247 D .ω≥2解析 由x ∈⎣⎢⎡⎦⎥⎤-π3,π4且ω>0,得ωx ∈⎣⎢⎡⎦⎥⎤-ωπ3,ωπ4.又y =sin x 是⎣⎢⎡⎦⎥⎤-π2,π2上的单调增函数,则⎩⎪⎨⎪⎧ωπ4≤π2,-ωπ3≥-π2,解得0<ω≤32.答案 A5.(2012·全国)当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.解析 y =sin x -3cos x =2⎝ ⎛⎭⎪⎫12sin x -32cos x =2sin ⎝ ⎛⎭⎪⎫x -π3的最大值为2,又0≤x <2π,故当x -π3=π2,即x =5π6时,y 取得最大值. 答案 5π6对应学生57考向一 与三角函数有关的定义域和值域问题【例1】►(1)函数y =sin x -cos x 的定义域为________.(2)函数f (x )=2cos x (sin x -cos x )+1在x ∈⎣⎢⎡⎦⎥⎤π8,3π4上的最大值为________,最小值为________.[审题视点] (1)求使sin x ≥cos x 的x 的集合即可;(2)先化成形如f (x )=A sin(ωx +φ)的形式,再由x 的范围求解. 解析 (1)sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π,k ∈Z ,解得2k π+π4≤x ≤2k π+5π4,k ∈Z .所以定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z. (2)f (x )=2cos x sin x -2cos 2x +1=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,∵x ∈⎣⎢⎡⎦⎥⎤π8,3π4,∴2x -π4∈⎣⎢⎡⎦⎥⎤0,5π4,∴sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故f (x )max =2,f (x )min =-1. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)2 -1(1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)首先把三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域),或用换元法(令t =sin x ,或t =sin x ±cos x )化为关于t 的二次函数求值域(最值).【训练1】 (1)函数y =1tan x -1的定义域为________;(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值为________,最大值为________. 解析(1)由题意知:tan x ≠1,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π,k ∈Z, 又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z , 故函数的定义域为:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z . (2)y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2sin 2x -sin x +1=2⎝ ⎛⎭⎪⎫sin x -142+78.又x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1,∴当sin x =14时,y min =78; 当sin x =-12时,y max =2. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z (2)78 2考向二 三角函数的单调性【例2】►(2012·北京)已知函数f (x )=(sin x -cos x )sin 2xsin x .(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.[审题视点] 求原函数的定义域,只要使得原函数式有意义即可;先化简原函数为f (x )=A sin(ωx +φ)的形式,再求周期及单调区间. 解 (1)由sin x ≠0,得x ≠k π(k ∈Z ), 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }, 因为f (x )=(sin x -cos x )sin 2xsin x=2cos x (sin x -cos x )=sin 2x -cos 2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π4-1,所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ). 所以f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫k π-π8,k π和⎝ ⎛⎦⎥⎤k π,k π+3π8(k ∈Z ). 求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数. 【训练2】 求下列函数的单调递增区间: (1)y =cos ⎝ ⎛⎭⎪⎫2x +π6;(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2. 解 (1)将2x +π6看做一个整体,根据y =cos x 的单调递增区间列不等式求解.函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .故y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为k π-7π12,k π-π12(k ∈Z ).(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2=-3sin ⎝ ⎛⎭⎪⎫x 2-π3,∴由π2+2k π≤x 2-π3≤2k π+3π2,k ∈Z , 得4k π+5π3≤x ≤4k π+11π3,k ∈Z . 故y =3sin ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间为⎣⎢⎡⎦⎥⎤4k π+5π3,4k π+11π3(k ∈Z ). 考向三 三角函数的奇偶性、周期性及对称性【例3】►(1)若0<α<π2,g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α是偶函数,则α的值为________.(2)函数y =2sin(3x +φ)⎝ ⎛⎭⎪⎫||φ<π2的一条对称轴为x =π12,则φ=________.[审题视点] (1)只需令π4+α=π2+k π(k ∈Z ); (2)应满足3×π12+φ=k π+π2,k ∈Z .解析 (1)要使g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α为偶函数,则需π4+α=k π+π2,k ∈Z ,α=k π+π4,k ∈Z ,∵0<α<π2,∴α=π4.(2)由y =sin x 的对称轴为x =k π+π2(k ∈Z ), 即3×π12+φ=k π+π2(k ∈Z ),得φ=k π+π4(k ∈Z ), 又|φ|<π2,∴k =0,故φ=π4. 答案 (1)π4 (2)π4函数f (x )=A sin(ωx +φ)(ω≠0),(1)函数f (x )为奇函数的充要条件为φ=k π(k ∈Z );为偶函数的充要条件为φ=k π+π2(k ∈Z ).(2)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;如要求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.【训练3】 (2013·银川联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2(x ∈R ),下面结论错误的是( ). A .函数f (x )的最小正周期为π B .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称 D .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数解析 f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,D 正确,故选C.答案 C对应学生58规范解答6——如何解决三角函数的值域(或最值)问题【命题研究】 通过近三年的高考试题分析,对三角函数的值域(或最值)的考查特别青睐,主要考查y =A sin(ωx +φ)形式的三角函数在R 上或给定的闭区间[a ,b ]上的值域(或最值),往往作为某一种答题的其中一问,题目难度不大. 【真题探究】► (本小题满分12分)(2012·湖北)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω、λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,3π5上的取值范围.[教你审题] 一审 准确化成形如f (x )=A sin(ωx +φ)+h 的形式; 二审 充分利用对称轴x =π; 三审 确定λ的值.[规范解答] (1)f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6+λ.(3分) 由直线x =π是y =f (x )图象的一条对称轴, 可得sin ⎝ ⎛⎭⎪⎫2ωx -π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ), 又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56.(5分)所以f (x )的最小正周期是6π5.(6分)(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0,即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6- 2.(9分)由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin ⎝ ⎛⎭⎪⎫53x -π6≤1,得-1-2≤2sin ⎝ ⎛⎭⎪⎫53x -π6-2≤2-2,(11分)故函数f (x )在⎣⎢⎡⎦⎥⎤0,3π5上的取值范围为[-1-2,2-2].(12分) [阅卷老师手记] (1)将所给函数变换到f (x )=A sin(ωx +φ)+h 的形式时由于变换公式和变换方法不熟造成失分.(2)有的考生混淆了对称轴与对称中心,导致失分.第一步:三角函数式的化简,一般化成形如y =A sin(ωx +φ)+h 的形式或y =A cos(ωx +φ)+k 的形式.第二步:根据题设条件求出y =A sin(ωx +φ)+h 中有关的参数.第三步:由x 的取值范围确定ωx +φ的取值范围,再确定sin(ωx +φ)的取值范围.第四步:求出所求函数的值域(或最值).【试一试】 (2011·北京)已知函数f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.解 (1)因为f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2; 当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.对应学生255A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2011·山东)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=( ).A.23B.32C .2D .3解析 由题意知f (x )的一条对称轴为x =π3,和它相邻的一个对称中心为原点,则f (x )的周期T =4π3,从而ω=32. 答案 B2.已知函数f (x )=sin(x +θ)+3cos(x +θ)⎝ ⎛⎭⎪⎫θ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,则θ的值为( ).A .0B.π6C.π4D.π3解析 据已知可得f (x )=2sin ⎝ ⎛⎭⎪⎫x +θ+π3,若函数为偶函数,则必有θ+π3=k π+π2(k ∈Z ),又由于θ∈⎣⎢⎡⎦⎥⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意. 答案 B3.函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( ).A .2- 3B .0C .-1D .-1- 3解析 ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝ ⎛⎭⎪⎫π6x -π3≤1,∴-3≤2sin ⎝ ⎛⎭⎪⎫π6x -π3≤2.∴函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为2- 3. 答案 A4.(2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( ).A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析 由f (x )=sin(2x +φ),且f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,∴f ⎝ ⎛⎭⎪⎫π6=±1,即sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1. ∴π3+φ=k π+π2(k ∈Z ).∴φ=k π+π6(k ∈Z ). 又f ⎝ ⎛⎭⎪⎫π2>f (π),即sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ.∴sin φ<0.∴对于φ=k π+π6(k ∈Z ),k 为奇数.∴f (x )=sin(2x +φ)=sin ⎝ ⎛⎭⎪⎫2x +k π+π6=-sin ⎝ ⎛⎭⎪⎫2x +π6.∴由2m π+π2≤2x +π6≤2m π+3π2(m ∈Z ), 得m π+π6≤x ≤m π+2π3(m ∈Z ),∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤m π+π6,m π+2π3(m ∈Z ).答案 C二、填空题(每小题5分,共10分)5.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3的值为________.解析 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.答案 326.若f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值是2,则ω=________.解析 由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3, 所以ωπ3=π4,解得ω=34. 答案 34三、解答题(共25分) 7.(12分)设f (x )=1-2sin x . (1)求f (x )的定义域;(2)求f (x )的值域及取最大值时x 的值.解 (1)由1-2sin x ≥0,根据正弦函数图象知: 定义域为{x |2k π+56π≤x ≤2k π+13π6,k ∈Z }. (2)∵-1≤sin x ≤1,∴-1≤1-2sin x ≤3, ∵1-2sin x ≥0,∴0≤1-2sin x ≤3, ∴f (x )的值域为[0,3],当x =2k π+3π2,k ∈Z 时,f (x )取得最大值.8.(13分)(2013·东营模拟)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4. (1)求函数f (x )的最小正周期和图象的对称轴; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域.解 (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4=12cos 2x +32sin 2x +(sin x -cos x )(sin x +cos x ) =12cos 2x +32sin 2x +sin 2x -cos 2x =12cos 2x +32sin 2x -cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π6.∴最小正周期T =2π2=π,由2x -π6=k π+π2(k ∈Z ), 得x =k π2+π3(k ∈Z ).∴函数图象的对称轴为x =k π2+π3(k ∈Z ). (2)∵x ∈⎣⎢⎡⎦⎥⎤-π12,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π3,5π6,∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.即函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域为⎣⎢⎡⎦⎥⎤-32,1.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·新课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π单调递减,则ω的取值范围是( ).A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆85k π+π5,85k π+π,k ∈Z ,排除B ,C.取ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⃘⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D.答案 A2.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( ).A.π4B.π3C.π2 D.3π4解析 由题意可知函数f (x )的周期T =2×⎝ ⎛⎭⎪⎫5π4-π4=2π,故ω=1,∴f (x )=sin(x+φ),令x +φ=k π+π2(k ∈Z ),将x =π4代入可得φ=k π+π4(k ∈Z ),∵0<φ<π,∴φ=π4. 答案 A二、填空题(每小题5分,共10分)3.(2013·徐州模拟)已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析 f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎪⎨⎪⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象,可得函数的最小值为-1,最大值为22,故值域为⎣⎢⎡⎦⎥⎤-1,22.答案 ⎣⎢⎡⎦⎥⎤-1,224.(2012·西安模拟)下列命题中:①α=2k π+π3(k ∈Z )是tan α=3的充分不必要条件; ②函数f (x )=|2cos x -1|的最小正周期是π;③在△ABC 中,若cos A cos B >sin A sin B ,则△ABC 为钝角三角形; ④若a +b =0,则函数y =a sin x -b cos x 的图象的一条对称轴方程为x =π4. 其中是真命题的序号为________. 解析 ①∵α=2k π+π3(k ∈Z )⇒tan α=3, 而tan α=3⇒/ α=2k π+π3(k ∈Z ),∴①正确. ②∵f (x +π)=|2cos(x +π)-1|=|-2cos x -1|=|2cos x +1|≠f (x ),∴②错误. ③∵cos A cos B >sin A sin B ,∴cos A cos B -sin A sin B >0, 即cos(A +B )>0,∵0<A +B <π,∴0<A +B <π2, ∴C 为钝角,∴③正确.④∵a +b =0,∴b =-a ,y =a sin x -b cos x =a sin x +a cos x =2a sin ⎝ ⎛⎭⎪⎫x +π4,∴x =π4是它的一条对称轴,∴④正确. 答案 ①③④ 三、解答题(共25分)5.(12分)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 解 (1)∵f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3-3cos 2x 8=12cos 2x -14,∴f (x )的最小正周期为2π2=π. (2)由(1)知h (x )=f (x )-g (x )=12cos 2x -12sin 2x =22cos ⎝ ⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )取得最大值22.故h (x )取得最大值时,对应的x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π8,k ∈Z. 6.(13分)已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,又∵a >0,∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1, 因此a =2,b =-5.(2)由(1)得a =2,b =-5,∴f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z . 综上,g (x )的递增区间为⎝ ⎛⎦⎥⎤k π,k π+π6(k ∈Z );递减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3(k ∈Z ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三讲三角函数的图象与性质一.课标要求: (2)二.命题走向 (2)三.要点精讲 (2)四.典例解析 (5)题型1:三角函数的图象 (5)题型2:三角函数图象的变换 (5)题型3:三角函数图象的应用 (6)题型4:三角函数的定义域、值域 (8)题型5:三角函数的单调性 (9)题型6:三角函数的奇偶性 (11)题型7:三角函数的周期性 (11)题型8:三角函数的最值 (12)五.思维总结 (13)第二十三讲三角函数的图象与性质一.课标要求:1.能画出y=sin x, y=c os x, y=t a n x的图像,了解三角函数的周期性;2.借助图像理解正弦函数、余弦函数在[0,2π],正切函数在(-π/2,π/2)上的性质(如单调性、最大和最小值、图像与x轴交点等);3.结合具体实例,了解y=A sin(w x+φ)的实际意义;能借助计算器或计算机画出y=A sin (w x+φ)的图像,观察参数A,w,φ对函数图像变化的影响。
二.命题走向近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点。
在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,或由单位圆上线段表示的三角函数值来获得函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。
预测今年高考对本讲内容的考察为:1.题型为1道选择题(求值或图象变换),1道解答题(求值或图像变换);2.热点问题是三角函数的图象和性质,特别是y=A sin(w x+φ)的图象及其变换;三.要点精讲1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线By =的交点都是该图象的对称中心。
4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。
6.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数的周期的常用方法:经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法。
9.五点法作y =A sin (ωx +ϕ)的简图:五点取法是设x =ωx +ϕ,由x 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图。
四.典例解析题型1:三角函数的图象例1.函数y =-xc os x 的部分图象是( )解析:因为函数y =-xc os x 是奇函数,它的图象关于原点对称,所以排除A 、C ,当x ∈(0,2π)时,y =-xc os x <0。
答案为D 。
例2.函数y =x +sin|x |,x ∈[-π,π]的大致图象是( )解析:由奇偶性定义可知函数y =x +sin|x |,x ∈[-π,π]为非奇非偶函数。
选项A 、D 为奇函数,B 为偶函数,C 为非奇非偶函数。
点评:利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。
题型2:三角函数图象的变换例3.试述如何由y =31sin (2x +3π)的图象得到y =sin x 的图象。
解析:y =31sin (2x +3π))(纵坐标不变倍横坐标扩大为原来的3πsin 312+=−−−−−−−−−→−x y x y sin 31π=−−−−−−−−→−纵坐标不变个单位图象向右平移x y sin 3=−−−−−−−−−→−横坐标不变倍纵坐标扩大到原来的另法答案:(1)先将y =31sin (2x +3π)的图象向右平移6π个单位,得y =31sin2x 的图象;(2)再将y =31sin2x 上各点的横坐标扩大为原来的2倍(纵坐标不变),得y =31sin x 的图象;(3)再将y =31sin x 图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到y =sin x的图象。
例4.把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A .(1-y )sin x +2y -3=0 B .(y -1)sin x +2y -3=0 C .(y +1)sin x +2y +1=0 D .-(y +1)sin x +2y +1=0解析:将原方程整理为:y =xcos 21+,因为要将原曲线向右、向下分别移动2π个单位和1个单位,因此可得y =)2cos(21π-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.点评:本题考查了曲线平移的基本方法及三角函数中的诱导公式。
如果对平移有深刻理解,可直接化为:(y +1)c os (x -2π)+2(y +1)-1=0,即得C 选项。
题型3:三角函数图象的应用例5.已知电流I 与时间t 的关系式为sin()I A t ωϕ=+。
(1)右图是sin()I A t ωϕ=+(ω>0,||2πϕ<) 在一个周期内的图象,根据图中数据求sin()I A t ωϕ=+ 的解析式;(2)如果t 在任意一段1150秒的时间内,电流sin()I A t ωϕ=+都能取得最大值和最小值,那么ω的最小正整数值是多少?解析:本小题主要考查三角函数的图象与性质等基础知识,考查运算能力和逻辑推理能力.(1)由图可知 A =300。
设t 1=-1900,t 2=1180, 则周期T =2(t 2-t 1)=2(1180+1900)=175。
∴ ω=2T π=150π。
又当t =1180时,I =0,即sin (150π·1180+ϕ)=0,而||2πϕ<, ∴ ϕ=6π。
故所求的解析式为300sin(150)6I t ππ=+。
(2)依题意,周期T ≤1150,即2πω≤1150,(ω>0) ∴ ω≥300π>942,又ω∈N *,故最小正整数ω=943。
点评:本题解答的开窍点是将图形语言转化为符号语言.其中,读图、识图、用图是形数结合的有效途径。
例6.(1)已知函数f (x )=A sin (ωx +ϕ)(A >0,ω>0,x ∈R )在一个周期内的图象如图所示,求直线y =3与函数f (x )图象的所有交点的坐标。
解析:根据图象得A =2,T =27π-(-2π)=4π, ∴ω=21,∴y =2sin (2x+ϕ), 又由图象可得相位移为-2π,∴-21ϕ=-2π,∴ϕ=4π.即y =2sin (21x +4π)。
根据条件3=2sin (421π+x ),∴421π+x =2k π+3π(k ∈Z )或421π+x =2k π+32π(k ∈Z ),∴x =4k π+6π(k ∈Z )或x =4k π+65π(k ∈Z )。
∴所有交点坐标为(4k π+3,6π)或(4k π+3,65π)(k ∈Z )。
点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。
(2)在(0,2π)内,使sin x >c os x 成立的x 取值范围为( ) A .(4π,2π)∪(π,45π) B .(4π,π) C .(4π,45π) D .(4π,π)∪(45π,23π) 解析:C ;解法一:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图1可得C 答案。
图1 图2解法二:在单位圆上作出一、三象限的对角线,由正弦线、余弦线知应选C 。
(如图2)题型4:三角函数的定义域、值域例7.(1)已知f (x )的定义域为[0,1],求f (c os x )的定义域; (2)求函数y =lgsin (c os x )的定义域; 分析:求函数的定义域:(1)要使0≤c os x ≤1,(2)要使sin (c os x )>0,这里的c os x 以它的值充当角。
解析:(1)0≤c os x <1⇒2k π-2π≤x ≤2k π+2π,且x ≠2k π(k ∈Z )。
∴所求函数的定义域为{x |x ∈[2k π-2π,2k π+2π]且x ≠2k π,k ∈Z }。
(2)由sin (c os x )>0⇒2k π<c os x <2k π+π(k ∈Z )。
又∵-1≤c os x ≤1,∴0<c os x ≤1。