化工原理机械分离93页PPT
合集下载
化工原理机械分离PPT文档共95页

39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
化工原理机械分离
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
化工原理机械分离
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
化工原理课件 3 机械分离和固体流态化-128页PPT资料

直径,可先令
Ret1 4(3s2ut3)g
查 Ret1 Ret 曲线图,可求直径 d ,即 d R et ut
39
40
2
1
4.沉降速度的计算
3)用量纲为1的数群K 值判别流型
K d 3 (s )g 2
K ≤2.62为斯托克斯定律区; 2.62< K <69.1为艾仑定律区; K ≥69.1为牛顿定律区。
30
1.沉降速度
沉降速度 u t
等速阶段中颗粒相对于流体的运动速度ut称
为沉降速度。由于这个速度是加速阶段终了时颗
粒相对于流体的速度,故又称为“终端速度”。
ut
4gd(s ) 3
31
2. 阻力系数
f(Rte, s)
Ret
dut ρ μ
Re t
32
2. 阻力系数
ut
41
2. 重力沉降设备
降尘室——气固体系 沉降槽——液固体系
42
1)降尘室
2.重力沉降设备
气流水平通 过降尘室速
度
动画
图3-4 降尘室示意图 (a)沉降室 (b)尘粒在沉降室内运动情况
沉降速 度
43
2.重力沉降设备
思考1:要使颗粒除去,必须满足什么条件?
位于降尘室最高点的颗粒沉降到室底所需的时间为
on定律区)
0.44 ut 1.74 gds ( 1000Rte2000) 0 33
3.
影响沉降速度的因素
ut
4ds g
3
1) 流体的粘度
滞流区 过渡区 湍流区
表面摩擦阻力 形体阻力
34
3.
影响沉降速度的因素
Ret1 4(3s2ut3)g
查 Ret1 Ret 曲线图,可求直径 d ,即 d R et ut
39
40
2
1
4.沉降速度的计算
3)用量纲为1的数群K 值判别流型
K d 3 (s )g 2
K ≤2.62为斯托克斯定律区; 2.62< K <69.1为艾仑定律区; K ≥69.1为牛顿定律区。
30
1.沉降速度
沉降速度 u t
等速阶段中颗粒相对于流体的运动速度ut称
为沉降速度。由于这个速度是加速阶段终了时颗
粒相对于流体的速度,故又称为“终端速度”。
ut
4gd(s ) 3
31
2. 阻力系数
f(Rte, s)
Ret
dut ρ μ
Re t
32
2. 阻力系数
ut
41
2. 重力沉降设备
降尘室——气固体系 沉降槽——液固体系
42
1)降尘室
2.重力沉降设备
气流水平通 过降尘室速
度
动画
图3-4 降尘室示意图 (a)沉降室 (b)尘粒在沉降室内运动情况
沉降速 度
43
2.重力沉降设备
思考1:要使颗粒除去,必须满足什么条件?
位于降尘室最高点的颗粒沉降到室底所需的时间为
on定律区)
0.44 ut 1.74 gds ( 1000Rte2000) 0 33
3.
影响沉降速度的因素
ut
4ds g
3
1) 流体的粘度
滞流区 过渡区 湍流区
表面摩擦阻力 形体阻力
34
3.
影响沉降速度的因素
华南理工大学化工原理课件 第三章 非均相机械分离

第二节
沉
降
二、离心沉降 在重力沉降中,当颗粒小时,沉降速率就小,需沉降设备就大,为 了提高其生产能力,工业上可使用离心沉降,因为离心力比重力大得多, 改用离心沉降则可大大提高沉降速度,设备尺寸也可缩小很多。 1.离心沉降速度和离心分离因数 1.1离心沉降速度:其推导方法和重力沉降速度相似,在离心沉 降设备中,当流体带着颗粒旋转时,如果颗粒的密度大于流体的密度, 则惯性离心力将会使颗粒在径向上与流体发生相对运动而飞离中心。 和颗粒在重力场中受到三个作用力相似,惯性离心力场中颗粒在径向 上也受到三个力的作用,即惯性离心力、向心力(相当于重力场中的浮 力,其方向为沿半径指向旋转中心)和阻力(与颗粒的运动方向相反,其 方向为沿半径指向中心)。如果球形颗粒的直径为dp、密度为 p ,流体 密度为 ,当颗粒与流体一起作等角速度 的圆周运动时,将受上述 合力的作用,使其由旋转中心向周边运动,在达到动态平衡时,经整 理其离心沉降速度为: (3-11) 4d p p 2
ut
u
又由于u=qv/A=qv/BH,故有H/ut≤BLH/qv,即有:
qv BLut
(3-10)
式(3-10)就是降尘室生产能力的计算公示。该式表明:降尘室生产能 力只与降尘室的底面积及颗粒的沉降速度有关,而与降尘室高度H无关。所 以降尘室一般采用扁平的几何形状,或在室内添加多层隔板,形成多层降尘 室如图3-4所示,以提高其生产能力和除尘效率。 降尘室结构简单,但设备庞大、效率低,只适用于分离粗颗粒(一般指 直径75μ m以上的颗粒),或作为预分离设备。
第二节
沉
降
联立(3-1)、(3-2)、(3-3)和(3-4)整理得
4 gd p ( p ) ut 3
第三章机械分离和固体流态化《化工原理》课件

5
非均相物系的分离方法
1、气-固体系
旋风分离器 :含尘气体从入口导入除尘器的外壳和排气 管之间,形成旋转向下的外旋气流。悬浮于外旋流的粉 尘在离心力的作用下移向器壁,并随外旋流旋转到除尘 器底部,由排尘孔排出。净化后的气体形成上升的内旋 流并经过排气管排出。
应用范围及特点 旋风除尘器适用于净化大于5~10微米 的非粘性、非纤维的干燥粉尘。它是一种结构简单、操 作方便、耐高温、设备费用和阻力较低(80~160毫米水 柱)的装置。 旋风除尘器广泛应用于空气净化、烟道除 尘、细小颗粒回收等领域。 例如,火力发电厂的锅炉烟 道上就装有这种装置,它有效的降低了排出的烟尘,否 则,早晨起来时,电厂附近的马路上会铺满D
u02
2
d 2
4
浮力Fb
mg s
等速段:该段的颗粒运动速度称为 沉降速度,用u0表示。
重力沉降速度:以球形颗粒为例
合 外 F cF 力 bF D0
mg1s
u02
2
d2
4
0
质m 量力或 gFm c ra
颗粒在流体中沉降时受力
频率分布曲线
9
二、颗粒群的特性
平均直径
长度平均直径
d L m n 1 d 1n 1 n 2 d n 2 2 n n 3 3 d 3 n k n k d ki k 1n id i
k
n i
i 1
表面积平均直径 ----每个颗粒平均表面积等于全部颗粒的表面积之
21
增稠器(沉降槽)
用于分离出液-固混合物
加料
结构:请点击观看动画
与降尘室一样, 水平 沉降槽的生产能 力是由截面积来 挡板
保证的,与其高
非均相物系的分离方法
1、气-固体系
旋风分离器 :含尘气体从入口导入除尘器的外壳和排气 管之间,形成旋转向下的外旋气流。悬浮于外旋流的粉 尘在离心力的作用下移向器壁,并随外旋流旋转到除尘 器底部,由排尘孔排出。净化后的气体形成上升的内旋 流并经过排气管排出。
应用范围及特点 旋风除尘器适用于净化大于5~10微米 的非粘性、非纤维的干燥粉尘。它是一种结构简单、操 作方便、耐高温、设备费用和阻力较低(80~160毫米水 柱)的装置。 旋风除尘器广泛应用于空气净化、烟道除 尘、细小颗粒回收等领域。 例如,火力发电厂的锅炉烟 道上就装有这种装置,它有效的降低了排出的烟尘,否 则,早晨起来时,电厂附近的马路上会铺满D
u02
2
d 2
4
浮力Fb
mg s
等速段:该段的颗粒运动速度称为 沉降速度,用u0表示。
重力沉降速度:以球形颗粒为例
合 外 F cF 力 bF D0
mg1s
u02
2
d2
4
0
质m 量力或 gFm c ra
颗粒在流体中沉降时受力
频率分布曲线
9
二、颗粒群的特性
平均直径
长度平均直径
d L m n 1 d 1n 1 n 2 d n 2 2 n n 3 3 d 3 n k n k d ki k 1n id i
k
n i
i 1
表面积平均直径 ----每个颗粒平均表面积等于全部颗粒的表面积之
21
增稠器(沉降槽)
用于分离出液-固混合物
加料
结构:请点击观看动画
与降尘室一样, 水平 沉降槽的生产能 力是由截面积来 挡板
保证的,与其高
化工原理机械分离沉降分离PPT课件

4.非球形颗粒处理办法
①颗粒非球形时,曳力系数还受颗粒形状影响。
②技术上采用球形度表示颗粒形状
与该颗粒等体积球的表 面积
s
颗粒表面积
③非球形颗粒的雷诺数采用当量直径de计算:
3 6V
de
3.1.2 重力沉降分离设备
1.降尘室
(1)工作原理 气体入室减速 颗粒的沉降运动&随气体运动 沉降运动时间<气体停留时间分离 说明 ① d,容易除去 ②气量V,容易除去
(2)能(100%)被除去的最小颗粒直径 100%去除——室顶到室底
所需沉降时间=H/ut
在室内停留时间=L/u
分离满足的条件: H L
ut u
分离所需最低沉降速度ut
Hu L
HBu LB
Vs At
最低沉降速度~能被分离的最小颗径
ut
gdm2 in s 18
Vs At
dmin
18 Vs
ur
d 2 sui2 18rm
假设(2)沉降时间
B ur
18rm B d 2 sui2
气芯前圈数 = N
运行距离 2rm N
有效停留时间 2rm N
ui
某一粒径能(100%)被分离出的条件
其穿越B所需时间<停留时间
B ur
18rm B d 2 sui2
2rm N
ui
9B d Nui s dc
④ Ret>2105 阻力系数骤然下降 层流边界层湍流边界层 分离点后移,尾流区收缩,形体阻力突然下降
Ret (3 ~ 10) 105 近似取=0.1
颗粒沉降所处区域判断方法
u 4d s g
3
Ret
南京理工化工原理课件3 --机械分离和固体流态化

1.间歇过滤机的生产能力
操作周期为 T=θ +θ
θ
W+θ D
θ ——一个操作循环内的过滤时间,s;
W——一个操作循环内的洗涤时间,s;
θ D——一个操作循环辅助操作所需时间,s。
则生产能力
3600V 3600V Q T W D
V——一个操作循环内所获得的滤液体积,m3
二、连续过滤机的生产能力
阻力:
6
1 2 Fd Ap u 2
根据牛顿第二运动定律:
Fg Fb Fd ma
u 2 3 d s g d g d d s a 6 6 4 2 6
3 3 2
加速阶段:开始沉降瞬间,u=0,因而Fd=0,加速度a等 速阶段:u=ut时,阻力、浮力与重力三者的代数和为零, 加速度a=0。 ut——“沉降速度”,又叫“终端速度”。由于工业上沉 降操作所处理的颗粒往往甚小,阻力随速度增长甚快, 可在短时间内就达到等速运动,所以加速阶段常常可以 忽略不计。
对于不可压缩滤饼
dq p uR 常数 d r q qe
p ruR 2 ruR qe
压强差随过滤时间成直线增高。
3.先恒速后恒压 恒压阶段 :
dV KA2 d 2 V Ve
KA2 d V Ve dV 2
令VR、θ R分别代表升压阶段终了瞬间的滤液体积 及过滤时间,则上式的积分形式为
dV Ad p V Ve r A
可压缩滤饼的情况比较复杂,它的比阻是两侧压强 差的函数。考虑到滤饼的压缩性,通常可借用下面的 经验公式来粗略估算压强差增大时比阻的变化
r=r'(Δ p)s
操作周期为 T=θ +θ
θ
W+θ D
θ ——一个操作循环内的过滤时间,s;
W——一个操作循环内的洗涤时间,s;
θ D——一个操作循环辅助操作所需时间,s。
则生产能力
3600V 3600V Q T W D
V——一个操作循环内所获得的滤液体积,m3
二、连续过滤机的生产能力
阻力:
6
1 2 Fd Ap u 2
根据牛顿第二运动定律:
Fg Fb Fd ma
u 2 3 d s g d g d d s a 6 6 4 2 6
3 3 2
加速阶段:开始沉降瞬间,u=0,因而Fd=0,加速度a等 速阶段:u=ut时,阻力、浮力与重力三者的代数和为零, 加速度a=0。 ut——“沉降速度”,又叫“终端速度”。由于工业上沉 降操作所处理的颗粒往往甚小,阻力随速度增长甚快, 可在短时间内就达到等速运动,所以加速阶段常常可以 忽略不计。
对于不可压缩滤饼
dq p uR 常数 d r q qe
p ruR 2 ruR qe
压强差随过滤时间成直线增高。
3.先恒速后恒压 恒压阶段 :
dV KA2 d 2 V Ve
KA2 d V Ve dV 2
令VR、θ R分别代表升压阶段终了瞬间的滤液体积 及过滤时间,则上式的积分形式为
dV Ad p V Ve r A
可压缩滤饼的情况比较复杂,它的比阻是两侧压强 差的函数。考虑到滤饼的压缩性,通常可借用下面的 经验公式来粗略估算压强差增大时比阻的变化
r=r'(Δ p)s
化工原理机械分离PPT课件

南京工业大学
NJUT
四、过滤设备
1.过滤设备种类 ➢按操作方式: 间歇式: 连续式:
➢按压强差 压滤 吸滤 离心过滤机
南京工业大学
NJUT
2.加压叶滤机
南京工业大学
NJUT
南京工业大学
NJUT
3. 板框压滤机
南京工业大学
NJUT
五、物料衡算p101
设过滤面积Am2,滤液Vm3,滤饼厚度 Lm,滤饼空隙率ε 悬浮液: 滤液V (V+LA) 滤饼LA:液体LAε 固体LA(1-ε)
2)床层的空隙率ε
ε=(床层体积-颗粒所占的体积)/床层体积=空 隙体积/床层体积
ε表示床层中颗粒堆积的疏密程度,ε大疏松,ε小 紧密
ε=ε(颗粒的形状、粒度分布,充填方式)
一般乱堆0.47<ε<0.7
南京工业大学
NJUT
堆积密度:单位体积固定床内固体颗 粒的质量
真实密度:颗粒的密度
南京工业大学
NJUT
过滤介质:滤布、金属丝网等
南京工业大学
NJUT
2)深层过滤(深床过滤):适用于悬
浮液中固体颗粒的体积百分数小于0.1% 且固体颗粒粒径较小的场合。
特点:p113 不形成滤饼,粒子粘附在孔道壁面上而被截留 整个过滤过程中过滤阻力不变
过滤介质:细小坚硬的固体颗粒堆积生成的固 定床 粒状介质:细纱、石棉、硅藻土等多用于深床 过滤。 多孔道固体介质:多孔陶瓷,多孔塑料
南京工业大学
NJUT
洗涤速率(dV/dτ)W与过滤终了时速率(dV/dτ)E的关 系:
洗涤推动力∆pW =过滤终了时的压强差∆p,洗涤液 μW=滤液μ,则
叶滤机(置换洗涤法)p104
过滤终了时滤饼厚度=洗涤滤饼厚度
化工原理第三章机械分离与固体流态化.ppt

固体颗粒被过滤介质截留后,逐渐累积成饼 (称 2.过滤推动力
在过滤过程中,滤液通过过滤介质和 滤饼层流动时需克服流动阻力,因此, 过滤过程必须施加外力。外力可以是重 力、压力差,也可以是离心力,其中以 压力差和离心力为推动力的过滤过程在 工业生产中应用较为广泛。
3.1.2 过滤基本方程
令颗粒比表面积a=颗粒表面积/颗粒体积,则:
de4 a 1
将上述几式式代入式3-1,整理得:
dV 3
p1
Ad 2Ca212 L
(3-2)
r2C2a 12 3
r称为滤饼的比阻,与滤饼的结构有关。r r0ps
可压缩滤饼的s大约为0.20.8。不可压缩滤饼s=0。于是
式3-2可写成:
若过滤介质阻力可忽略不计,则以上两式简化为:
V2 KA2
q2 K
3.1.2 过滤基本方程
• 2.恒速过滤
若过滤时保持过滤速度不变,则过滤过程为恒速过滤。
对恒速过滤,有 dV V 常数
Ad A
代入式3-5中得:
V2
VVe
K 2
A2
或
q2
qqe
K
2
若过滤介质阻力可忽略不计,则以上两式简化为:
V 2 K A2
第三章 机械分离与固体流态化
• 3.1 过 滤 • 3.2 沉 降 • 3.3 固体流态化
3.1 过 滤
• 3.1.1 概述 • 3.1.2 过滤基本方程 • 3.1.3 过滤常数的测定 • 3.1.4 滤饼洗涤 • 3.1.5 过滤设备及过滤计算
3.1.1 概 述
• 滤饼过滤其基本原理是在外力(重力、压力、离心 力)作用下,使悬浮液中的液体通过多孔性介质,而 固体颗粒被截留,从而使液、固两相得以分离,如图 3-1所示。
在过滤过程中,滤液通过过滤介质和 滤饼层流动时需克服流动阻力,因此, 过滤过程必须施加外力。外力可以是重 力、压力差,也可以是离心力,其中以 压力差和离心力为推动力的过滤过程在 工业生产中应用较为广泛。
3.1.2 过滤基本方程
令颗粒比表面积a=颗粒表面积/颗粒体积,则:
de4 a 1
将上述几式式代入式3-1,整理得:
dV 3
p1
Ad 2Ca212 L
(3-2)
r2C2a 12 3
r称为滤饼的比阻,与滤饼的结构有关。r r0ps
可压缩滤饼的s大约为0.20.8。不可压缩滤饼s=0。于是
式3-2可写成:
若过滤介质阻力可忽略不计,则以上两式简化为:
V2 KA2
q2 K
3.1.2 过滤基本方程
• 2.恒速过滤
若过滤时保持过滤速度不变,则过滤过程为恒速过滤。
对恒速过滤,有 dV V 常数
Ad A
代入式3-5中得:
V2
VVe
K 2
A2
或
q2
qqe
K
2
若过滤介质阻力可忽略不计,则以上两式简化为:
V 2 K A2
第三章 机械分离与固体流态化
• 3.1 过 滤 • 3.2 沉 降 • 3.3 固体流态化
3.1 过 滤
• 3.1.1 概述 • 3.1.2 过滤基本方程 • 3.1.3 过滤常数的测定 • 3.1.4 滤饼洗涤 • 3.1.5 过滤设备及过滤计算
3.1.1 概 述
• 滤饼过滤其基本原理是在外力(重力、压力、离心 力)作用下,使悬浮液中的液体通过多孔性介质,而 固体颗粒被截留,从而使液、固两相得以分离,如图 3-1所示。