线性代数期末试题(武汉大学)附答案
(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
线性代数_武汉大学中国大学mooc课后章节答案期末考试题库2023年

线性代数_武汉大学中国大学mooc课后章节答案期末考试题库2023年1.设A,B为可逆矩阵,则下列矩阵不一定可逆的是( ).参考答案:A+B.2.已知三阶方阵A的特征值为【图片】,则【图片】参考答案:3.若【图片】阶行列式D的值为0,则D中必有一行元素全为0.参考答案:错误4.设【图片】, 则 A 的任意 m 个列向量必线性无关.参考答案:错误5.设 A 是【图片】矩阵,A 的秩为 m,m < n, 则 A 中任一 m 阶的子式不等于零。
参考答案:错误6.n 阶⽅阵 A 可对⽅化的充分必要条件是 A 有 n 个互不相同的特征值.参考答案:错误7.行列式为0的充分条件是( ).参考答案:行列式中各行元素之和为0.8.已知三阶行列式中第二列元素依次为1,2,3,其对应的余子式的值依次为3,2,1,则该行列式的值为参考答案:-2.9.已知 4 阶行列式中第一行元素依次为 1,0,-4,3,第三行对应元素的代数余子式的值依次为 1,5,-2,x. 则x的值为:参考答案:-3.10.在函数【图片】中,【图片】的系数为参考答案:.11.设A 是 3 阶正交矩阵,【图片】是A 的逆矩阵。
若向量【图片】, 则向量【图片】的长度为_____ .参考答案:312.设向量【图片】且向量【图片】在向量【图片】上的投影向量为【图片】则 x= ____ .参考答案:13.如果矩阵A能对角化,那么A的特征值一定互不相同.参考答案:错误14.实对称矩阵一定可以相似对角化,且相似矩阵是正交阵.参考答案:错误15.设A,B为n阶矩阵,且A与B相似,则【图片】.参考答案:错误16.已知三阶矩阵A的特征值为【图片】, 则下列命题不正确的是( ).参考答案:1和-1所对应的特征向量正交.17.n阶方阵A相似于对角阵的充分必要条件是( ).参考答案:对A的每个重特征值,有个线性无关的特征向量.18.行列式为0的充分条件是()参考答案:行列式中各列元素的和为0.19.若行列式D中的每一个元素都不为零,则行列式D不等于零。
期末线代试题及答案

期末线代试题及答案一、选择题(每题2分,共50分)1. 设A为3阶方阵,满足A^2 = I,则A的行列式的值是多少?A. -1B. 0C. 1D. 2答案:C2. 设向量组V1 = (1, 0, -1),V2 = (2, -1, 3),V3 = (-1, 2, 0),则V1, V2, V3是否线性相关?A. 相关B. 不相关答案:B3. 设向量组V1 = (1, 2, -1),V2 = (2, 1, 3),V3 = (-1, 4, 5),则V1, V2, V3是否线性相关?A. 相关B. 不相关答案:A4. 设A为3阶方阵,满足行列式det(A) = 3,则矩阵B = A^-1的行列式的值是多少?A. -1/3B. 3C. 1/3D. 1答案:C5. 已知矩阵A = [1 2 3, 4 5 6, 7 8 9],则A的秩是多少?A. 2B. 3C. 1D. 0答案:C二、填空题(每题2分,共20分)1. 设A为3阶方阵,满足A^T = 2A,则A的特征值之和是________。
答案:62. 设矩阵A = [1 2 3, 4 5 6, 7 8 9],则A的伴随矩阵的元素之和为________。
答案:03. 设向量组V1 = (1, 0, 1),V2 = (2, 1, 3),V3 = (-1, 0, -2),则V1, V2, V3的秩为________。
答案:24. 设三阶方阵A的特征值为λ1 = 2, λ2 = -1, λ3 = 0,则A的特征值对应的特征向量分别为________。
答案:(2, 0, 1),(0, 1, -1),(1, 1, -1)5. 设矩阵A = [1 2, 3 4],则A的迹为________。
答案:5三、解答题(每题20分,共60分)1. 设A为2阶方阵,满足det(A) = 3,求A的伴随矩阵。
答案:设A = [a b, c d],则伴随矩阵的元素为:A* = [d -b, -c a]所以伴随矩阵为:A* = [d/3 -b/3, -c/3 a/3]2. 已知矩阵A = [1 -1, 2 3],求A的特征值和特征向量。
线性代数期末试卷及详细答案

线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。
每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。
2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。
线性代数期末试题及参考答案

线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,< )不是初等矩阵。
<A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B>100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C> 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D> 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是< )。
<A )122331,,αααααα--- <B )1231,,αααα+ <C )1212,,23αααα- <D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。
则1(2)A E -+=< )(A> A E - (B> E A + (C> 1()3A E - (D> 1()3A E +4.设A 为n m ⨯矩阵,则有< )。
<A )若n m <,则b Ax =有无穷多解;<B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax =有唯一解; <D )若A 有n 阶子式不为零,则0=Ax 仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似 <B )A B ≠,但|A-B|=0<C )A=B <D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。
每小题2分,共10分>1. A 是n 阶方阵,R ∈λ,则有A A λλ=。
< )2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。
< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
大学线性代数期末考试练习题含答案

线性代数练习题一、单项选择题(本大题共5小题,每小题3分,共15分)1.下列等式中,正确的是( )A.2001002001021⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭B. 1233693456456⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭C.1051002⎛⎫= ⎪⎝⎭D.120120035035--⎛⎫⎛⎫-= ⎪ ⎪--⎝⎭⎝⎭2.设矩阵A =100220340⎛⎫ ⎪⎪ ⎪⎝⎭,那么矩阵A 的列向量组的秩为( )A.3B.2C.1D.03.设向量1α=(-1,4),2α=(1,-2),3α=(3,-8),若有常数a,b 使a 1α-b 2α-3α=0,则()A.a=-1,b=-2B.a=-1,b=2C.a=1,b=-2D.a=1,b=24.向量组1α=(1,2,0),2α=(2,4,0),3α=(3,6,0),4α=(4,9,0) 的极大线性无关组为( )A.1α,4αB.1α,3αC.1α,2αD.2α,3α5.下列矩阵中是正定矩阵的为( )A.1223⎛⎫ ⎪⎝⎭B.3336-⎛⎫ ⎪-⎝⎭C.0331⎛⎫ ⎪-⎝⎭D.1001-⎛⎫⎪-⎝⎭二、填空题(本大题共5小题,每题3分,共15分)6.行列式111123149=___ ___.7.已知3维向量α=(1,-3,3),β=(1,0,-1)则α+3β=_ _. 8.设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n-1,则齐次线性方程组Ax=0的 通解为__ __.9.设1,2,…,n 是n 阶矩阵A 的n 个特征值,则矩阵A 的行列式|A |=_ ___. 10.二次型f(x 1,x 2,x 3)=x 1x 2+x 1x 3+x 2x 3的秩为_ __.三、计算题(本大题共8小题,共70分)11.(9分)已知矩阵A =111210101⎛⎫ ⎪- ⎪ ⎪⎝⎭,B =100210021⎛⎫ ⎪⎪ ⎪⎝⎭,求:(1)A T B ;(2)| A T B |.12.(9分)设⎪⎪⎪⎭⎫ ⎝⎛-=100111001A ,B =2153⎛⎫ ⎪⎝⎭,C =132031⎛⎫ ⎪⎪ ⎪⎝⎭,且满足C AXB =,求矩阵X .13.(9分)求向量组1α=(-1,2,1,0)T ,2α=(0,1,1,2)T ,3α=(1,4,3,4)T ,4α=(1,1,6,4)T 的秩 与一个极大线性无关组.14.(9分)判断线性方程组⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x 是否有解,有解时求出它的解.15.(9分)已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=a A 01020101,01=λ是A 的一个特征值,求A 的全部特征值及其特征向量.16.(9分)求一个正交变换将二次型322322214332x x x x x f +++=化为标准形.17.(8分)求⎪⎪⎪⎭⎫ ⎝⎛=343122321A 的逆矩阵.18.(8分)利用施密特正交化法将向量组()⎪⎪⎪⎭⎫⎝⎛=931421111,,321a a a 正交化.。
线代b期末考试题及答案

线代b期末考试题及答案一、单项选择题(每题2分,共20分)1. 向量组\(\alpha_1, \alpha_2, \alpha_3\)线性无关的充分必要条件是()。
A. \(\alpha_1, \alpha_2, \alpha_3\)不共面B. 由\(\alpha_1, \alpha_2, \alpha_3\)构成的矩阵的行列式不为零C. 由\(\alpha_1, \alpha_2, \alpha_3\)构成的矩阵的秩为3D. 以上说法都不正确答案:C2. 若矩阵A可逆,则下列说法正确的是()。
A. A的行列式为0B. A的行列式不为0C. A的转置矩阵不可逆D. A的逆矩阵不存在答案:B3. 对于矩阵A,下列说法不正确的是()。
A. A的特征值是A的特征多项式的根B. A的特征向量是对应于特征值的特征向量C. A的秩等于A的非零特征值的个数D. A的行列式等于其特征值的乘积答案:C4. 线性方程组\(Ax=b\)有唯一解的充分必要条件是()。
A. A是方阵且行列式不为0B. A是方阵且秩等于增广矩阵的秩C. A的秩等于未知数的个数D. 以上说法都正确答案:D5. 矩阵A和B相似的充分必要条件是()。
A. A和B的行列式相等B. A和B的特征值相同C. A和B的迹相等D. A和B有相同的Jordan标准形答案:D6. 矩阵A的秩为2,下列说法正确的是()。
A. A的零空间的维数为1B. A的零空间的维数为2C. A的列向量线性相关D. A的行向量线性无关答案:A7. 若矩阵A和B满足AB=0,则下列说法正确的是()。
A. A和B至少有一个是零矩阵B. A和B的秩之和小于等于A的列数C. A和B的秩之和小于等于B的行数D. A和B的秩之和小于等于A的列数和B的行数之和答案:D8. 矩阵A的特征值是1,对应的特征向量是\(\begin{bmatrix}1 \\ 0\end{bmatrix}\),则下列说法正确的是()。
《线性代数》期末考试题及详细答案(本科A、B试卷)

XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。
每小题2分,共10分)。
1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。
1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数》 (A 卷,工科54学时)
学院 专业 学号 姓名
注:所有答题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。
一、(10分) 已知1234567891011121
010*******
1100001100
1011A B ⎛⎫
⎛⎫
⎪
⎪ ⎪
⎪
⎪== ⎪ ⎪
⎪ ⎪⎝⎭ ⎪⎝
⎭
,,求行列式T AA 及秩()r B 。
二、(15分) 已知矩阵方程1
1
)2(--=-C
A B C E T
,求矩阵A .其中
1
232120*********,
.001200120
0010001B C --⎛⎫
⎛⎫
⎪
⎪
-
⎪
⎪
== ⎪
⎪
⎪
⎪
⎝⎭⎝⎭
三、(15分)已知向量组
123412342345, , , 34564567αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
求向量组A 的秩及一个最大无关组,并将其余向量用该极大线性无关组线性表出.
四、(15分)设11010,1.111a A b λλλ⎛⎫⎛⎫
⎪ ⎪
=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
已知线性方程组Ax b =存在2个不同的解,
1)求a λ,;
2)求方程组Ax b =的通解.
五、(15分)设α是实数n 维非零列向量,E 为n 阶单位矩阵,[2/()]T
T
A E αααα=-,
1)计算T A ,并回答()kE A -能否相似于一个对角阵?并说明理由,其中k 为常数;
2)计算2
A ,并回答()kE A -是否可逆?并说明理由,其中1k ≠±;
3)给出2T
E αα-()为正交矩阵的充分必要条件。
六、(15分)在四元实向量构成的线性空间4R 中,求k 使4321,,,ββββ为4
R 的基,并求由基
12341234,,,,,,ααααββββ到的过渡矩阵P ,其中
⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00011α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00112α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=01113α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11
114α;1111k β⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,21121k β-⎛⎫ ⎪
⎪= ⎪- ⎪⎝⎭,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00113β,⎪
⎪⎪⎪⎪⎭
⎫ ⎝⎛=00014β 七、(15分) 设A 为n 阶对称矩阵, C 为n 阶可逆矩阵,令=T
B C AC ,证明以下命题:
1)B 为n 阶对称矩阵, 且=()()r B r A ;
2)如果B 是一对角阵,C 是正交阵,且()f λ是 A 的特征多项式,则 =()f A O 。
《线性代数》 (工54学时,A 卷答案)
一、(10分) 解:注意r()3T
AA ≤,而T AA 是4阶阵,则=0T AA ;()=5r B .
二、(15分) 解:1)2()2(--==-B C A E A B C T T
,
12340123(2)=00120
001C B ⎛⎫
⎪
⎪
- ⎪
⎪
⎝⎭
T 12101
00001212100, 001212100001012
1A A -⎛⎫⎛⎫ ⎪ ⎪--
⎪ ⎪== ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭。
三、(15分)解:()12341
2342
345,,,34564
567A αααα⎛⎫
⎪
⎪== ⎪
⎪
⎝⎭
123410120123(,,,)00000
000ηηηη--⎛⎫
⎪
⎪
= ⎪ ⎪
⎝⎭
, 易见,312412()2, 2,23R A ηηηηηη==-+=-+,所以1α、2α构成一个最大无关组,且
3124122, 23αααααα=-+=-+。
四、(15分)解:1)设12,ηη为Ax b =的2个不同的解,则12ηη-是0Ax =的一个非零解,故
2(1)(1)0A λλ=-+=
于是1λ=或 1.λ=-
当1λ=时,因为()(),r A r A b ≠所以Ax b =无解,舍去. 当1λ=-时,对Ax b =的增广矩阵作初等行变换,有
310121111()0201010.211110002a A b B a ⎛
⎫- ⎪-⎛⎫ ⎪
⎪
⎪=-→-= ⎪ ⎪ ⎪- ⎪⎝⎭ ⎪+ ⎪⎝⎭
因为Ax b =有解,所以 2.a =-
2)当1,2a λ=-=-时,有
310121
01020000B ⎛
⎫- ⎪ ⎪
⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭
所以Ax b =的解为31110,201x k ⎛⎫⎛⎫
⎪ ⎪
=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
其中k 为任意常数.
五、(15分)解:
1) 计算T A A =,从而可以证明A 是实对称阵,于是()kE A -是实对称阵,所以可以对角化。
2)计算得2=E A ,则A 的特征值只取 1.± 而1k ≠±,即
0kE A -≠,或() kE A -是可逆的.
3)2=1T T E αααα-()为正交矩阵的充要条件是.
六、(20分) 解:易知1k ≠。
设),,,(4321αααα=A ,),,,(4321ββββ=B , 则
⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=1000110011101111A , 1
11111102001100B k k --⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭ 设 P ),,,(),,,(43214321ααααββββ=, 则
-11-10001-10001-10001A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 12
221111011001
100k k P A B k k ---⎛⎫
⎪--- ⎪== ⎪-- ⎪⎝⎭
七、(15分)证:1)(
)
,T
T
T
T T T B C AC
C A C C AC B ====
()()()()()()()()()1
11, ., ,.
T T A C BC r A r BC r B B C AC r B r AC r A r A r B --=∴≤≤=∴≤≤∴=-
2)设12=λλλ⋯⎛⎫
⎪
⎪ ⎪⋯⋯⋯⋯ ⎪
⎝
⎭n B ,则 A 的特征值为 (12 ),,...i i n λ=,且=0()i
f λ。
由=T B C AC ,及C 的正交性,得=k T k
B C A C ,或))=((T f B C f A C ,故
12()0()0)==()0λλλ⋯⋯⎛⎫⎛⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋯⋯⋯⋯⋯⋯⋯⋯ ⎪ ⎪
⎝⎭⎝
⎭(n f f f B f =O ; 再由C 可逆,即得 =()f A O 。