光学全息技术的原理.ppt

合集下载

现代光学第4章 光学全息 数字全息的原理及激光散斑 共192页

现代光学第4章  光学全息 数字全息的原理及激光散斑 共192页
图 4.2-1 记录标准傅里叶变换全息图的光路
21
第4章 光学全息、数字全息的原理及激光散斑
图4.2-1中,记录物体为一透明图片,位于透镜的前焦 平面上; 参考点光源(针孔)与物共面,位置坐标为(-b,0); 记录介质位于透镜的后焦面。用相干单色平面波垂直入射 照明物面时,透明图片后表面上的光波场复振幅分布 即为物光的复振幅,表示为 O(x0,y0), 在记录平面即透 镜的后焦面上得到其傅里叶变换为
光强分布为
(4.1-3)
(4.1-4)
5
第4章 光学全息、数字全息的原理及激光散斑
在线性记录条件下,全息图的振幅透射系数为
(4.1-5) 再现时,设照明全息图的光波场在全息图上的复振幅 分布为
(4.1-6)
6
第4章 光学全息、数字全息的原理及激光散斑
则透过全息图光波的复振幅分布为
(4.1-7) 式中: 第一项是直射光; 第二项是原始像(含O); 第三项 是共轭像(含O*)。 这就是全息照相的基本公式。应当指出, 一般情况参考光是平面波或球面波,可看成是点光源; 而 物体都有一定的大小,可看成点光源的线性组合,则
对于原始像,有
可见,原始像和物完全重合。
(4.1-18)
13
第4章 光学全息、数字全息的原理及激光散斑
对于共轭像,有 (4.1-19)
14
第4章 光学全息、数字全息的原理及激光散斑
4.1.3 再现像的放大率 1. 横向放大率 当物光和参考光的夹角不大时,横向放大率定义为
(4.1-20)
应用式(4.1-17),分别求关于xi和xO的一阶导数,得到横向 放大率的显式表达式为
(4.2-4)
26
第4章 光学全息、数字全息的原理及激光散斑

全息技术的原理及应用

全息技术的原理及应用

全息技术的原理及应用全息技术是一种用于记录和再现光场的技术,它是一种三维成像技术。

全息技术最早于1962年由著名物理学家丹尼尔·费涅尔(Daniel Gabor)提出。

全息技术的最大特点是可以将物体的三维信息完整地改写到一个二维的全息图中,全息图看似一张普通的照片,但是在光源的照射下,它能够重新创造出原来的物体,还原出物体的三维形态,同时还具有非常好的真实感和逼真感。

全息技术的原理全息技术的原理是利用激光将物体的光场记录在照相底片上,形成全息图。

全息图是一种保存了物体三维形态的光学记录,它包含了物体的干涉图案和透明度信息。

全息图利用干涉的性质,可以记录物体的相位信息和振幅信息,能够保存物体的全息图。

记录全息图时,需要将物体和照相底片分别置于两个平行的玻璃板之间。

激光在照射物体时,会将物体的光场反射到照相底片上,形成干涉图案。

底片上的干涉图案是物体光场的等相位面反映出来的图像,它是由物体表面反射的光和费涅尔透镜(一种具有聚焦作用的透镜)所形成的参考光共同构成的。

因为在干涉场中,光波的传播路径长度差非常小,在光波相遇处形成明暗条纹,这些条纹的位置和形状会因物体的形态而发生改变,形成的最终干涉图案记录下来就是全息图。

再现全息图时,需要用与记录时完全相同的激光照射全息图,通过透过全息图的物体表面反射出来的光和记录时的参考光发生干涉,使得原来的物体在远离全息图的位置上重现出来。

全息图的再现实现了物体三维成像,不仅形成物体的轮廓,而且根据物体的距离和形态变化能够变幻不一的视角,充分表现出物体的全貌和空间位置的正确性。

全息技术的应用全息技术的应用领域非常广泛,下面是其中一些主要应用:1. 眼科诊断:全息技术可以记录患者眼球的形态,进而帮助医生进行眼科疾病的诊断和治疗。

如果对眼血管进行全息摄影,医生可以查看容易被遮挡的病变区域。

2. 工业设计:全息技术可以记录产品的三维形态,帮助工业设计师进行产品的设计和开发。

全息技术的原理及应用现状

全息技术的原理及应用现状

全息技术的原理及应用现状引言全息技术是一种记录和再现三维空间中物体的光学技术,通过使用干涉和衍射原理,可以将物体的完整三维信息记录在一张平面上,然后再通过光的照射将其再现出来。

全息技术广泛应用于各个领域,包括科学研究、医学、艺术等。

本文将介绍全息技术的原理以及其在不同领域的应用现状。

全息技术的原理全息技术的原理基于光的干涉和衍射现象。

当一束激光照射到物体上时,物体会对光进行散射,产生波前形状。

然后,将物体放在光敏材料上,再次用同一波长和相干性的光照射,光将被散射和干涉,形成一个复杂的光场。

通过光场的干涉和衍射,可以记录下物体的三维信息。

全息技术的记录过程1.激光照射:将一束激光照射到物体上。

2.光的散射:物体对激光进行散射,形成波前形状。

3.干涉记录:将散射光与参考光(激光)进行干涉,形成干涉图样。

4.光敏材料的记录:将干涉图样记录在光敏材料上。

5.固定显影:用化学处理将记录在光敏材料上的图样固定。

全息技术的再现过程1.激光照射:将同一波长和相干性的激光照射在光敏材料上。

2.衍射复现:照射光通过光敏材料,衍射生成原始物体的复原波前。

3.人眼观察:人眼通过观察这个复原波前,再现出原始物体的三维信息。

全息技术在科学研究中的应用全息技术在科学研究中发挥了重要的作用,以下是一些主要应用:1.显微镜技术的改进:全息显微镜能够实现超分辨率成像,使得科学家能够观察到更细微的结构和细胞。

全息显微镜在生物医学研究中有很大的应用潜力。

2.全息光刻技术:全息光刻技术是一种制备微纳米结构的关键技术。

它可以将光的干涉和衍射原理应用于光刻工艺中,实现高分辨率和高精度的微纳米结构制造。

3.全息光学存储:全息光学存储是一种基于全息技术的数据存储技术,可以实现大容量、高速的数据存储。

它在信息技术领域有着广泛的应用前景。

全息技术在医学中的应用全息技术在医学领域有着广泛的应用,以下是一些主要应用:1.医学成像:全息技术可以实现三维医学成像,提供更准确的诊断信息。

全息照相的拍摄原理原理

全息照相的拍摄原理原理

全息照相的拍摄原理原理全息照相是一种利用相干光的干涉原理记录并再现物体的全息图像的技术。

全息照相的拍摄原理主要包括:1. 干涉原理:全息照相利用光的干涉现象来记录物体的全息图像。

干涉是指两束或多束光波相遇时的相互作用,其结果是波的叠加。

在全息照相中,拍摄物体的光波与参考光波发生干涉,形成了干涉条纹,这种干涉条纹携带了物体的三维信息。

2. 激光光源:全息照相需要一束高度相干的激光光源。

激光具有高度单色性和相干性,能够产生稳定的干涉条纹,并提供足够的光强用于记录全息图像。

3. 分束镜:分束镜是全息照相中的一个重要光学元件。

它将来自激光器的光分成两部分,一部分是直射到拍摄物体上的对象光,另一部分是被称为参考光的光束。

4. 物体光与参考光的干涉:当分束后的对象光照射到物体上时,它会被物体表面反射或透射,形成物体光。

同时,从分束镜反射出来的参考光也照射到物体上。

5. 干涉记录:物体光与参考光在感光介质上发生干涉,并记录下干涉条纹的信息。

感光介质可以是光敏薄膜、干板或者像素阵列等。

6. 全息图像再现:全息照相的关键在于再现全息图像。

再现时,使用与记录时相同的光源,将记录下来的全息图像照射得到物体光和参考光。

物体光与参考光再次发生干涉,干涉条纹会产生光学衍射,通过成像系统或像素阵列可以看到再现的全息图像。

总结起来,全息照相的拍摄原理主要是利用光的干涉现象来记录物体的全息图像。

通过利用激光光源、分束镜和感光介质,物体光和参考光发生干涉并记录下干涉条纹,再利用相同的光源再现全息图像。

全息照相的拍摄原理使得它能够记录和再现物体的三维信息,具有广泛的应用前景。

信息光学第七章-光学全息ppt课件

信息光学第七章-光学全息ppt课件
引入一相干参考波,该参考波在H上产生 的复振幅分布为
R x,yr0x,yejrx,y
那么,两波相遇叠加的总光场是
U x ,y O x ,y R x ,y
对应的强度分布为
I x , y U x , y 2 O x , y 2 R x , y 2 O x , y R * x , y O * x , y R x , y
➢用共轭参考波照明
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
2、波前记录与再现
✓用相干光波照射全息图,假定它在全息图平面上的复振幅分布为C(x,y),
全息图的透射光场分布为 U t x , y C t x , y C t b C O 2 C O R * C O * R U 1 U 2 U 3 U 4
4、基元全息图分析
✓全息图可看作是很多基元全息图的线性组合,了解基元全息图的结构和
作用对于深入理解整个全息图的记录和再现机理非常有益。 空域方法是把物体看作一些相干点源的集合,物光波前是所有点源发出的 球面波的线性叠加。每一个点源发出的球面波与参考波干涉,记录的基元 全息图称为基元波带片; 频域方法是把物光波看作由很多不同方向传播的平面波分量的线性叠加, 每一个平面波分量与参考平面波干涉而记录的基元全息图称为基元光栅。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
1、引言
✓全息发展简史
➢ 1948年 Dennis Gabor 提出 “波前重现” 理论
目的:改善电子显微镜的分辨率 光源:汞灯 效果:因光源相干性差,效果很不明显

17光学全息技术的原理

17光学全息技术的原理
c.波面的改变:再现光波面的改变会使原始像发生畸变。
全息再现特点的定性说明
全息图上每一点都记录有物上所有点发出的波的全部信息,因此 每一点都可以在参考光照射下再现出像的整体。
对再现像有贡献的点越多,像的亮度越高。 点越多,再现时的照明孔径也越大,像的分辨率就越高,可 以观察三维立体像的视角也越宽
还应当注意到,在全息图上这四项是相互重叠在一起的 由于光是独立传播的,再现时在全息图上相互重叠的的四项
息图的入射角有偏离。偏离角小时仍出现再现像;随着角度的增 大,再现像由畸变直至消失。全息图只在一个有限的角度范围内 能再现物波前。
利用这一特性,可采用不同角度的参考光在同一张全息片上 记录多重全息图,再现时只要依次改变再现光角度,便可依次显 示出不同的像来。
b.波长的改变:如再现光与参考光只是波长存在差异,则再现像会 出现尺寸上的放大或缩小,同时改变与全息图的相对距离。
干涉场光振幅应是两者的相干叠加,H 上的总光场为干涉场光振幅应是两者的 相干叠加,H 上的总光场为 U(x,y)=O(x,y)+R(x,y)
干板记录的是干涉场的光强分布,曝光光强为 I ( x , y ) = U ( x , y )·U * ( x , y ) =∣O∣2 +∣R∣2 + O·R* + O*·R
将分别沿三个不同方向传播。
只要这些方向之间夹角比较大,离开全息图不远就可以分离 开来,在不同方向上观察,这四项产生的图像并不会互相干扰
——利思和乌帕特尼克斯提出离轴全息图的原理。
全息实验用装置
1. 相干光源——激光器
2.防震平台及光学元件 在几秒到几分钟甚至几十分钟内要求光路必须达到较高稳定 度,光程差的变化量不得超过λ /10 常用的光学元件有:反射镜;扩束镜;针孔滤波器;光分束 器;透镜;散射器等

光学课件 彩虹全息

光学课件 彩虹全息

像的色散主要表现在y方向上。主要讨论y方向上的单色性.类似 光栅的色散。
y
光栅方程:dsinθ=mλ
z
光栅色散本领:Dθ = m /(dcos θm)
d 减小, Dθ 增大。
y
H
∆H
O•
S H1
R1∗
a
R2
zo
zs
y
∆H
x
¾ 用白光照射全息图, 经∆H的衍射后,对同一 物点,不同波长的光形 成的像点位置不同。
但是,a ↓ (视场小,亮度小), ze ↓(视场小),
θr ↑(要求干板空间分辨率高)
2.像的色模糊:
¾用点源全息图再现 像点位置(xi, yi, zi)公
式,由∆λ可求出在
各方向上的色模糊分
量(∆xi, ∆yi, ∆zi)。
I λ ′ ∆•z ∆y I λ • ∆I
y H
∆α
S Sλ Sλ′
∆H α
但是
⎧ ⎪ ⎨
zo小,则景深小 zs大,要求记录时狭缝S靠近透镜焦点,限制视场
⎪⎩a小,狭缝窄,激光散斑影响大
实验中,应根据要求适当选取。 如取:a为5~10mm左右,zs为25~30cm左右。
根据记录方式不同:分为二步彩虹全息和一步彩虹全息。
5.8.1 二步彩虹全息(1969年提出)
O
H1
A
B
D
C
R1
第1步:记录物体菲 涅耳全息图
H
A ∆H
S H1 R2∗
B
CD
R2
zo
zs
第2步:记录彩虹全息图
C H S′
A
B
D
C
再现观察
(1)记录时采用相干光源,再现时既 可使用相干光源,也可采用非相 干光源(如白光)。

全息照相基本原理

全息照相基本原理

全息照相基本原理全息照相是一种记录和重现物体光学信息的技术,它可以通过使用相干光源和干涉的原理,以一种更加真实和立体的方式来呈现物体的图像。

全息照相的基本原理包括以下几个方面:1.相干光源:全息照相使用的光源是相干光源,相干光是具有相同波长、频率、振幅和相位的光的集合。

相干光源可以是激光或者其他具有特定相干性质的光源,这样可以保证在记录全息图像时得到更清晰、准确的光学信息。

2.物体和参考光束的干涉:在全息照相中,物体光束和参考光束在记录介质上相遇并发生干涉。

物体光束经过物体后得到反射、散射的光,而参考光束是直接发射出来的。

当这两束光在其中一点相遇时,它们会发生干涉现象。

干涉的结果取决于两束光的相位差和振幅,因此干涉的图案将反映出物体的光学信息。

3.干涉图案的记录:在记录全息图像之前,需要在一块感光介质上加上一层感光材料。

这个感光材料对于物体光束和参考光束来说是透明的,它只会在两束光相遇的地方发生化学反应。

当物体光束和参考光束相干地交迭到一起时,在感光介质上就会出现一种干涉图案。

该图案本身就是一种记录了物体光学信息的全息图像。

4.重现全息图像:在重现全息图像时,需要使用与记录时完全相同的相干光源。

通过将重现光源照射到记录介质上,物体光束和参考光束将再次相交。

这样,干涉图案将再次出现在感光介质上,并重新创建出原始物体的全息图像。

由于记录时捕捉到了物体的相位和振幅信息,因此重现时可以呈现出立体感和逼真的图像。

总结起来,全息照相基本原理是利用相干光源和干涉的原理来记录和重现物体的光学信息。

通过物体光束和参考光束的干涉,可以在感光介质上记录下物体的全息图像。

使用相同的相干光源时,干涉图案将再次在感光介质上出现,并重现出原始物体的立体图像。

这种技术在许多领域有广泛的应用,包括三维成像、显微镜、安全认证和艺术创作等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上式 ,称为全息学基本方程,其中方程右边各项的意义为 第一、二项:与再现光相似,它具有与其相同的位相分布,只是振幅分布不
同,因而它将以与再现光C ( x , y )相同的方式传播。
第三项:包含有物的位相信息,但还含有附加位相。 第四项:包含有物的共轭位相信息,可能形成共轭像。
波前再现的几个特例(1)
将分别沿三个不同方向传播。
只要这些方向之间夹角比较大,离开全息图不远就可以分离 开来,在不同方向上观察,这四项产生的图像并不会互相干扰
——利思和乌帕特尼克斯提出离轴全息图的原理。
全息实验用装置
1. 相干光源——激光器
2.防震平台及光学元件 在几秒到几分钟甚至几十分钟内要求光路必须达到较高稳定 度,光程差的变化量不得超过λ/10 常用的光学元件有:反射镜;扩束镜;针孔滤波器;光分束 器;透镜;散射器等
干涉场光振幅应是两者的相干叠加,H 上的总光场为干涉场光振幅应是两者的 相干叠加,H 上的总光场为 U(x,y)=O(x,y)+R(x,y)
干板记录的是干涉场的光强分布,曝光光强为 I ( x , y ) = U ( x , y )·U * ( x , y ) =∣O∣2 +∣R∣2 + O·R* + O*·R
像称为原始像(虚象) 第四项为共轭项,它除了 与物波共轭外,还附加了 一是实像
波前再现的几个特例(2)
(2)C ( x , y ) = R* ( x , y ) 采用与参考光共轭的光波再现 U’( x , y ) = R 0(O 0 2 + R 0 2)exp [- jφr ]
+ R 0 2 O 0 exp [ j (φo -2φr )]+ R 0 2 O 0 exp [ - jφo]
第一、二项合并,仍保留了参考光的特征 第三项是畸变了的虚象 第四项是与原物相象的实像,但出现了景深反演,即原来近的部位
变远了,原来远的部位变近了,称为赝像
波前再现的几个特例(3)
(3)其他情况: a.照射角度的偏离:如再现光与参考光波面形状相同,只是相对全
息图的入射角有偏离。偏离角小时仍出现再现像;随着角度的增 大,再现像由畸变直至消失。全息图只在一个有限的角度范围内 能再现物波前。
利用这一特性,可采用不同角度的参考光在同一张全息片上 记录多重全息图,再现时只要依次改变再现光角度,便可依次显 示出不同的像来。
b.波长的改变:如再现光与参考光只是波长存在差异,则再现像会 出现尺寸上的放大或缩小,同时改变与全息图的相对距离。
(1)C ( x , y ) = R ( x , y ),即原参考光再现 U’( x , y ) = R 0(O 0 2 + R 0 2)exp [ jφr ] + R 0 2 O 0 exp [ j φo]+ R 0 2 O 0 exp [ - j (φo - 2φr )]
第一、二项合并为一项,保留了参考光的信息 第三项与原物光波只增加了一个常数因子,再现了物光波,所成的
同轴全息图的记录和再现
(a) 记录;(b) 再现
同轴全息图
设相干平面波照明一个高度透明的物体,透射光场可以表示为:
t(x0 , y0 ) t0 t(x0 , y0 )
t0是一个很高的平均透射率, 表t示围绕平均值的变化,且
有:
t t0
因此透射光场可以看成由两项组成:一项是由
t0表示的、强而
3.全息实验光路设计原则 (1)光程差的要求尽可能小 (2)干板表面物光和参考光光强之比在1:2至1:10以内 (3)空间频率的限制:物光和参考光的夹角应选择适当,使全
息图的条纹密度不得大于所选用记录介质的分辨率 (4)光学元件使用数量要尽可能少,一方面是为了减少不必要
的光能量损失,另一方面也为了减少引入光噪声的渠道。
透过H后的光振幅U’( x , y ) 为
U x, y C0 x, yexp jc x, y O 2 R 2 O R* O* R
C0 O02 exp jc x, y C0 R02 exp jc x, y C0O0 R0 exp j0 r c C0O0 R0 exp j0 r c
盖伯避免位相信息丢失的技巧是干涉方法,因为干涉场分布与波面位 相有一一对应关系
物光波的振幅和位相信息便以干涉条纹的形状、疏密和强度的形式 “冻结”在感光的全息干板上
波前记录和波前再现示意图
波前记录的数学模型
在全息干板H上设置x , y坐标,设物波和参考波的复振幅分别为 O ( x , y ) = O 0 ( x , y ) exp [ jφo ( x , y ) ] R ( x , y ) = R 0 ( x , y ) exp [ jφr ( x , y ) ]
经线性处理后,底片的透过率函数tH 与曝光光强成正比,略去一个无关紧要的 比例常数,上式可直接写成 tH ( x , y ) =∣O∣2 +∣R∣2 + O·R* + O*·R
波前再现的数学模型
设照明光波表示为
C ( x , y ) = C 0 ( x , y ) exp [ jφc ( x , y ) ]
c.波面的改变:再现光波面的改变会使原始像发生畸变。
全息再现特点的定性说明
全息图上每一点都记录有物上所有点发出的波的全部信息,因此 每一点都可以在参考光照射下再现出像的整体。
对再现像有贡献的点越多,像的亮度越高。 点越多,再现时的照明孔径也越大,像的分辨率就越高,可 以观察三维立体像的视角也越宽
还应当注意到,在全息图上这四项是相互重叠在一起的 由于光是独立传播的,再现时在全息图上相互重叠的的四项
均匀的平面波,它相当于波前记录时的参考波;另一项是 t
所代表的弱散射波,它相当于波前记录时的物光波。
光学全息记录与再现原理
波前记录与再现
人眼接收到不失真的物光波的全部信息,两眼产生视差的结果,便 看到了三维立体像
利用两眼视差观察不同像合成,并不是真正的立体像;接收到具有 位相关系的物光波,看见物体的立体像,才是“全息”立体像
“冻结”物光波的过程称为“波前记录”,“复活”信息称为“波 前再现” 即“wavefront reconstraction”
相关文档
最新文档