微专题:平行线与相交线选择题专项——九年级中考数学分类专题提分训练:(四)

合集下载

中考数学《相交线与平行线》专题训练(含答案)

中考数学《相交线与平行线》专题训练(含答案)

订交线与平行线一、选择题1.如图,直线 AC∥ BD,AO、BO 分别是∠ BAC、∠ABD 的均分线,那么∠ BAO 与∠ ABO之间的大小关系必然为()A.互余B.相等C.互补D.不等2.如图,把一块含有45°的直角三角形的两个极点放在直尺的对边上.若是∠1=20°,那么∠ 2 的度数是()A.15°B. 20°C.25°D.30°3.如图, AB∥CD, FE⊥DB,垂足为E,∠ 1=50°,则∠ 2 的大小为()A.60°B. 50°C.40°D.30°4.如图, AB∥CD,点 E 在线段 BC上,若∠1=40°,∠ 2=30°,则∠ 3 的度数是()A.70°B. 60°C.55°D.50°5.如图,在△ ABC中,∠ B=40°,过点 C 作 CD∥AB,∠ ACD=65°,则∠ ACB的度数为()A.60°B. 65°C.70°D.75°6.如图,直线 l1∥l2,∠ 1=50°,∠ 2=23°20,′则∠ 3 的度数为()A.26° 40′B.27° 20′C.27° 40′D.73° 20′7.以以下列图,已知AB∥ CD,直线 EF交 AB 于点 E,交 CD 于点 F,且 EG 均分∠ FEB,∠ 1=50°,则∠ 2 等于()A.50°B. 60°C.70°D.80°8.如图,已知直线AB∥CD,直线 EF与 AB、CD订交于 N, M 两点, MG 均分∠ EMD,若∠ BNE=30°,则∠ EMG 等于()A.15°B. 30°C.75°D.150°9.如图,直线 a∥b,∠1=108°,则∠ 2 的度数是()A.72°B. 82°C.92°D.108°10.将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠ 2 的度数为()A.85°B. 75°C.60°D.45°11.如图, AB∥CD,直线 EF分别交直线 AB,CD于点 E,F.若∠ 1=46° 30,′则∠ 2 的度数为()A.43° 30′B.53° 30′C.133° 30′D.153° 30′12.如图, AB∥ CD,AD=CD,∠ 1=70°,则∠ 2 的度数是()A.20°B. 35°C.40°D.70°二、填空题13.如图, AB∥ CD,∠ CDE=119°,GF交∠ DEB的均分线 EF于点 F,∠ AGF=130°,则∠F=.14.如图,直线 l1∥ l2,并且被直线 l3, l4所截,则∠α=.15.如图, AB∥ CD,AC⊥BC,∠ ABC=35°,则∠ 1 的度数为.16.如图,直线 a∥b,三角板的直角极点 A 落在直线 a 上,两边分别交直线 b 于 B、C两点.若∠ 1=42°,则∠ 2 的度数是.17.如图,直线 a∥ b,被直线 c 所截,已知∠ 1=70°,那么∠ 2 的度数为.18.如图,分别过等边△ ABC的极点 A、B 作直线 a,b,使 a∥b.若∠ 1=40°,则∠ 2 的度数为.19.如图,已知矩形纸片的一条边经过直角三角形纸片的直角极点,若矩形纸片的一组对边与直角三角形纸片的两条直角边订交成∠1、∠ 2,则∠ 2﹣∠ 1=.20.如图,直线 a∥ b,直线 l 与 a 订交于点 P,与直线 b 订交于点 Q,且 PM 垂直于 l,若∠ 1=58°,则∠ 2=.21.如图,直线 a, b 被直线 c 所截,且 a∥b,∠ 1=40°,则∠ 2=度.参照答案一、选择题1.A;2.C;3.C;4.A;5.D;6.A;7.D;8.A;9.A;10.B;11.C;12.C 二、填空题13.9.5 ;°14.64°;15.55°;16.48°;17.110°;18.80°;19.90°;20.32°;21.140。

微专题:平行线与相交线选择题专项——2021年九年级中考数学分类专题提分训练:(四)

微专题:平行线与相交线选择题专项——2021年九年级中考数学分类专题提分训练:(四)

微专题:平行线与相交线选择题专项——2021年中考数学分类专题提分训练:(四)1.将直角三角板按照如图方式摆放,直线a∥b,∠1=130°,则∠2的度数为()A.60°B.50°C.45°D.40°2.如图所示,直线AB与CD相交于O点,∠1=∠2,若∠AOE=138°,则∠AOC的度数为()A.45°B.90°C.84°D.100°3.如图,A是直线l外一点,点B,E,D,C在直线l上,且AD⊥l,D为垂足,如果量得AB=7cm,AE=6cm,AD=5cm,AC=11cm,则点A到直线l的距离为()A.11cm B.7cm C.6cm D.5cm4.如图,AB∥EF,C点在EF上,∠EAC=∠ECA,BC平分∠DCF,且AC⊥BC.下列结论:①AC平分∠DCE;②AE∥CD;③∠1+∠B=90°;④∠BDC=2∠1.其中结论正确的个数有()A.1个B.2个C.3个D.4个5.如图,O为直线AB上一点,OC⊥OD,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列结论:①∠DOG+∠BOE=180°;②∠AOE﹣∠DOF=45°;③∠EOD+∠COG=180°;④∠AOE+∠DOF=90°.其中正确的个数有()A.1个B.2个C.3个D.4个6.将一张长方形纸条折成如图所示的形状,BC为折痕.若∠DBA=70°,则∠ABC等于()A.45°B.55°C.70°D.110°7.如图,∠CED=60°,DF⊥AB于点F,DM∥AC交AB于点M,DE∥AB交AC于点E,则∠MDF的度数是()A.60°B.40°C.30°D.20°8.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠BAC=∠EBD C.∠ABC=∠BAE D.∠BAC=∠ABE 9.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A.9 B.10 C.11 D.1210.如投影屏上出示的抢答题,需要回答横线上符号代表的内容.则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB11.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°12.如图,AB∥CD,则∠A、∠C、∠E、∠F满足的数量关系是()A.∠A=∠C+∠E+∠F B.∠A+∠E﹣∠C﹣∠F=180°C.∠A﹣∠E+∠C+∠F=90°D.∠A+∠E+∠C+∠F=360°13.如图,直线l∥m,将Rt△ABC(∠ABC=45°)的直角顶点C放在直线m上,若∠2=24°,则∠1的度数为()A.21°B.22°C.23°D.24°14.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:“已知AB∥CD,∠BAE=82°,∠DCE=120°,则∠E的度数是()A.38°B.44°C.46°D.56°15.某学生上学路线如图所示,他总共拐了三次弯,最后行车路线与开始的路线相互平行,已知第一次转过的角度,第三次转过的角度,则第二次拐弯角(∠1)的度数是()A.55°B.70°C.80°D.90°16.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为()A.32°B.58°C.138°D.148°17.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°18.如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠MOC =35°,则∠BON的度数为()A.35°B.45°C.55°D.64°19.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个20.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④21.如图,三角形板的直角顶点落在直尺的一边上,若∠1=35°,则∠2的度数是()A.55°B.45°C.35°D.65°22.如图,已知AB∥EF∥CD,BF∥AE,AF平分∠EAB,那么图中与∠CGF相等的角有()个.A.2 B.3 C.4 D.523.如图,线段AB和CD表示两面镜子,且直线AB∥直线CD,光线EF经过镜子AB反射到CD,最后,反射到光线GH,光线反射时,∠1=∠2,∠3=∠4,下列结论:①直线EF平行于直线GH;②∠FGH的角平分线所在的直线垂直于直线AB;③∠BFE的角平分线所在的直线垂直于∠4的角平分线所在直线;④当CD绕点G顺时针旋转90°时,直线EF与直线GH不一定平行.其中正确的是()A.①②③④B.①②③C.②③D.①③24.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°25.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=68°,则∠GFE的度数是()A.56°B.60°C.64°D.70°参考答案1.解:∵∠1=130°,∴∠3=180°﹣130°=50°,如图,作直线c∥a,∴∠4=∠3=50°,∴∠5=90°﹣50°=40°,∵a∥b,∴b∥c,∴∠2=∠5=40°.所以∠2的度数为40°.故选:D.2.解:∵∠AOE+∠BOE=180°,∠AOE=138°,∴∠2=42°,∵∠1=∠2,∴∠BOD=2∠2=84°,∴∠AOC=∠BOD=84°.故选:C.3.解:点A到直线l的距离是AD的长,故点A到直线l的距离是5cm,故选:D.4.解:∵AB∥EF,∴∠ECA=∠BAC,∠BCF=∠B,∵AC⊥BC,∴∠BAC=90°,∴∠1+∠BCD=90°,∠ECA+∠BCF=90°,∵BC平分∠DCF,∴∠BCD=∠BCF,∴∠1=∠ECA,∴AC平分∠DCE,①正确;∵∠EAC=∠ECA,∴∠EAC=∠1,∴AE∥CD,②正确;∵∠BCF=∠B,∠BCD=∠BCF,∴∠B=∠BCD,∴∠1+∠B=90°,③正确;∵∠1=∠ECA=∠BAC,∠BDC=∠BAC+∠1,∴∠BDC=2∠1,④正确;故选:D.5.解:∵OE平分∠AOC,OG平分∠BOC,∴可设∠AOE=∠COE=α,∠BOG=∠COG=β,∵O为直线AB上一点,∴∠AOB=180°,∴2α+2β=180°,∴α+β=90°,∠EOG=90°.∵∠DOC=90°,∴∠DOG=∠COE=90°﹣∠COG=α,∴∠BOD=∠DOG﹣∠BOG=α﹣β.∵OF平分∠BOD,∴∠BOF=∠DOF=(α﹣β).①∵∠DOG=α=∠AOE,∠AOE+∠BOE=180°,∴∠DOG+∠BOE=180°,故本选项结论正确;②∵∠AOE=α,∠DOF=(α﹣β),∴∠AOE﹣∠DOF=α﹣(α﹣β)=(α+β)=45°,故本选项结论正确;③∵∠EOD=∠EOG+∠GOD=90°+α,∠COG=β,∴∠EOD+∠COG=90°+α+β=180°,故本选项结论正确;④∵∠AOE+∠DOF=α+(α﹣β)==(90°﹣α)=2α﹣45°,∴当α=67.5°时,∠AOE+∠DOF=90°,但是题目没有α=67.5°的条件,故本选项结论错误.综上所述,正确的有:①②③共3个.故选:C.6.解:根据题意,得:2∠ABC+∠DBA=180°,则∠ABC=(180°﹣70°)÷2=55°.故选:B.7.解:∵DE∥AB∴∠A=∠CED=60°,∵DM∥AC∴∠DMF=∠A=60°,∵DF⊥AB∠DFM=90°,∴∠MDF=90°﹣60°=30°.故选:C.8.解:A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠BAC=∠EBD不能判断出EB∥AC,故本选项错误;C、∠ABC=∠BAE只能判断出EA∥CD,不能判断出EB∥AC,故本选项错误;D、∠BAC=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.故选:D.9.解:2条直线相交最多有1个交点;3条直线相交最多有1+2个交点;4条直线相交最多有1+2+3个交点;5条直线相交最多有1+2+3+4个交点;…所以n条直线相交最多有1+2+3+4+5+…+(n﹣1)=n(n﹣1)个交点;∴,解得n1=11,n2=﹣10(舍去),则n值为11.故选:C.10.证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.11.解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.12.解:如图,过E作EG∥AB,∵AB∥CD,∴AB∥CD∥EG,∴∠GEF=∠DHF=∠C+∠F,∠A+∠AEG=180°,∴∠A+∠AEF﹣∠GEF=180°,即∠A+∠AEF﹣∠C﹣∠F=180°,故选:B.13.解:如图,∵∠2=24°,∴∠3=∠2=24°.∵∠A=45°,∴∠4=180°﹣45°﹣24°=111°.∵直线l∥m,∴∠ACD=111°,∴∠1=111°﹣90°=21°.故选:A.14.解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=82°,∴∠CFE=82°,又∵∠DCE=120°,∴∠E=∠DCE﹣∠CFE=120°﹣82°=38°,故选:A.15.解:如图,延长ED交BF于C,∵BA∥DE,∴∠BCD=∠B=120°,∠FCD=60°,又∵∠FDE是△CDF的外角,∴∠1=∠FDE﹣∠DCF=150°﹣60°=90°,故选:D.16.解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+58°=148°,∵直尺的两边互相平行,∴∠2=∠3=148°.故选:D.17.解:∵EO⊥CD,∴∠EOD=90°,又∵∠AOE+∠EOD+∠BOD=180°,∠AOE=36°,∴∠BOD=54°,故选:D.18.解:∵射线OM平分∠AOC,∠MOC=35°,∴∠MOA=35°,又∠MON=90°,∴∠BON=55°,故选:C.19.解:∵DE∥BC,∴∠DCB=∠1,∠AED=∠ACB,(2)正确;∵∠1=∠2,∴∠2=∠DCB,∴FG∥DC,(1)正确;∴∠BFG=∠BDC,(5)正确;正确的个数有3个,故选:C.20.解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠2=30°,∴∠1=60°,又∵∠E=60°,∴∠1=∠E,∴AC∥DE,②正确;∵∠2=30°,∴∠1+∠2+∠3=150°,又∵∠C=45°,∴BC与AD不平行,③错误;∵∠2=30°∴AC∥DE,∴∠4=∠C,④正确.故选:B.21.解:∵∠1+∠3=180°﹣90°=90°,∠1=35°,∴∠3=55°,∵AB∥CD,∴∠2=∠3=55°,故选:A.22.解:∵AB∥CD,∴∠FAB=∠CGF,∵AF平分∠EAB,∴∠EAF=∠FAB,∵AB∥CD∥EF,∴∠EFA=∠FAB,∠BFA=∠FAE,∵∠AGD=∠CGF,∴与∠CGF相等的角有∠FAB,∠EAF,∠EFA,∠BFA,∠AGD,共5个.故选:D.23.解:①如图1所示:∵AB∥CD,∴∠3=∠2,又∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4,又∵∠1+∠2+∠HGF=180°,∠3+∠4+∠EFG=180°,∴∠EFG=∠HGF,∴EF∥HG,∴结论①正确;②如图2所示:过点G作GK平分∠HGF,则∠5=∠6,∵∠1+∠2+∠5+∠6=180°,∠1=∠2,∴∠2+∠5=90°,∴KG⊥CD,又∵AB∥CD,∴KG⊥AB,∴结论②正确;③如图3所示:作FK、FN分别平分∠AFE和∠BFE,则有∠AFK=∠EFK,∠BFN=∠EFN,∵∠AFK+∠EFK+∠BFN+∠EFN=180°,∴∠EFK+∠NFE=90°,又∵∠KFN=∠EFK+∠NFE,∴∠KFN=90°,∴KF⊥NF,∴结论③正确;④如图4所示:由图可知,当CD绕点G旋转90°到KN位置时,KN与GH不平行,∴结论④错误;故选:B.24.解:∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.25.解:∵四边形ABCD是长方形,∴AD∥BC,∴∠GEC=180°﹣∠FGE=112°,由图形翻折变换的性质得∠FEC=56°,∴∠GFE=56°.故选:A.。

九年级中考数学复习 考点提分训练——相交线与平行线

九年级中考数学复习  考点提分训练——相交线与平行线

2021中考数学复习考点提分训练——相交线与平行线一.选择题1.下列语句错误的是( )A.锐角的补角一定是钝角B.一个锐角和一个钝角一定互补C.互补的两角不能都是钝角D.互余且相等的两角都是45°2. 如图:直线AB, CF相交于点O,∠EOB=∠DOF=900,则图中与∠DOE互余的角有()A.1对B.2对C.3对D.4对3.如图,下列说法不正确的是 ( )A.∠1和∠2是同旁内角 B.∠1和∠3是对顶角C.∠3和∠4是同位角 D.∠1和∠4是内错角4. 如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125∘,则∠4的度数是( )A.65∘B.60∘C.55∘D.75∘5.若a,b,c是同一平面内的三条直线,且a⊥b,b∥c,则a与c的关系是( )A.平行B.垂直C.相交但不垂直D.以上都不对6.如图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°7. 如图,已知ON⊥l,OM⊥l,所以OM与ON重合,这个推理的根据是()A.过一点只能作一条垂线B.过两点只能作一条垂线C.垂线段最短D.经过一点有且只有一条直线垂直于已知直线8.如图,把矩形沿对折,若,则等于()A. B. C. D.9. 如图,已知∠1=110∘,∠2=70∘,∠4=115∘,则∠3的度数为()A.65∘B.70∘C.97∘D.115∘10.用四根火柴棒摆成如图所示的汉字“口”,任意平移这四根火柴棒,可以得到的汉字图形是( )11.已知直线a∥b,将一副三角板按如图所示放置在两条平行线之间,则∠1的度数是()A.45 °B.60°C.75°D.80°12. 点P是直线l外一点,A,B,C为直线l上的三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离()A.小于2cmB.等于2cmC.不大于2cmD.不确定13.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )A.如图1,展开后,测得∠1=∠2B.如图2,展开后,测得∠1=∠2,且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后,再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD14.如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠AEB'的度数为( )A.20°B.30°C.40°D.50°15.如图,把三角形ABC沿BC方向平移,得到三角形DEF.下列4个结论:①AB=DE;②∠B=∠F;③∠A=∠D;④BE=CF.其中正确的结论是( )A.①②④B.③④C.①③④D.①③二、填空题1.如图1,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_____.2. 如图,写出图中所有∠A的同位角________.3.如图,已知∠1=∠2,则图中互相平行的线段是_________.4. 如图,点O为直线AB上一点,OC⊥OD于O,如果∠1=35∘,那么∠2=________∘.5. 已知直线l及l外一点P,若过点P画直线与l平行,那么这样的直线有________条.6.如图,已知直线a∥b,c∥d,∠1=115°,则∠2=_____,∠3=_____.7.如图,CO⊥AB,EO⊥OD,如果∠1=38°,那么,∠2=__________.8. 某小区的一块长26米,宽15米的草坪内要修一条如图所示宽度相同的通道.当通道的宽度为2米时,剩下的草坪面积是通道面积的________倍.9.如图,AD∥BC,AC与BD相交于O,则图中相等的角有_____对.10. 如图,如图,直线AB,CD被直线EF所截,AB // CD,∠1=110∘,则∠2=________三、解答题1.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角;2.如图,点B在点A北偏东40°方向,点C在点B北偏西50°方向,BC=10 m.求点C到直线AB的距离.3.如图,已知在三角形ABC中,∠ABC=90°,边BC=12 cm,把三角形ABC向下平移至三角形DEF 后,AD=5 cm,GC=4 cm.请求出图中阴影部分的面积.4.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?5. 如图,王林和李明同学骑自行车同时从各自的家中出发去学校.如果他们的骑车速度相同,那么谁先到达学校?为什么?6.如图,AB∥CD,EF交AB于点G,交CD与点F,FH交AB于点H,∠AGE=70°,∠BHF=125°,FH平分∠EFD吗?请说明你的理由.7. 如图:已知,∠A=120∘,∠ABC=60∘,BD⊥DC于点D,EF⊥DC于点F,求证:(1)AD//BC;(2)∠1=∠2.8. 如图,已知AD平分∠BAC,且AD⊥BC于D,点E,A,C在同一直线上,∠DAC=∠EFA,延长EF交BC于G,(1)判断是否EG // AD,并说明理由.(2)请说明EG⊥BC的理由.9. 如图,在中,.将绕点按逆时针方向旋转后得,连接.当时,求的度数.10. 已知:如图,在Rt△ABC中.∠ACB=Rt∠,AC=4,BC=3.将△ABC沿AB方向平移至△A′B′C,使A′C′经过BC的中点D.(1)求证:AA′=A′B=BB′.(2)求梯形AB′C′C的面积.11.如图所示,AB∥CD,∠CFE的平分线与∠EGB平分线的反向延长线交于点P,若∠E=20°,则∠FPH的度数为多少?12. 如图,某居民小区有一长方形地,居民想在长方形地内修筑同样宽的两条小路,余下部分绿化,道路的宽为2米,则绿化的面积为多少平方米?13.已知,直线AB∥CD(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量关系,并证明你的结论;(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、∠CDE,猜想∠BFD和∠BED 的数量关系,并证明你的结论;(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、∠CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.14.如图,在下列解答中,填空或填写适当的理由:(1)∵AB∥FE,(已知)∴∠A=∠,()∠2=∠,()∠B+∠ =180°.()(2)∵∠2=∠,(已知)∴AC∥DE.()(3)∵∠3=∠,(已知)∴∥.()。

中考数学专题复习卷 相交线与平行线(含解析)

中考数学专题复习卷 相交线与平行线(含解析)

——————————新学期新成绩新目标新方向——————————相交线与平行线一、选择题1.如图,直线∥,直线与、都相交,如果∠1=50°,那么∠2的度数是()A. 50°B. 100°C. 130°D. 150°【答案】C【解析】:∵a∥b,∠1=50°,∴∠1=∠3=50°,∵∠2+∠3=180°,∴∠2=180°-∠1=180°-50°=130°.故答案为:C.【分析】其中将∠2的邻补角记作∠3,利用平行线的性质与邻补角的意义即可求得∠2的度数.2.如图,AB∥CD,且∠DEC=100°,∠C=40°,则∠B的大小是()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故答案为:B.【分析】首先根据三角形的内角和得出∠D的度数,再根据二直线平行,内错角相等得出答案。

3.如图,若l1∥l2, l3∥l4,则图中与∠1互补的角有()A. 1个B. 2个C. 3个 D. 4个【答案】D【解析】如图,∵l1∥l2, l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故答案为:D.【分析】根据二直线平行同位角相等,同旁内角互补得出∠2=∠4,∠1+∠2=180°,再根据对顶角相等得出∠2=∠3,∠4=∠5,从而得出答案。

4.如图,直线,若,,则的度数为()A. B.C.D.【答案】C【解析】:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故答案为:C.【分析】首先根据三角形的内角和得出∠ABC的度数,再根据二直线平行内错角相等即可得出答案。

中考数学相交线与平行线专题训练50题含参考答案

中考数学相交线与平行线专题训练50题含参考答案

中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠2.如图,结合图形作出了如下判断或推理:①如图甲,如果CD AB ⊥,D 为垂足,那么点C 到AB 的距离等于C ,D 两点间的距离;①如图乙,如果AB CD ∥,那么B D ∠=∠;①如图丙,如果ACD CAB ∠=∠,AD BC =,那么B D ∠=∠; ①如图丁,如果12∠=∠,120D ∠=︒,那么60BCD ∠=︒. 其中正确的有( ) A .1个B .2个C .3个D .4个3.如图,在ABC 中,8AB =,点M 是BC 的中点,AD 是BAC ∠的平分线,作MF AD ∥交AC 于F ,已知CF 10=,则AC 的长为( )A .12B .11C .10D .94.如图,下列判断中正确的是( )A .如果① 1+① 5=180°,那么AB∥CDB .如果① 1=① 5,那么AB∥CDC .如果① 3+① 4=180°,那么AB∥CDD .如果① 2=① 4,那么AB∥CD5.如图,12356∠=∠=∠=︒,则4∠的度数是( )A .56°B .114°C .124°D .146°6.如图:P 为直线l 外一点,点A ,B ,C 在直线l 上,且PB ①l ,垂足为B ,①APC =90°,则下列语句错误( )A .线段PB 的长叫做点P 到直线l 的距离 B .线段AC 的长叫做点C 到直线AP 的距离C .P A 、PB 、PC 三条线段中, PB 是最短的D .线段P A 的长叫做点A 到直线PC 的距离7.将一副三角板按如图放置,则下列结论正确的有( )①如果2∠与E ∠互余,则BC DA ∥; ①180BAE CAD ∠+∠=︒; ①如果BC AD ∥,则有245∠=︒; ①如果150CAD ∠=︒,必有4C ∠=∠.A .①①①B .①①①C .①①①D .①①①①8.如图,直线,AB CD 相交于点,O OE AB ⊥于点,O OF 平分12530'AOE ∠∠=︒,,则下列结论中不正确的是( )A .13∠=∠B .245∠=︒C .AOD ∠与1∠互为补角D .3∠的余角等于6530'︒9.如图,两直线被第三直线所截,下列说法中不正确的是( )A .1∠和2∠是对顶角B .2∠和3∠是内错角C .2∠和4∠是同位角D .1∠和4∠是同旁内角10.如图,AB 是O 的弦,OC AB ⊥,垂足为C ,OD AB ∥,12OC OD =,则ODB∠的度数为( )A .65︒B .70︒C .75︒D .80︒11.如图,AB ①CD ,点E 在线段BC 上,CD =CE ,若①ABC =30°,则①D 的度数为( )A .85°B .75°C .65°D .30°12.如图,三角板的直角顶点放在直线b 上,已知a b ,128∠=︒,则2∠的度数为( )A .28︒B .56︒C .62︒D .152︒13.如图,ACE ∠是ABC ∆的外角,ACD A ∠=∠,50B ∠=︒,则BCD ∠的度数为( )A .130︒B .120︒C .110︒D .100︒14.如图所示,直线l 1∥l 2,①1=120°,则①2的度数为( )A .60°B .80°C .100°D .120°15.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么7条直线最多有: A .28个交点B .24个交点C .21个交点D .15个交点16.如图,图中的同位角的对数是( )A .4B .6C .8D .1217.如图,平行线m ,n 间的距离为5,直线l 与m ,n 分别交于点A ,B ,45α=︒,在m 上取点P (不与点A 重合),作点P 关于l 的对称点Q .若3PA =,则点Q 到n 的距离为( )A .2B .3C .2或8D .3或818.已知1∠与2∠互为对顶角,2∠与3∠互余,若345∠=︒,则1∠的度数是( ) A .45B .90C .80D .7019.如图,一公路修到汤逊湖边时,需拐弯绕过湖通过,如果第一次拐的角①A 是110°,第二次拐的角①B 是160°,第三次拐的角是①C ,这时的道路与第一条路平行,则①C 的度数( )A .120°B .130°C .140°D .150°20.如图,从①12∠=∠,①C D ∠=∠,①DF AC ∥三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A .0B .1C .2D .3二、填空题21.如图,在四边形ABCD 中,AD ①BC ,AB 与CD 不平行,AC 、BD 相交于点O ,写出图中一对面积相等的三角形,它们可以是__________________________(只需写出一对).22.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP 的最小值为______.23.如图,按角的位置关系填空:①A 与①2是_____.24.如图,AB ①CD ,①PCD =75°,①P =30°,则①BAP =___.25.如图,已知点A 在反比例函数4(0)y x x=>的图象上,过点A 作x 轴的平行线交反比例函数10(0)y x x=>的图象于点B ,连结OA ,过点B 作//BC OA 交y 轴于点C ,连结AC ,则AOC 的面积为________.26.如图是一把剪刀的示意图,我们可想象成一个相交线模型,若①AOB +①COD =72°,则①AOB =_______.27.平面内有八条直线,两两相交最多有m 个交点,最少有n 个交点,则m n +=______.28.如图,在平行四边形ABCD 中,AE ①CD ,若∥B =60°,则∥DAE 的度数是______度.29.如图,已知AB //CD ,AF 交CD 于点E ,且BE ①AF ,①BED =40°,则①A 的度数是_____.30.如图,AC //BD ,EP 、FP 分别平分AEF ∠、EFB ∠,若,A m B n ∠=︒∠=︒,则P ∠=________°.(用含m ,n 的代数式表示)31.如图,①ABC 中,AB AC =,AD 为BC 上的高线,E 为AB 边上一点,EF BC ⊥于点F ,交CA 的延长线于点G ,已知23EF EG ==,,则AD 的长为_______.32.如图,直线//a b ,一块含60°角()60B ∠=︒的直角三角板如图放置,若113∠=︒,则2∠=______33.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.34.如图,已知//DE FG ,则12A ∠+∠-∠=________________35.如图,Rt ABC 中,①ACB =90°,AB =10,BC =6,点D 是斜边上任意一点,将点D 绕点C 逆时针旋转60°得到点E ,则线段DE 长度的最小值是_____.36.如图,当风车的一片叶子AB 所在的直线旋转到与地面MN 平行时,叶子CD 所在的直线与地面MN________,理由是________________________________.37.如图,AB ①CD ,EG 平分AEN ∠,若EFD ∠=108°,则GEN ∠的度数为_________________.38.如图,在ABC 中,90BAC ∠=︒,AB AC =,过点C 作CD BC ⊥,连接,DA DB ,过点A 作AE BD ⊥于点E ,若2EAD ADC ∠=∠,ADC △的面积为6,则BC 的长为____________.39.将一张长方形纸片折叠成如图所示的图形.若29ABC ∠=︒,则ACD ∠=______.40.如图1所示为一条足够长的长方形纸带,其中PN ①QM ,点A 、B 分别在PN 、QM 上,记①ABM =α(0<α<90°);如图2,将纸带第一次沿BR 1折叠成图2,使BM 与BA 重合;如图3,将纸条展开后第二次再折叠,使BM 与BR 1重合,第三次沿AR 2折叠成图4,第四次沿BR 2折叠成图5,按此操作,最后一次折叠后恰好完全盖住①AR 2B ,整个过程共折叠了9次,则α=_______°.三、解答题41.如图,在四边形ABCD 中,//AB CD E ,是边CD 上的一点,连接AE AC BE AC 、、,与BE 相交于点O ,且OA OC =.求证:AE BC =.42.如图,l 1①l 2,①α是①β的2倍,求①α的度数.43.完成下面的证明:如图:已知AD BC ⊥于点D ,DE AB ∥,13∠=∠,求证:FG BC ⊥.证明:①DE AB ∥(已知), ①12∠=∠(______), 又①13∠=∠(已知), ①23∠∠=(等量代换), ①______(______), ①BGF ∠=______(______), ①AD BC ⊥(已知),①90∠=︒(______),BDA①______(等量代换),⊥(垂直定义).①FG BC44.如图,①CME+①ABF=180°,MA平分①CMN.若①MNA=62°,求①A的度数.根据提示将解题过程补充完整.解:因为①ABM+①ABF=180°,又因为①CME+①ABF=180°(已知),所以①ABM=①CME所以AB①CD,理由:()所以①CMN+()=180°,理由:(__________________________)因为①MNA=62°,所以①CMN=()因为MA平分①CMN,①CMN=().(角平分线的定义)所以①AMC=12因为AB①CD,所以①A=①AMC=()理由:(__________________________________)45.已知,①ABC、①DCE均为等边三角形,且B、C、E三点在一条直线上,BD与AE相交于O点.(1)求证:①BCD①①ACE;(2)求①DOE的度数;(3)连接MN,求证:MN①BE;46.观察下列图形,并阅读相关文字.2条直线相交,3条直线相交,4条直线相交,5条直线相交;有2对对顶角,有6对对顶角,有12对对顶角,有20对对顶角;通过阅读分析上面的材料,计算后得出规律,当n条直线相交于一点时,有多少对对顶角出现(n为大于2的整数).47.如图,六边形ABCDEF的内角都相等,①1=①2=60°,AB与DE有怎样的位置关系?AD与BC有怎样的位置关系?为什么?48.如图,直线AB与CD相较于点O,OE①AB与点O,OB平分①DOF,①DOE=62°.求①AOC、①EOF、①COF的度数.49.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.试说明:(1)ABC DEF△△;≅∠=∠.(2)A EGC50.在ABC中,ACB ABC∠>∠,点D和点E分别是边BC和BC延长线上的点,连接AD、AE,CAE B∠=∠.(1)如图1,若60ADE ∠=︒,40CAE ∠=︒,求BAD ∠的大小;(2)如图2,若DAE ADE ∠=∠.①试证明:AD 平分BAC ∠;①若点F 为射线AD 上一点(不与点D 重合),过点F 作FG BC ⊥,垂足为点G .若B α∠=,ACB β∠=,求AFG ∠的大小(用含α、β的代数式表示).参考答案:1.A【分析】根据同位角的定义进行求解即可:两条直线被第三条直线所截,在截线的同旁,被截两条直线的同一侧的两个角在同位角.【详解】解:由图可知,①1的同位角是①2,故选A.【点睛】本题主要考查了同位角的定义,熟知同位角的定义是解题的关键.2.B【分析】根据点到直线的距离及两点间的距离的定义可判断①;根据平行线的性质及三角形的外角的性质可判断①;根据平行线的判定可判断①;根据平行线的判定与性质可判断①.【详解】解:①由于直线外一点到直线的垂线段的长度,叫做这点到这条直线的距离,故正确;①设AB与DE相交于点O.①AB①CD,①①AOE=①D.又①①AOE>①B,①①D>①B,故错误;①①①ACD=①CAB,①AB①CD,∴∠=∠,故错误;BAC ACD①①①1=①2,①AD①BC,①①D+①BCD=180°,又①①D=120°,①①BCD=60°,故正确.故选:B.【点睛】本题主要考查了点到直线的距离的定义,平行线的判定与性质,三角形的外角的性质,正确理解相关概念和性质是解本题的关键.3.A【分析】可通过作辅助线,即延长FM 到N ,使MN MF =,连接BN ,延长MF 交BA 延长线于E ,从而利用角之间的关系转化为线段之间的关系,进而最终可得出结论.【详解】解:如图,延长FM 到N ,使MN MF =,连接BN ,延长MF 交BA 延长线于E ,M 是BC 中点,BM CM ∴=,在BMN 和CMF 中,BM CM BMN CMF MN MF =⎧⎪∠=∠⎨⎪=⎩,(SAS)BMN CMF ∴△≌△,BN CF ∴=,N MFC ∠=∠,又BAD CAD ∠=∠,MF AD ∥,E BAD CAD CFM AFE N ∴∠=∠=∠=∠=∠=∠,AE AF ∴=,BN BE =,2AB AC AB AF FC AB AE FC BE FC BN FC FC ∴+=++=++=+=+=,8AB =,CF 10=,220812AC FC AB ∴=-=-=.故选:A .【点睛】本题主要考查了全等三角形的判定及性质以及角、线段之间的转化问题,解决本题的关键是熟练掌握全等三角形的判定.4.B【分析】根据两直线平行的条件:同旁内角互补、同位角相等、内错角相等,即可判断.【详解】解:A:如果① 1+① 5=180°,不能判定AB∥CD,故错误,不符合题意;B:如果① 1=① 5,那么AB∥CD,故正确,符合题意;C:如果① 3+① 4=180°,不能判定AB∥CD,故错误,不符合题意;D:如果① 2=① 4,不能判定AB∥CD,故错误,不符合题意;故选:B.【点睛】本题考查根据两直线平行的条件:同旁内角互补、同位角相等、内错角相等,熟记两直线平行的条件是解题关键.5.C【分析】根据平行线的判定得出l1//l2,根据平行线的性质解答即可.【详解】解:①①1=①2=①3=56°,①①1=①5,①①5=①2,①l1//l2,①①6=①3,①①4=180°-①6=180°-56°=124°,故选C.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定得出l1//l2解答.6.B【分析】根据点到直线的距离的定义以及垂线段最短,可得答案.【详解】解:A、线段PB的长度叫做点P到直线l的距离,故A选项正确;B、线段PC的长度叫做点C到直线AP的距离,故B选项错误;C、P A、PB、PC三条线段中,PB最短,故C选项正确;D、线段P A的长叫做点A到直线PC的距离,故D选项正确;故选:B.【点睛】本题考查了点到直线的距离以及垂线段最短,利用点到直线的距离是解题关键.7.C【分析】根据平行线的性质与判定,余角的性质,等逐项分析并选择正确的选项即可.【详解】解:如图将ED 与AB 的交点即为F ,①2∠与E ∠互余,①90AFE ∠=︒,①445∠=︒,且30D ∠=︒,①4D ∠∠≠,从而BC 与DA 不平行,故①错误;①1290∠∠+=︒,2390∠∠+=︒,12229090180BAE CAD ∠∠∠∠∠∠+=+++=︒+︒=︒,故①正确;①①BC AD ,①123180C ∠∠∠∠+++=︒,又①45C ∠=︒,1290∠∠+=︒,①345∠=︒,①2904545∠=︒-︒=︒,故①正确;①160∠=︒,①60E ∠=︒,①1E ∠∠=,①AC DE ,①4C ∠∠=,故①正确;故选:C .【点睛】本题考查三角板中的角度计算,平行线的性质与判定,能够掌握数形结合思想是解决本题的关键.8.D【分析】根据垂线的性质,角平分线的定义及对顶角、邻补角的性质,逐一判断.【详解】A 、①AB 、CD 相交于O 点,①13∠=∠正确,符合题意;B 、①OE ①AB 于点O ,OF 平分①AOE ,①245∠=︒正确,符合题意;C 、①OD 过直线AB 上一点O ,①AOD ∠与1∠互为补角,正确,符合题意;D 、3∠的余角等于9025306430''︒-︒=︒,原说法错误,不合题意,故选:D .【点睛】本题考查对顶角的性质以及邻补角的定义,角平分线的定义,垂线的性质.是需要熟记的内容.9.D【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角.同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】A.1∠和2∠是对顶角,正确;B.2∠和3∠是内错角,正确;C.2∠和4∠是同位角,正确;D.1∠和4∠不是同旁内角,本选项错误.【点睛】理解同位角,内错角和同旁内角的定义是关键.10.C【分析】如图所示(见详解),连接OB ,得Rt OBC △,且OB OD r ==,12OC OD =,OD AB ∥,由此即可求出30OBC BOD ∠=∠=︒,再根据等腰三角形的性质即可求解.【详解】解:如图所示,连接OB ,①OB OD r ==,①OC AB ⊥,垂足为C ,OD AB ∥,12OC OD =, ①在Rt OBC △中,12OC OB =, ①30OBC BOD ∠=∠=︒,①OB OD r ==,①BOD 是等腰三角形, ①1(18030)752OBD ODB ∠=∠=⨯︒-︒=︒, 故选:C .【点睛】本题主要考查圆与含30︒角的直角三角形,等腰三角形性质的综合运用,掌握圆的知识,含30︒角的直角三角形的性质,等腰三角形性质是解题的关键.11.B【分析】根据AB ①CD ,可得①C =①ABC =30°,再由等腰三角形的性质,即可求解.【详解】解:①AB ①CD ,①①C =①ABC =30°,又①CD =CE ,①①D =①CED ,①①C +①D +①CED =180°,即30°+2①D =180°,①①D =75°.故选:B【点睛】本题主要考查了平行线的性质,等腰三角形的性质,熟练掌握等腰三角形中,等边对等角是解题的关键.12.C【分析】根据平行线的性质,可得:①3=①1=28°,结合①4=90°,即可求解.【详解】①三角板的直角顶点放在直线b 上,a b ,①①3=①1=28°,①①4=90°,①①5=180°-90°-28°=62°,①①2=①5=62°.故选C .【点睛】本题主要考查平行线的性质定理,掌握两直线平行,同位角相等,是解题的关键.13.A【分析】根据①ACD=①A,得出AB与CD平行,进而利用平行线的性质解答即可.【详解】解:①①ACD=①A,①AB①CD,①①B+①BCD=180°,①①BCD=180°-50°=130°,故选:A.【点睛】本题考查了平行线的判定和性质,关键是根据①ACD=①A,得出AB与CD平行解答.14.D【分析】两直线平行,同位角相等;对顶角相等.此题根据这两条性质即可解答.【详解】①直线l1∥l2,,①1=120°,①①1的同位角是120°,①①2=①1的同位角=120°.故选D.【点睛】本题用到的知识点为:两直线平行,同位角相等;对顶角相等.比较简单.15.C【分析】由已知,在同一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;由此得出:在同一平面内,n条直线两两相交,则有(1)2n n-个交点,代入即可求解.【详解】解:由已知总结出在同一平面内,n条直线两两相交,则有(1)2n n-个交点,所以5条直线两两相交,交点的个数为7(71)2⨯-=21. 故选:C . 【点睛】本题考查的知识点是相交线,关键是此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳的能力,以及掌握从特殊到一般的思想方法.16.D【详解】试题分析:根据同位角的定义可以得出图中有12对同位角.考点:同位角的定义17.C【分析】根据题意,分两种情况:当点P 在点A 左侧时,当点P 在点A 右侧时.作点P 关于l 的对称点Q ,连接AQ .由轴对称,得3QA PA ==,290PAQ α∠==︒,分别计算即可求得答案.【详解】解:当点P 在点A 左侧时,如图,作点P 关于l 的对称点Q ,连接AQ .由轴对称的性质,得:3QA PA ==,290PAQ α∠==︒,①点Q 到n 的距离为532-=;当点P 在点A 右侧时,如图,作点P 关于l 的对称点Q ,连接AQ .由轴对称的性质,得:3QA PA ==,290PAQ α∠==︒,点Q 到n 的距离为538+=.故选:C . 【点睛】本题主要考查了点到直线的距离、轴对称的性质,解题的关键是利用分类讨论和数形结合思想解题.18.A【分析】根据对顶角的性质以及互余的定义即可求出答案.【详解】由题意可知:①1=①2,①①2+①3=90°,①①2=45°,①①1=45°,故选:A.【点睛】此题考查对顶角与互余,解题的关键是正确理解对顶角的性质以及互余的定义,本题属于基础题型.19.B【分析】首先过点B作BE①AD,由AD①CF,可得BE①AD①CF,然后根据平行线的性质即可求得①C的度数.【详解】解:过点B作BE①AD,①AD①CF,①BE①AD①CF,①①ABE=①A=110°,①EBC+①C=180°,①①ABC=160°,①ABE+①EBC=①ABC,①①EBC=50°,①①C=130°.故选:B.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质,正确作出辅助线是解题的关键.20.D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.【详解】解:如图所示:(1)当①①1=①2,则①3=①2,故DB∥EC,则①D=①4;当①①C=①D,故①4=①C,则DF∥AC,可得:①A=①F,即①①可证得①;(2)当①①1=①2,则①3=①2,故DB①EC,则①D=①4,当①①A=①F,故DF∥AC,则①4=①C,故可得:①C=①D,即①①可证得①;(3)当①①A=①F,故DF∥AC,则①4=①C,当①①C=①D,则①4=①D,故DB∥EC,则①2=①3,可得:①1=①2,即①①可证得①.故正确的有3个.故选:D.【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.21.△ABC和△DBC(答案不唯一)【分析】利用同底等高的两个三角形面积相等即可求解.【详解】解:①AD①BC,①AD与BC之间的距离相等,①△ABC和△DBC面积相等.故答案为:△ABC和△DBC.(答案不唯一)【点睛】本题考查了三角形的面积,平行线间的距离,掌握平行线之间的距离处处相等是解题的关键.22.12 5【分析】根据勾股定理求得AC的长,设G到AB的距离为h,则GP h,根据题意可知AG 是CAB ∠的角平分线,根据角平分线的性质得出h 即为GP 的最小值,根据等面积法计算即可求解.【详解】解:①Rt ABC △中,90C ∠=︒,13AB =,5BC =,①12AC ==,设G 到AB 的距离为h ,则GP h ≥根据题意可知AG 是CAB ∠的角平分线,①CG h =, ①111222ABC S AC BC CG AC AB h =⨯=⨯+⨯ ()12h AC AB =+ ①51260121213255AC BC h AC AB ⨯⨯====++, ①GP 的最小值为125, 故答案为:125. 【点睛】本题考查了勾股定理,角平分线的性质,作角平分线,垂线段最短,掌握角平分线的性质是解题的关键.23.同旁内角【详解】解:根据图形,①A 与①2是同旁内角.故答案为同旁内角.24.45°【分析】根据平行线的性质得①1=PCD =75°,根据三角形外角的性质得①1=①P +①BAP ,即可得①BAP 的度数.【详解】解:①AB ①CD ,①①1=PCD =75°,①①1=①P +①BAP ,①①BAP =①1-①P =75°-30°=45°.故答案为:45°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是熟练掌握平行线的性质,利用三角形外角的性质求解.25.3【分析】设A (4m ,m ),B (10m ,m ),则AB =10m −4m =6m ,连接OB ,由平行线间的距离处处相等,得①AOC 的面积和①AOB 的面积相等,再由三角形的面积公式求得①AOB 的面积便可.【详解】解:设A (4m ,m ),B (10m ,m ),则AB =10m −4m =6m , 连接OB ,①BC①OA ,①S △AOC =S △AOB =12AB•m =12×6m•m =3, 故答案为:3.【点睛】本题主要考查了反比例函数的图象和性质,三角形的面积计算,平行线间的距离处处相等,解答本题的关键是正确作辅助线,转化三角形的面积计算.26.36°##36度【分析】根据对顶角相等即可求解.【详解】由题意得,,AOB COD ∠∠为对顶角,,72AOB COD AOB COD ∠=∠∠+∠=︒,36AOB COD ∴∠=∠=︒,故答案为:36︒.【点睛】本题考查了对顶角的定义及性质,即两个角有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,且对顶角相等,熟练掌握知识点是解题的关键.27.29【分析】由题意可得八条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m ,n 的值,从而得出答案..【详解】解:根据题意可得:10条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,①此时交点为:8×(8-1)÷2=28,即m=28;则m+n=28+1=29.故答案为29.【点睛】本题考查直线的交点问题,掌握直线相交于一点时交点最少,任意n 条直线两两相交时交点最多为12n (n-1)个是关键. 28.30【分析】利用平行四边形对角相等求出①D =①B =60°,由垂直的定义得到①AED =90°,再利用三角形内角和定理求得①DAE 的度数即可.【详解】解:①四边形ABCD 是平行四边形,①①D =①B =60°,① AE ①CD ,①①AED =90°,①①DAE =180°-①D -①AED =30°.故答案为:30【点睛】此题主要主要考查了平行四边形的性质、三角形内角和定理、垂直的定义等知识,熟练掌握平行四边形的性质是解题的关键.29.50︒##50度【分析】由两直线平行内错角相等解得40B ∠=︒,再根据三角形内角和180°解题.【详解】解:AB //CD ,BED B ∴∠=∠40BED ∠=︒40B ∴∠=︒BE AF ⊥90AEB ∴∠=︒904050A ∴∠=︒-︒=︒故答案为:50︒.【点睛】本题考查平行线的性质、三角形内角和定理等知识,是重要考点,掌握相关知识是解题关键.30.1()902m n +-【分析】分别作EM 、FN 、PQ 平行于AC ,根据两直线平行同旁内角互补和两直线平行内错角相等可得(180)FEP PEM m ∠=∠+︒-︒,(180)EFP PFN n ∠=∠+︒-︒,再根据两直线平行同旁内角互补列等式180MEF NFE ∠+∠=︒,利用PEM PFN QPE QPF P ∠+∠=∠+∠=∠即可求出①P .【详解】分别作EM 、FN 、PQ 平行于AC ,如图,①AC EM PQ ∥∥,A m ∠=︒,①180AEM m ∠=︒-︒,①EP 分别平分AEF ∠,①FEP PEA ∠=∠,①(180)FEP PEM m ∠=∠+︒-︒,同理,①BD FN PQ ∥∥,B n ∠=︒, FP 分别平分EFB ∠,①(180)EFP PFN n ∠=∠+︒-︒,①180MEF NFE ∠+∠=︒,①180FEP PEM EFP PFN ∠+∠+∠+∠=︒,①(180)(180)180PEM m PEM PFN n PFN ∠+︒-︒+∠+∠+︒-︒+∠=︒,即:2()180PEM PFN m n ∠+∠=︒+︒-︒,①QPE PEM ∠=∠,QPF PFN ∠=∠,P QPM QPF ∠=∠+∠,①2180P m n ∠=︒+︒-︒, ①()11(180)()9022P m n m n ∠=+-=+-︒ 故答案为:1()902m n +-.【点睛】本题考查了平行线的性质,熟练运用平行线的性质进行角度的代换是解题的关键.31.3.5【分析】先根据等腰三角形的性质得出BAD CAD ∠=∠,再证明AD EF ,根据平行线的性质得出AEG BAD G CAD ∠=∠∠=∠,,等量代换得出AEG G ∠=∠,那么AG AE =.作AH EG ⊥于H ,根据等腰三角形的性质得出 1322EH HG EG ===, 然后证明四边形ADFH 是矩形,即可求出72AD FH EF EH ==+=. 【详解】解:AB AC =,AD 为BC 边上的高线, BAD CAD ∴∠=∠,AD BC EF BC ⊥⊥,,AD EF ∴∥,AEG BAD G CAD ∴∠=∠∠=∠,,AEG G ∴∠=∠,AG AE ∴=,如图,作AH EG ⊥于H ,则 1 1.52EH HG EG ===,90AHF HFD ADF ∠=∠=∠=︒,①四边形ADFH 是矩形,2 1.5 3.5AD FH EF EH ∴==+=+=.故答案为: 3.5【点睛】此题考查了矩形的判定与性质,熟记矩形的判定与性质是解题的关键. 32.47︒【分析】由平行线的性质,已知113∠=︒求得13ABD ∠=︒,再根据角的和差,平行公理推论,平行线的性质解得2∠度数,进而得出答案.【详解】解:过点B 作//BD a ,如图所示://,////,a b BD a b ∴3ABD ∴∠=∠,又113∠=︒,313ABD ∴∠=∠=︒,ABC ABD DBC ∠=∠+∠,60ABC ∠=︒,601347DBC ∴∠=︒-︒=︒,//BD a ,247DBC ∴∠=∠=︒.故答案为:47︒.【点睛】本题考查了平行线的性质,平行公理的推论,角的和差,对顶角的性质,等量代换等相关知识点,解题的关键是掌握平行线的性质,同时需要作已知直线的平行线. 33.65°【分析】根据两直线平行,同旁内角互补求出①3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】①m①n,①1=105°,①①3=180°−①1=180°−105°=75°①①α=①2−①3=140°−75°=65°故答案为65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出①3.34.180【分析】根据平行线的性质,得到2AHF ∠=∠,根据平角的性质得到180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒,然后根据三角形内角和定理即可求解.【详解】①//DE FG①2AHF ∠=∠①180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒又①180AHC ACH A ∠+∠+∠=︒①180********A ︒-∠+︒-∠+∠=︒①12180A ∠+∠-∠=︒故答案为180.【点睛】本题考查了平行线的性质—两直线平行同位角相等,三角形的内角和,解题过程中注意等量代换是本题的关键.35.245【分析】由旋转的性质可证①CDE 为等边三角形,当DE 最短时CD 最短,即:当CD ①AB 时CD 最短,最后运用直角三角形等面积法求解即可.【详解】解:由旋转的性质得,CD =CE ,①DCE =60°,①①CDE 为等边三角形,①CD =CE =DE ,当DE 最短时CD 最短,即:当CD ①AB 时CD 最短,此时S △ABC =1122AC BC ⋅=AB •CD ,即AC •BC =AB •CD , 在Rt ①ABC 中,①ACB =90°,AB =10,BC =6,由勾股定理得,AC 8,①6×8=10CD ,①CD =245, ①线段DE 长度的最小值是245. 故填245. 【点睛】本题主要考查了旋转的性质、勾股定理、垂线段最短以及等面积法,把求DE 的最小值转化为求CD 的最小值是解答本题的关键.36. 相交 经过直线外一点,有且只有一条直线与这条直线平行【分析】根据AB①MN 来判定CD 与MN 的关系.【详解】叶子CD 所在直线与地面MN 相交.理由如下:AB 与CD 相交于点O ,即AB 经过点O ,CD 也经过点O ,AB 与CD 有夹角,在同一平面内,过直线外一点,有且只有一条直线与已知直线平行,故AB 旋转到与地面MN 平行的位置时,叶子CD 所在直线与地面MN 相交.故答案为:相交;经过直线外一点,有且只有一条直线与这条直线平行【点睛】本题考查了平行与相交线.注意与“在同一平面内,垂直于同一条直线的两条直线互相平行”的区别.37.36°【分析】由平行线的性质,得AEN CFE ∠=∠,再由角平分线的定义,即可求出答案.【详解】解:①EFD ∠=108°,①18010872CFE ∠=︒-︒=︒,①AB ①CD ,①72AEN CFE ∠=∠=︒,①EG 平分AEN ∠, ①172362GEN ∠=⨯︒=︒; 故答案为:36°.【点睛】本题考查了平行线的性质,角平分线的定义,以及邻补角的定义,解题的关键是熟练掌握所学的性质定理进行解题.38.【分析】过点A 作AH①DC 交DC 的延长线于点H ,作AF①BC 于点F ,通过等腰直角三角形的性质和2EAD ADC ∠=∠关系得出ABE BAD ∠=∠,从而有AD BD = ,然后证明四边形AFCH 是正方形,则有12CH AH CF BC ===,进而通过勾股定理得出12CD BC =,然后利用ADC △的面积为6即可求出BC 的长度.【详解】过点A 作AH①DC 交DC 的延长线于点H ,作AF①BC 于点F①90BAC ∠=︒,AB AC =,AF①BC1,452AF CF BC BAF CAF ∴==∠=∠=︒ ①AF①BC ,CD BC ⊥90AFC FCD ∴∠=∠=︒//AF CD ∴FAD ADC ∴∠=∠①2EAD ADC ∠=∠EAF FAD DAC ∴∠=∠=∠BAE CAD ∴∠=∠90,90BAE ABE CAD BAD ∠+∠=︒∠+∠=︒ABE BAD ∴∠=∠AD BD ∴=①AF①BC ,CD BC ⊥,AH①DC ,AF CF =①四边形AFCH 是正方形12CH AH CF BC ∴=== 22222222,,AD HD AH BD BC CD AD BD =+=+=222211()()22CD BC BC CD BC ∴++=+ 12CD BC ∴= 111162222S ADC CD AH BC BC ∴==⨯⨯=BC ∴=故答案为:【点睛】本题主要考查等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质,掌握等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质是解题的关键,难点在于如何找到BC 与CD 之间的关系.39.122︒##122度【分析】如图,先根据长方形纸片对边平行,利用平行线的性质求得29MCB ABC ∠=∠=︒,再根据折叠的性质得出29MCB ACB ∠=∠=︒,即可由平角定义求解.【详解】解:如图,点M 在DC 的延长线上,①AB ∥DM ,29ABC ∠=︒,29MCB ABC ∴∠=∠=︒,根据折叠的性质得到,29MCB ACB ∠=∠=︒,180ACD ACB MCB ∠+∠+∠=︒,1802929122ACD ∴∠=︒-︒-︒=︒,故答案为:122︒.【点睛】本题考查平行线的性质,折叠的性质,熟练掌握平行线的性质和折叠的性质是解题的关键.40.80°##80度【分析】根据题意,可知第9次折叠时,2R N 刚好与21R R 重合,根据折叠的性质,则有平角2AR N ∠被平分成了9个角,则220AR B ∠=,再根据折叠的性质,即可求解.【详解】根据题意,可知第9次折叠时,2R N 刚好与21R R 重合,作图如下:根据折叠的性质,则有平角2AR N ∠被平分成了(9-1+1)个角, ①2180209AR B ∠==, ①PN QM ∥,①2220R BM AR B ∠=∠=,①根据折叠的性质有212R BR R BM ∠=∠,11ABR R BM ∠=∠,①21220R BR R BM ∠=∠=,①1121240ABR R BM R BR R BM ∠=∠=∠+∠=,①1180ABM ABR R BM α=∠=∠+∠=,故答案为:80°.【点睛】本题主要考查了折叠的性质,理解最后一次折叠后恰好完全盖住2AR B ∠即是指2R N 刚好与21R R 重合,是解答本题的关键.41.证明见解析【分析】通过证明()≌∆∆OCE OAB ASA 得出AB EC =,根据一组对边平行且相等的四边形是平行四边形得出四边形ABCE 是平行四边形,进而得证.【详解】证明://AB CD ,OCE OAB ∴∠=∠,在OCE ∆和OAB ∆中,EOC BOA OC OA OCE OAB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()≌∴∆∆OCE OAB ASA ,AB EC ∴=,又//AB EC ,∴四边形ABCE 是平行四边形,AE BC ∴=.【点睛】本题考查平行线的性质,全等三角形的判定与性质,平行四边形的判定与性质,熟练掌握全等三角形与平行四边形的判定与性质是解题的关键.42.①α=120°.【分析】根据平行线的性质得到①1+①α=180°,即①α+①β=180°,根据①α=2①β,求解得到①β的度数,进而得到①α的度数.【详解】解:如图①l 1①l 2,①①1+①α=180°(两直线平行,同旁内角互补),①①1=①β(对顶角相等),①①α+①β=180°(等量代换),①①α=2①β,①2①β+①β=180°,①①β=60°,①①α=2①β=120°.【点睛】本题主要考查平行线的性质,对顶角相等,两角互补等知识点,解此题的关键在于熟练掌握其知识点.43.两直线平行,内错角相等;FG AD ∥;同位角相等,两直线平行;BDA ∠;两直线平行,同位角相等;垂直的定义;90BGF ∠=︒.【分析】由平行线的性质得到①1=①2,等量代换得到①2=①3,即可判定 FG ①AD ,根据平行线的性质得到①BGF=①BDA,再根据垂直的定义即可得解.【详解】证明:①DE①AB(已知),①①1=①2(两直线平行,内错角相等),又①①1=①3(已知),①①2=①3(等量代换),①FG①AD(同位角相等,两直线平行),①①BGF=①BDA(两直线平行,同位角相等),①AD①BC(已知),①①BDA=90°(垂直的定义),①①BGF=90°(等量代换),①FG①BC(垂直定义).【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.44.同位角相等,两直线平行;①MNA;两直线平行,同旁内角互补;118°;59°;59°;两直线平行,内错角相等【分析】根据同角的补角相等可得出①ABM=①CME,利用“同位角相等,两直线平行”可得出AB①CD,由“两直线平行,同旁内角互补”及①MNA =62°可求出①CMN =118°,结合角平分线的定义可求出①AMC的度数,再利用“两直线平行,内错角相等”即可求出①A的度数.【详解】解:因为①ABM+①ABF=180°,又因为①CME+①ABF=180°(已知),所以①ABM=①CME所以AB①CD,(同位角相等,两直线平行)所以①CMN+①MNA=180°,(两直线平行,同旁内角互补)因为①MNA=62°,所以①CMN=118°,因为MA平分①CMN,①CMN =59°.(角平分线的定义)所以①AMC=12因为AB①CD,。

2023年九年级中考数学专题培优训练:相交线与平行线【含答案】

2023年九年级中考数学专题培优训练:相交线与平行线【含答案】

2023年九年级中考数学专题培优训练:相交线与平行线一、选择题1.在同一个平面内,两条直线的位置关系是()A.平行或垂直B.相交或垂直C.平行或相交D.不能确定2.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数有( )A.1个B.2个C.3个D.4个3.如图,点C到直线AB的距离是指哪条线段长()A.CBB.CDC.CAD.DE4.下图中,∠1和∠2不是同旁内角的是()A. B. C. D.5.如图,直线a,b被直线c所截,则下列说法中错误的是()A.∠1与∠2是邻补角B.∠1与∠3是对顶角C.∠2与∠4是同位角D.∠3与∠4是内错角6.下列说法中正确的是()A.如果同一平面内的两条线段不相交,那么这两条线所在直线互相平行B.不相交的两条直线一定是平行线C.同一平面内两条射线不相交,则这两条射线互相平行D.同一平面内有两条直线不相交,这两条直线一定是平行线7.如图,已知AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=360°B.∠α﹣∠β+∠γ=180°C.∠α+∠β﹣∠γ=180°D.∠α+∠β+∠γ=180°8.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC.以下四个结论:①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④ B.①② C.①③④ D.①②④二、填空题9.如图,运动会上,甲、乙两名同学测得小明的跳远成绩分别为DA=4.5米,DB=4.15米,则小明的跳远成绩实际应该为________.10.如图,点C在直线MN上,AC⊥BC于点C,∠1=65°,则∠2= °.11.如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作,其理由是。

中考数学总复习《相交线与平行线》专项测试题-附参考答案

中考数学总复习《相交线与平行线》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列命题①同位角相等;②相等的角是对顶角;③同角或等角的补角相等;④三角形的一个外角大于任何一个内角.其中是真命题...有()A.0个B.1个C.2个D.3个2.下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有()A.4个B.3个C.2个D.1个3.如图,点D是锐角三角形ABC的边BC上一个动点,当点D从B向C运动时,AD 的长度()A.变大B.变小C.先变大然后变小D.先变小而后变大4.如图,△ABC中AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.∠DAE=∠EAC D.AE∥BC 5.如图所示,在下列四组条件中,能判定AB∥CD的是( )A.∠1=∠2B.∠ABD=∠BDCC.∠3=∠4D.∠BAD+∠ABC=180∘6.如图AB∥DE,则下列各式中正确的是( )A.∠1+∠2+∠3=360∘B.∠2+∠3−∠1=180∘C.∠1+∠2−∠3=90∘D.∠1+∠3−∠2=90∘7.如图,若∠1=∠3,则下列结论一定成立的是( )A.∠1=∠4B.∠1+∠2=180∘C.∠2+∠4=180∘D.∠3=∠48.如图,小明用两块同样的三角板,按下面的方法作出了平行线,则AB∥CD的理由是( )A.∠2=∠4B.∠3=∠4C.∠5=∠6D.∠2+∠3+∠6=180∘二、填空题(共5题,共15分)9.把命题“邻补角互补”写成“如果⋯⋯那么⋯⋯”的形式是.10.如图,直线l与直线AB,CD分别相交于E,F,∠1=120∘,当∠2=时AB∥CD.11.如图,有一张矩形纸片ABCD,将它沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠GHC=110∘,则∠AGE等于.12.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70∘,∠BCD=40∘,则∠BED的度数为.13.如图∠1=∠2=40∘,MN平分∠EMB,则∠3=.三、解答题(共3题,共45分)14.已知:如图AB∥CD,∠B+∠D=180∘求证:BE∥FD.15.如图,已知三角形ABD,AC是∠DAB的平分线,平移三角形ABC,使点C移动到点D、点B的对应点是E,点A的对应点是F.(1) 在图中画出平移后的三角形FED.(2) 若∠DAB=72∘,EF与AD相交于点H,则∠FDA=∘,∠DHF=∘.16.如图,BD平分∠ABC,∠ABD=∠ADB .(1) 求证:AD∥BC;(2) 若BD⊥CD,∠BAD=α,求∠DCB的度数.(用含α的代数式表示)参考答案1.【答案】B2.【答案】C3.【答案】D4.【答案】C5. 【答案】B6. 【答案】B7. 【答案】B8. 【答案】B9. 【答案】如果两个角为邻补角,那么这两个角互补10. 【答案】60°11. 【答案】40°12. 【答案】55°13. 【答案】110°14. 【答案】∵AB∥CD∴∠B=∠BMD又∵∠B+∠D=180∘∴∠BMD+∠D=180∘∴BE∥FD.15. 【答案】(1) 画图略.(2) 36;10816. 【答案】(1) ∵BD平分∠ABC∴∠1=∠2.∵∠1=∠3∴∠3=∠2.∴AD∥BC.(2) ∵AD∥BC且∠BAD=α∴∠ABC=180∘−α.∴∠3=∠2=12∠ABC=90∘−12α.同理可证:∠C=180∘−∠ADC.∵BD⊥CD∴∠4=90∘.∴∠C=180∘−(∠3+∠4)=180∘−(90∘−12α+90∘)=12α.。

中考数学复习《相交线与平行线》专项提升训练题-附答案

中考数学复习《相交线与平行线》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.下列命题中,是真命题的是()A.在同一平面内,若a∥b,b∥c,则a∥c B.和为180°的两个角是邻补角C.相等的两个角是对顶角D.两条直线被第三条直线所截,同位角相等2.如图,直线,被直线所截,若,则等于()A.B.C.D.3.如图,直线,且直线,被直线,所截,则下列条件不能判定直线的是()A.B.C.D.4.如图,直线分别交,于点,N,将一个含有角的直角三角尺按如图所示的方式摆放,若,则等于()A.B.C.D.5.如图,将直角沿斜边的方向平移到的位置,交于点,BG=4,EF=10,的面积为4,下列结论错误的是()A.B.平移的距离是4C.D.四边形的面积为166.如图,水面与底面平行,光线从空气射入水里时发生了折射,折射光线射到水底处,点在的延长线上,若,则的度数为()A.B.C.D.7.图是某品牌共享单车放在水平地面的实物图,图是其示意图,其中、都与地面平行,若,则()A.B.C.D.8.如图,已知,点P是射线上一动点(与点A不重合),BC、BD分别平分和,分别交射线于点C、D,下列结论:①;②;③当时;④当点P运动时的数量关系不变.其中正确结论有()个A.1 B.2 C.3 D.4二、填空题9.为说明命题“如果,那么”是假命题,你举出的一个反例是.10.如图,在长为6m,宽为4m的矩形地面上修建两条宽均为1m的道路,余下部分做为耕地,根据图中数据,计算耕地面积为 m2.11.已知,在同一平面内,AD//BC,的平分线交直线于点,那么度数为.12.某小区大门的栏杆如图所示,垂直地面于,平行于地面,如果,那么.13.如图,已知,点,分别在直线、上,则与的数量关系.三、解答题14.如图,点、分别在线段、上,连结交于,若求和的度数.15.如图,在中,和,沿方向平移至,若,求:(1)沿方向平移的距离;(2)四边形的周长.16.如图,直线分别与,交于点,F,连结,AF,已知.(1)若,求的度数;(2)判断与的位置关系,并说明理由;(3)若平分,试说明平分.17.已知,如图,∠DAC=120°,∠ACF=20°,∠EFC=140°.(1)求证:;(2)连接CE,若CE平分∠BCF,求∠FEC的度数.18.如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,且∠1+∠2=90°.(1)求证:AB∥CD;(2)若∠2:∠3=2:5,求∠AOF的度数.参考答案:1.A2.C3.C4.C5.B6.A7.C8.C9.,(答案不唯一)10.1511.或12.13.14.解:...,且..15.(1)解:∵沿方向平移至∴.∵∴;即沿方向平移的距离是.(2)解:由平移的性质可得:∵∴四边形的周长.∴四边形的周长是.16.(1)解:;(2)解:,理由如下:∴∠BEC=∠ECF∵∠EAF=∠ECF∴∠BEC=∠EAF;(3)解:平分平分.17.(1)证明:∠DAC+∠ACB=180°∠DAC=120°∠ACB=60°∠ACF=20°∠BCF=60°-20°=40°∠EFC=140°∠BCF+∠EFC=180°;(2)解:CE平分∠BCF,∠BCF=40°∠BCE=∠ECF=20°∠FEC=∠BCE=20°18.(1)证明:∵OA,OB分别平分∠COE和∠DOE ∴∠AOC=∠COE,∠2=∠DOE∵∠COE+∠DOE=180°∴∠AOC+∠2=∠COE+∠DOE=90°∵∠1+∠2=90°∴∠AOC=∠1∴AB∥CD;(2)解:∵∠2:∠3=2:5,∠2=∠DOE∴∠DOE:∠3=4:5∵∠DOE+∠3=180°∴∠DOE=180°×=80°,∠3=180°×=100°∴∠COE=∠3=100°∵OA平分∠COE∴∠AOE=∠COE=50°∴∠AOF=180°-∠AOE=130°,∴∠AOF的度数为130°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题:平行线与相交线选择题专项——中考数学分类专题提分训练:(四)1.将直角三角板按照如图方式摆放,直线a∥b,∠1=130°,则∠2的度数为()A.60°B.50°C.45°D.40°2.如图所示,直线AB与CD相交于O点,∠1=∠2,若∠AOE=138°,则∠AOC的度数为()A.45°B.90°C.84°D.100°3.如图,A是直线l外一点,点B,E,D,C在直线l上,且AD⊥l,D为垂足,如果量得AB=7cm,AE=6cm,AD=5cm,AC=11cm,则点A到直线l的距离为()A.11cm B.7cm C.6cm D.5cm4.如图,AB∥EF,C点在EF上,∠EAC=∠ECA,BC平分∠DCF,且AC⊥BC.下列结论:①AC平分∠DCE;②AE∥CD;③∠1+∠B=90°;④∠BDC=2∠1.其中结论正确的个数有()A.1个B.2个C.3个D.4个5.如图,O为直线AB上一点,OC⊥OD,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列结论:①∠DOG+∠BOE=180°;②∠AOE﹣∠DOF=45°;③∠EOD+∠COG=180°;④∠AOE+∠DOF=90°.其中正确的个数有()A.1个B.2个C.3个D.4个6.将一张长方形纸条折成如图所示的形状,BC为折痕.若∠DBA=70°,则∠ABC等于()A.45°B.55°C.70°D.110°7.如图,∠CED=60°,DF⊥AB于点F,DM∥AC交AB于点M,DE∥AB交AC于点E,则∠MDF的度数是()A.60°B.40°C.30°D.20°8.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠BAC=∠EBD C.∠ABC=∠BAE D.∠BAC=∠ABE9.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A.9 B.10 C.11 D.1210.如投影屏上出示的抢答题,需要回答横线上符号代表的内容.则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB11.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°12.如图,AB∥CD,则∠A、∠C、∠E、∠F满足的数量关系是()A.∠A=∠C+∠E+∠F B.∠A+∠E﹣∠C﹣∠F=180°C.∠A﹣∠E+∠C+∠F=90°D.∠A+∠E+∠C+∠F=360°13.如图,直线l∥m,将Rt△ABC(∠ABC=45°)的直角顶点C放在直线m上,若∠2=24°,则∠1的度数为()A.21°B.22°C.23°D.24°14.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:“已知AB∥CD,∠BAE=82°,∠DCE=120°,则∠E的度数是()A.38°B.44°C.46°D.56°15.某学生上学路线如图所示,他总共拐了三次弯,最后行车路线与开始的路线相互平行,已知第一次转过的角度,第三次转过的角度,则第二次拐弯角(∠1)的度数是()A.55°B.70°C.80°D.90°16.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为()A.32°B.58°C.138°D.148°17.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°18.如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠MOC =35°,则∠BON的度数为()A.35°B.45°C.55°D.64°19.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个20.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④21.如图,三角形板的直角顶点落在直尺的一边上,若∠1=35°,则∠2的度数是()A.55°B.45°C.35°D.65°22.如图,已知AB∥EF∥CD,BF∥AE,AF平分∠EAB,那么图中与∠CGF相等的角有()个.A.2 B.3 C.4 D.523.如图,线段AB和CD表示两面镜子,且直线AB∥直线CD,光线EF经过镜子AB反射到CD,最后,反射到光线GH,光线反射时,∠1=∠2,∠3=∠4,下列结论:①直线EF平行于直线GH;②∠FGH的角平分线所在的直线垂直于直线AB;③∠BFE的角平分线所在的直线垂直于∠4的角平分线所在直线;④当CD绕点G顺时针旋转90°时,直线EF与直线GH不一定平行.其中正确的是()A.①②③④B.①②③C.②③D.①③24.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°25.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=68°,则∠GFE的度数是()A.56°B.60°C.64°D.70°微专题:平行线与相交线选择题专项——中考数学分类专题提分训练:(四)答案1.解:∵∠1=130°,∴∠3=180°﹣130°=50°,如图,作直线c∥a,∴∠4=∠3=50°,∴∠5=90°﹣50°=40°,∵a∥b,∴b∥c,∴∠2=∠5=40°.所以∠2的度数为40°.故选:D.2.解:∵∠AOE+∠BOE=180°,∠AOE=138°,∴∠2=42°,∵∠1=∠2,∴∠BOD=2∠2=84°,∴∠AOC=∠BOD=84°.故选:C.3.解:点A到直线l的距离是AD的长,故点A到直线l的距离是5cm,故选:D.4.解:∵AB∥EF,∴∠ECA=∠BAC,∠BCF=∠B,∵AC⊥BC,∴∠BAC=90°,∴∠1+∠BCD=90°,∠ECA+∠BCF=90°,∵BC平分∠DCF,∴∠BCD=∠BCF,∴∠1=∠ECA,∴AC平分∠DCE,①正确;∵∠EAC=∠ECA,∴∠EAC=∠1,∴AE∥CD,②正确;∵∠BCF=∠B,∠BCD=∠BCF,∴∠B=∠BCD,∴∠1+∠B=90°,③正确;∵∠1=∠ECA=∠BAC,∠BDC=∠BAC+∠1,∴∠BDC=2∠1,④正确;故选:D.5.解:∵OE平分∠AOC,OG平分∠BOC,∴可设∠AOE=∠COE=α,∠BOG=∠COG=β,∵O为直线AB上一点,∴∠AOB=180°,∴2α+2β=180°,∴α+β=90°,∠EOG=90°.∵∠DOC=90°,∴∠DOG=∠COE=90°﹣∠COG=α,∴∠BOD=∠DOG﹣∠BOG=α﹣β.∵OF平分∠BOD,∴∠BOF=∠DOF=(α﹣β).①∵∠DOG=α=∠AOE,∠AOE+∠BOE=180°,∴∠DOG+∠BOE=180°,故本选项结论正确;②∵∠AOE=α,∠DOF=(α﹣β),∴∠AOE﹣∠DOF=α﹣(α﹣β)=(α+β)=45°,故本选项结论正确;③∵∠EOD=∠EOG+∠GOD=90°+α,∠COG=β,∴∠EOD+∠COG=90°+α+β=180°,故本选项结论正确;④∵∠AOE+∠DOF=α+(α﹣β)==(90°﹣α)=2α﹣45°,∴当α=67.5°时,∠AOE+∠DOF=90°,但是题目没有α=67.5°的条件,故本选项结论错误.综上所述,正确的有:①②③共3个.故选:C.6.解:根据题意,得:2∠ABC+∠DBA=180°,则∠ABC=(180°﹣70°)÷2=55°.故选:B.7.解:∵DE∥AB∴∠A=∠CED=60°,∵DM∥AC∴∠DMF=∠A=60°,∵DF⊥AB∠DFM=90°,∴∠MDF=90°﹣60°=30°.故选:C.8.解:A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠BAC=∠EBD不能判断出EB∥AC,故本选项错误;C、∠ABC=∠BAE只能判断出EA∥CD,不能判断出EB∥AC,故本选项错误;D、∠BAC=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.故选:D.9.解:2条直线相交最多有1个交点;3条直线相交最多有1+2个交点;4条直线相交最多有1+2+3个交点;5条直线相交最多有1+2+3+4个交点;…所以n条直线相交最多有1+2+3+4+5+…+(n﹣1)=n(n﹣1)个交点;∴,解得n1=11,n2=﹣10(舍去),则n值为11.故选:C.10.证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.11.解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.12.解:如图,过E作EG∥AB,∵AB∥CD,∴AB∥CD∥EG,∴∠GEF=∠DHF=∠C+∠F,∠A+∠AEG=180°,∴∠A+∠AEF﹣∠GEF=180°,即∠A+∠AEF﹣∠C﹣∠F=180°,故选:B.13.解:如图,∵∠2=24°,∴∠3=∠2=24°.∵∠A=45°,∴∠4=180°﹣45°﹣24°=111°.∵直线l∥m,∴∠ACD=111°,∴∠1=111°﹣90°=21°.故选:A.14.解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=82°,∴∠CFE=82°,又∵∠DCE=120°,∴∠E=∠DCE﹣∠CFE=120°﹣82°=38°,。

相关文档
最新文档