初中数学菱形的判定及性质练习题(附答案)
菱形的性质和判定经典试题综合训练(含解析)

菱形的性质和判定经典试题综合训练(含解析)一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.757.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.412.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣114.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件.19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.27.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(2)若∠ADB=30°,BD=6,求AD的长.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(2)若AF=8,CF=6,求四边形BDFG的面积.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.菱形的性质和判定经典试题综合训练参考答案与试题解析一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE 即可解决问题.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【分析】根据菱形是特殊的平行四边形以及等腰三角形的性质证明即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm.故选:B.5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.75【分析】连AP,由菱形ABCD的周长为16,根据了菱形的性质得AB=AD=4,并且S菱形ABCD=2S△ABD,则S△=×12=6,由于S△ABD=S△APB+S△APD,再根据三角形的面积公式得到•PE•AB+•PF•AD=6,即可得到ABDPE+PF的值.【解答】解:连AP,如图,∵菱形ABCD的周长为16,∴AB=AD=4,∴S菱形ABCD=2S△ABD,∴S△ABD=×12=6,而S△ABD=S△APB+S△APD,PE⊥AB,PF⊥AD,∴•PE•AB+•PF•AD=6,∴2PE+2PF=6,∴PE+PF=3.故选B.7.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm【分析】作出图形,根据菱形的对角线互相垂直平分可得AC⊥BD,AO=CO=AC,BO=DO=BD,然后根据菱形的面积等于对角线乘积的一半列式整理可得AO•BO=60,根据菱形的周长求出AB=13,再利用勾股定理可得AO2+BO2=169,然后利用完全平方公式整理并求出AO+BO,再求解即可.【解答】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC,BO=DO=BD,∵菱形的面积为120cm2,∴AC•BD=120,即×2AO•2BO=120,所以,AO•BO=60,∵菱形的周长为52cm,∴AB=13cm,在Rt△AOB中,由勾股定理得,AO2+BO2=AB2=132=169,所以,(AO+BO)2=AO2+2AO•BO+BO2=169+60×2=289,所以,AO+BO=17,所以,AC+BD=2(AO+BO)=2×17=34cm.故选D.8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm【分析】通过解直角三角形ADE得到边AD的长度,然后由菱形的周长公式进行解答.【解答】解:在菱形ABCD中,AD=CD.∵E为CD的中点,AE⊥CD,∴ED=CD=AD,∴∠DAE=30°,∵AE=cm,∴AD===2(cm),∴菱形ABCD的周长=4AD=8cm.故选:D.9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个【分析】根据菱形的性质、平行线的性质、平行四边形的判定和性质等知识一一判断即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,AB=AD,∠ABC=2∠ABD,∵AE∥BD,∴AE⊥AC,∴∠EAC=90°,故①正确,∵AB∥DE,AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∠E=∠ABD,∴AD=DE,故②正确,∴∠ABC=2∠E,故③正确,故选D.10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°【分析】根据等边三角形性质得出BD=AB,BE=BC,∠DBA=∠EBC=60°,求出∠DBE,证△DBE≌△ABC,推出DE=AC=AF,同理AD=EF得出平行四边形ADEF,根据菱形的判定判断即可.【解答】解:∵△ABD和△BCE是等边三角形,∴BD=AB,BE=BC,∠DBA=∠EBC=60°,∴∠DBE=∠CBA=60°﹣∠EBA,在△DBE和△ABC中,,∴△DBE≌△ABC(SAS),∴DE=AC,∵△AFC是等边三角形,∴AF=AC,∴AF=DE,同理AD=EF,∴四边形ADEF是平行四边形,当AB=AC时,∵AD=AB,AC=AF,∴AD=AF,∴四边形ADEF是菱形,故选A.11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.4【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.12.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣1【分析】A、由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出A正确;B、由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG=,求出AC,AG,即可得出B正确;C、由勾股定理求出DF=,由GE=tan∠2•ED求出GE,即可得出C正确;D、由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出D不正确.【解答】解:∵四边形ABCD是菱形,∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴A正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴B正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴C正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴D不正确;故选:D.14.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个【分析】①正确,根据三角形的面积公式可得到结论.②根据已知条件利用菱形的判定定理可证得其正确.③正确,根据菱形的面积等于对角线乘积的一半即可求得.④不正确,根据已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确,由已知可证得△DEO≌△DFO,从而可推出结论正确.【解答】解:①正确∵E、F分别是OA、OC的中点.∴AE=OE.∵S△ADE=×AE×OD=×OE×OD=S△EOD∴S△ADE=S△EOD.②正确∵四边形ABCD是菱形,E,F分别是OA,OC的中点.∴EF⊥OD,OE=OF.∵OD=OD.∴DE=DF.同理:BE=BF∴四边形BFDE是菱形.③正确∵菱形ABCD的面积=AC×BD.E、F分别是OA、OC的中点.∴EF=AC.∴菱形ABCD的面积=EF×BD.④不正确,由已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确∵EF⊥OD,OE=OF,OD=OD.∴△DEO≌△DFO.∴△DEF是轴对称图形.∴正确的结论有四个,分别是①②③⑤,故选B.15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3【分析】首先连接PP′交BC于O,根据菱形的性质可得PP′⊥CQ,可证出PO∥AC,根据平行线分线段成比例可得=,再表示出AP、AB、CO的长,代入比例式可以算出t的值.【解答】解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为4cm.【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故答案为:4.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是①②③④(只填写序号)【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【解答】解:因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵∴△ABD≌△CDB(SSS),正确.故答案为:①②③④.18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件AC=BD.【分析】添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.【解答】解:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.故答案为:AC=BD19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是③(只填写序号).【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.【解答】解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,③AB=AC,∵,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF是菱形.故答案为:③.20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于 2.5.【分析】直接利用菱形的性质得出AB=AD=10,S△ABD=12.5,进而利用三角形面积求法得出答案.【解答】解:∵菱形ABCD的周长为40,面积为25,∴AB=AD=10,S△ABD=12.5,∵分别作P点到直线AB、AD的垂线段PE、PF,∴×AB×PE+×PF×AD=12.5,∴×10(PE+PF)=12.5,∴PE+PF=2.5.故答案为:2.5.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.【分析】作BM⊥FG于M,交EC于N,如图,根据菱形的性质得BC=CD=3,CG=GF=4,AB∥CE∥GF,∠ABC=∠BCD=∠CGF=120°,则∠BCN=∠BGM=60°,再根据含30度的直角三角形三边的关系,在Rt△BCN中可计算出BN=CN=,在Rt△BMG中可计算出BM=GM=,则MN=BM﹣BN=﹣=2,然后根据三角形面积公式和梯形面积公式,利用S阴影部分=S△BCD+S梯形CDFG﹣S△BGF进行计算即可.另一种解法为把阴影部分的面积转化为△BCD的面积进行计算.【解答】解:连接CF,如图,∵四边形ABCD和四边形CGFE为菱形,∠A=120°,∴∠DBC=∠FCG=30°,∴BD∥CF,∴S△FDB=S△CDB=S菱形ABCD=•2••32=.故答案为.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足AB=CD条件时,四边形EFGH是菱形.【分析】首先利用三角形的中位线定理证出EF∥AB,EF=AB,HG∥AB,HG=AB,可得四边形EFGH是平行四边形,再根据邻边相等的平行四边形是菱形,添加条件AB=CD后,证明EF=EH即可.【解答】解:需添加条件AB=CD.∵E,F是AD,DB中点,∴EF∥AB,EF=AB,∵H,G是AC,BC中点,∴HG∥AB,HG=AB,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∵E,H是AD,AC中点,∴EH=CD,∵AB=CD,∴EF=EH,∴四边形EFGH是菱形.故答案为:AB=CD.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为2.【分析】根据正方形的判定定理得到BQ=BP时,四边形QPBP′为正方形进行解答即可.【解答】解:由题意得,当△BPQ为等腰直角三角形时,四边形QPBP′为正方形,则BQ=BP,即6﹣t=×t,解得t=2.故答案为:2.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形;【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA∴AF=DF,∴四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB 、DF .根据菱形四边相等得出AB=AD=FA ,再利用SAS 证明△BAD ≌△FAD ,得出DB=DF ,那么D 在线段BF 的垂直平分线上,又AB=AF ,即A 在线段BF 的垂直平分线上,进而证明AD ⊥BF ;(2)设AD ⊥BF 于H ,作DG ⊥BC 于G ,证明DG=CD .在直角△CDG 中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB=BC=CD=DA ,AD=DE=EF=FA .在△BAD 与△FAD 中,,∴△BAD ≌△FAD ,∴DB=DF ,∴D 在线段BF 的垂直平分线上, ∵AB=AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;(2)如图,设AD ⊥BF 于H ,作DG ⊥BC 于G ,则四边形BGDH 是矩形,∴DG=BH=BF .∵BF=BC ,BC=CD ,∴DG=CD .在直角△CDG 中,∵∠CGD=90°,DG=CD ,∴∠C=30°,∵BC ∥AD ,∴∠ADC=180°﹣∠C=150°.27.如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ;(2)求证:四边形ABFE 是菱形.【分析】(1)根据旋转角求出∠BAD=∠CAE ,然后利用“边角边”证明△ABD 和△ACE 全等.(2)根据对角相等的四边形是平行四边形,可证得四边形ABFE 是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.【解答】(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS).(2)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.【解答】(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.【分析】(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【解答】证明:(1)在△ABC和△ADC中.∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG是菱形;(2)若AF=8,CF=6,求四边形BDFG的面积.【分析】(1)首先可判断四边形BDFG是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可证明四边形BDFG是菱形;(2)首先过点B作BH⊥AG于点H,由AF=8,CF=6,可利用勾股定理求得AC的长,即可求得DF的长,然后由菱形的性质求得BG=GF=DF=5,再求出EF的长即可解决问题.【解答】证明:(1)∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD,∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=AC,∴四边形BDFG是菱形,(2)∵AF=8,CF=6,CF⊥AG,∴AC==10,∴DF=AC=5,∵四边形BDFG是菱形,∴BD=GF=DF=5,∵DE∥AG,CD=AD,∴CE=EF=3∴S菱形BDFG=GF•EF=15.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【分析】(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE ≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.【解答】(1)证明:连接AC,如下图所示,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF(ASA).∴BE=CF;(2)解:四边形AECF的面积不变,△CEF的面积发生变化.理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=BC•AH=BC•=4,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.∴S△CEF=S四边形AECF﹣S△AEF=4﹣×2×=.答:最大值是.。
八年级数学下册《菱形的性质与判定》练习题及答案解析

八年级数学下册《菱形的性质与判定》练习题及答案解析1.若菱形的两条对角线长分别是6和8,则它的周长为()A.20B.24C.40D.482.菱形的面积为12cm2,一条对角线是6cm,那么菱形的另一条对角线长为()A.3cm B.4cm C.5cm D.6cm3.如图,在菱形ABCD中,AC=AB,则∠ABC=()A.30°B.45°C.60°D.75°4.在下列条件中,能够判定四边形是菱形的是()A.两条对角线相等B.两条对角线相等且互相垂直C.两条对角线互相垂直D.两条对角线互相垂直平分5.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AD=BC C.AC=BD D.AB=BC6.如图,要使平行四边形ABCD变为菱形,需要添加的条件是()A.AC=BD B.AD=BC C.AB=CD D.AB=BC7.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD8.菱形的周长为52,一条对角线长为10,则此菱形的面积为.9.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=.10.如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,过点O作OH⊥AB于点H,则OH 的长为.11.如图,点E,F分别在菱形ABCD的边BC,CD上,且∠BAE=∠DAF.求证:AE=AF.12.如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.13.要使▱ABCD是菱形,你添加的条件是.(写出一种即可)14.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使四边形ABCD是菱形.(只需添加一个即可)15.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD.(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.16.已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.17.如图,在▱ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.(1)求证:四边形DEBF为平行四边形;(2)当∠ADB=90°时,求证:四边形DEBF是菱形.18.如图,已知平行四边形ABCD,点E在AC的延长线上,连接BE、DE,过点D作DF∥EB交CA的延长线于点F,连接FB(1)求证:△DAF≌△BCE;(2)如果四边形ABCD是菱形,求证:四边形BEDF是菱形.19.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.20.如图,在菱形ABCD中∠ABC=60°,E为对角线AC上一点,F是BC延长线上一点,连接BE,DE,AF,DF,∠EDF=60°.(1)求证:AE=CF;(2)若点G为BE的中点,连接AG,求证:AF=2AG.21.如图,在菱形ABCD中,AC,BD相交于点O.已知BC=2OC,BF=EF,G为CE中点,连接FG,AG(1)若CE=8,∠ACE=∠ACB,求AB;(2)求证:FG=AG.参考答案与解析1.解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB====5,∴此菱形的周长为:5×4=20.故选:A.2.解:设另一条对角线长为xcm,则×6•x=12,解得x=4.故选:B.3.解:在菱形ABCD中,AB=BC,∵AC=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°.故选:C.4.解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,故选D.5.解:需要添加的条件是AB=BC;理由如下:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形(一组邻边相等的平行四边形是菱形);故选:D.6.解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:D.7.解:A、对角线垂直的平行四边形是菱形.不符合题意;B、对角线相等的平行四边形是矩形.符合题意;C、邻边相等的平行四边形是菱形.不符合题意;D、邻边相等的平行四边形是菱形,不符合题意;故选:B.8.解:如图所示∵菱形的周长为52,即4AB=52,∴AB=13,∵AC=10,∴AO=AC=5,∵AC⊥BD,在Rt△AOB中,由勾股定理得BO=12,∴BD=2BO=24,∴菱形的面积=×10×24=120.故答案为:120.9.解:∵四边形ABCD是菱形,∴AD=BC,AC⊥BD,AO=OC,DO=BO,∵AC=24,BD=10,∴AO=12,OD=5,由勾股定理得:AD=13,∴BC=13,∴S菱形ABCD=AC•BD=BC×DE,∴×24×10=13×DE,解得:DE=,故答案为:.10.解:∵四边形ABCD是菱形,AC=8,BD=6,∴BO=3,AO=4,AO⊥BO,∴AB===5.∵OH⊥AB,∴AO•BO=AB•OH,∴OH=,故答案为:.11.证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF.12.解:当AB=BC或AC⊥BD时,四边形ABCD是菱形.故答案为AB=BC或AC⊥BD.13.解:∵四边形ABCD是平行四边形,AD=AB,∴平行四边形ABCD是菱形,故答案为:AD=AB(答案不唯一).14.解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.15.解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.16.证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥AB,∴四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四边形ABFE是菱形.17.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点,∴EB=DF,EB∥DF,∴四边形DEBF为平行四边形;(2)证明:∵∠ADB=90°,E为边AB的中点,∴DE=AB=EB,∵四边形DEBF为平行四边形,∴四边形DEBF为菱形.18.(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA,∴∠DAF=∠BCE,∵DF∥EB,∴∠DF A=∠BEC,在△DAF和△BCE中,,∴△DAF≌△BCE(AAS);(2)证明:连接BD,如图所示:由(1)得:△DAF≌△BCE,∴DF=BE,又∵DF∥BE,∴四边形BEDF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,即EF⊥BD,∴四边形BEDF是菱形.19.证明:(1)∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF=∠ABC,∴∠ABD=∠EDB,∴DE=BE,又∵四边形BEDF为平行四边形,∴四边形BEDF是菱形;(2)如图,过点D作DH⊥BC于H,∵DF∥AB,∴∠ABC=∠DFC=60°,∵DH⊥BC,∴∠FDH=30°,∴FH=DF,DH=FH=DF,∵∠C=45°,DH⊥BC,∴∠C=∠HDC=45°,∴DC=DH=DF=6,∴DF=2,∴菱形BEDF的边长为2.20.证明:(1)∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=AD=CD,∠ADC=∠ABC=60°,∴△ADC是等边三角形,∴AD=AC=AB=BC,∴△ACB是等边三角形,∴∠ACB=∠ACD=60°,∴∠ACF=120°,∵∠ADC=∠EDF=60°,∴∠ADE=∠CDF,∵∠EDF+∠ECF+∠DEC+∠DFC=360°,∴∠DEC+∠DFC=180°,∵∠DEC+∠AED=180°,∴∠AED=∠DFC,在△ADE和△CDF中,∴△ADE≌△CDF(AAS),∴AE=CF;(2)如图,过点B作BH∥AC,交AG的延长线于点H,∵BH∥AC,∴∠H=∠GAE,∠ABH+∠BAC=180°,∴∠ABH=120°=∠ACF,∵点G为BE的中点,∴BG=GE,在△AGE和△HGB中,,∴△AGE≌△HGB(AAS),∴AE=BH=CF,AG=GH=AH,在△ABH和△ACF中,,∴△ABH≌△ACF(SAS),∴AF=AH,∴AF=2AG.21.(1)解:延长EF与BC交于点K∵菱形ABCD,∴AC⊥BD,∵BC=2OC∠OBC=30°,∴∠EBF=30°,∴∠BEF=30°,∠ABC=60°,∠EKB=90°,∠ACB=60°∠ACE=∠ACB=×60°=15°,∠ECK=45°,在Rt△CKE中,EK=CK=CE=,在Rt△EKB中,BK=∴BC=,即AB=;(2)证明:延长FG至点H,使GH=FG,连接CH,AH.∵G为CE中点,∴EG=GC,在△EFG与△CHG中,,△EFG≌△CHG(SAS),∴EF=CH,∠CHG=∠EFG,∴CH=BF,CH∥EF,由(1)可知∠EBC=60°,∠EKB=90°,∠BCD=120°,∴∠HCB=90°,∠ACH=∠BCD﹣∠HCB=120°﹣90°=30°,∴∠ABF=∠ACH,在△AFB与△AHC中,△AFB≌△AHC(SAS),∴AF=AH,∠BAF=∠CAH∵FG=GH,∴AG⊥FG,∴∠F AG=∠HAG∵∠BAC=∠BAF+∠F AC=60°,∴∠CAH+∠F AC=60°,即∠F AH=60°,∴∠F AG=∠HAG=30°,∴。
菱形的性质与判定复习题含答案

菱形的性质1、菱形具有而一般平行四边形不具有的性质是( )A. 对角相等B. 对边相等C. 对角线互相垂直D. 对角线相等2、 菱形的周长为100cm ,一条对角线长为14cm ,它的面积是( ) A. 168cm 2B. 336cm 2C. 672cm 2D.84cm 23、下列语句中,错误的是( )A. 菱形是轴对称图形,它有两条对称轴B. 菱形的两组对边可以通过平移而相互得到C. 菱形的两组对边可以通过旋转而相互得到D. 菱形的相邻两边可以通过旋转而相互得到4、菱形的两条对角线分别是6 cm ,8 cm ,则菱形的边长为_____,面积为______.5、四边形ABCD 是菱形,点O 是两条对角线的交点,已知AB =5, AO =4,求对角线BD 和菱形ABCD 的面积.6、如图,在菱形ABCD 中,∠ADC=120°,则BD :AC 等于( ).(A ):2 (B ):3 (C )1:2 (D ):17、菱形ABCD 的周长为20cm ,两条对角线的比为3∶4,求菱形的面积。
8、如左下图,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16cm ,BD =12cm ,求菱形ABCD 的高DH 。
3339、如右上图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.10、在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.11、如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4)C.M(5,0),N(7,4) D.M(4,0),N(7,4)12、(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、如左下图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= _________ .14、如右上图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.15、【提高题】如图,在菱形ABCD中,顶点A到边BC、CD的距离AE、AF都为5,EF=6,那么,菱形ABCD的边长是菱形的判定1、能够判别一个四边形是菱形的条件是()A. 对角线相等且互相平分B. 对角线互相垂直且相等C. 对角线互相平分D. 一组对角相等且一条对角线平分这组对角2、平行四边形ABCD的两条对角线AC、BD相交于点O, AB=5, AO=2, OB=1. 四边形ABCD 是菱形吗?为什么?3、如左下图,AD是△ABC的角平分线。
北师版九上数学1.1菱形的性质与判定 同步训练(含答案)

北师版九上数学1.1菱形的性质与判定同步训练一、选择题1.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.假定AB=5,AD=7,BF=6,那么四边形ABEF的面积为〔〕A.48B.35C.30D.242.如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF 沿点A到点B的方向平移,失掉△A'E'F'.设P、P'区分是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为〔〕A. B. C. D.﹣83.假定菱形的周长是16,∠A=60°,那么对角线的长度为〔〕A.2B.C.4D.4.以下说法中,错误的选项是()A.平行四边形的对角线相互平分B.对角线相互垂直的四边形是菱形C.菱形的对角线相互垂直D.对角线相互平分的四边形是平行四边形5.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,区分作P点到直线AB,AD的垂线段PE,PF,那么PE+PF等于()A.6B.3C.1.5D.0.756.菱形ABCD中,如图,AE⊥BC于E,AF⊥CD于F,假定BE=EC,那么∠EAF=〔〕A.75°B.60°C.50°D.45°7.己知菱形ABCD的边长为1,∠DAB=60°,E为AD上的动点,F在CD上,且AE+CF=1,设ΔBEF的面积为y,AE=x,当点E运动时,能正确描画y与x关系的图像是:()A. B. C. D.8.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,假定BF=12,AB=10,那么AE的长为〔〕A.16B.15C.14D.139.如图,在Rt△ABC中,∠B=90°,AC=120cm,∠A=60°,点D从点C动身沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A动身沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点抵达终点时,另一个点也随之中止运动.设点D、E运动的时间是t秒.过点D作DF⊥BC于点F,衔接DE,EF.当四边形AEFD是菱形时,t的值为〔〕A.20秒B.18秒C.12秒D.6秒10.如图在坐标系中放置一菱形OABC,∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,延续翻转2021次,点B的落点依次为B1,B2,B3,…,那么B2021的坐标为〔〕A.〔1345,0〕B.〔1345.5,〕C.〔1345,〕D.〔1345.5,0〕二、填空题11.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,假定∠ABC=60°,∠AEF=120°,AB=4,那么EF能够的整数值是________.12.如图,在菱形ABCD中,E是对角线AC上一点,假定AE=BE=2,AD=3,那么CE=________.13.如图,在中,,BD为AC的中线,过点C作于点E,过点A作BD的平行线,交CE的延伸线于点F,在AF的延伸线上截取FG=BD,衔接BG,DF.假定AF=8,CF=6,那么四边形BDFG的周长为________.14.如图,在△ABC中,点D是BC的中点,点E、F区分在线段AD及其延伸线上,且DE=DF,给出以下条件:①BE⊥EC;②AB=AC;③BF∥EC;从中选择一个条件使四边形BECF是菱形,你以为这个条件是________〔只填写序号〕.15.如图,在边长为1的菱形ABCD中,∠ABC=120°.衔接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°.衔接AE,再以AE为边作第三个菱形AEGH,使∠AEG=120°,…,按此规律所作的第n个菱形的边长是________.16.如图,菱形中,=2,=5,P是上一动点〔P不与重合〕,∥交于E,∥交于F,那么图中阴影局部的面积为________。
北师大版九年级数学上册--第一章1.1《菱形的性质与判定》同步练习题(含答案)

9、如图,菱形 ABCD的周长为 16,∠ ABC=12°0 ,则 AC的长为( )
A. 4 3 B.4 C.
2 3 D.2
二、填空题 1、一个菱形的边长为 5,一条对角线长为 6,则这个菱形另一条对角线长为 ________。 2、菱形的两条对角线长分别为 4cm和 6cm,它的面积是 ________cm2。 3、如右图,在四边形 ABCD中,对角线 AC,BD交于点 O,OA=OC,OB=O,D添加一个条件使四边形 ABCD 是菱形,那么所添加的条件可以是 ________(写出一个即可)。
)
A. 2 3 B. 3 3 C. 4 3 D. 8 3
题7图
题8图
题9图
8、如图,已知 AC、BD是菱形 ABCD的对角线,那么下列结论一定正确的是( )
A. △ABD与△ ABC的周长相等
B.
△ABD与△ ABC的面积相等
C.菱形的周长等于两条对角线之和的两倍 D. 菱形的面积等于两条对角线之积的两倍
在△ ADO中,根据勾股定理可得: AO= AD 2 DO 2 = 62 32 = 3 3
∵AE=1 AO,AE=DE 2
∴DE=AE=3 3 2
∴菱形 BEFD的周长 = 3 3 ×4=6 3 2
九年级数学上册
3
3、 如图, E,F 是菱形 ABCD对角线上的两点,且 AE=CF。 (1)求证:四边形 BEFD是菱形; ( 2)若∠ DAB=60°, AD=6,AE=DE,求菱形 BEFD的周长。
九年级数学上册
2
1.1 菱形的性质与判定练习
参考答案 一、选择题。 1、C 2 、 D 3 、B 4 、D 5 、B(①②④对)
)
A. 有一组邻边相等的平行四边形是菱形
八年级数学下册《菱形的判定》练习及答案

八年级数学下册《菱形的判定》练习满分100分80分过关限时30分钟一.选择题(共4小题)1.下列可以判断是菱形的是()A.一组对边平行且相等的四边形B.对角线相等的平行四边形C.对角线垂直的四边形D.对角线互相垂直且平分的四边形2.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB BC=时,四边形ABCD是菱形;②当AC BD⊥时,四边形ABCD是菱形;③当90ABC∠=︒时,四边形ABCD是菱形:④当AC BD=时,四边形ABCD是菱形;A.3个B.4个C.1个D.2个3.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA OC=.若要使四边=,OB OD形ABCD为菱形,则可以添加的条件是()A.AC BDAOB⊥∠=︒D.AC BD⊥C.60=B.AB BC4.如图,在四边形ABCD中,AC与BD相交于点O,OAB OAD=,那么下列条件∠=∠,BO DO中不能判定四边形ABCD是菱形的为()A.OA OC==D.AD DC=B.BC DC=C.AD BC第3题图第4题图二.填空题(共4小题)5.如图,四边形ABCD是对角线互相垂直的四边形,且OB OD=,请你添加一个适当的条件,使四边形ABCD是菱形.(只需添加一个即可)6.如图在Rt ABCAC=,6BC=,D为斜边AB上一点,以CD、CB为边作平ACB∆中,90∠=︒,8行四边形CDEB,当AD=时,平行四边形CDEB为菱形.7.如图所示,四边形ABCD中,AC BDBO DO==,6==,点P为线段AC上AO CO⊥于点O,8的一个动点.(1)填空:AD CD==.(2)过点P分别作PM AD⊥于M点,作PH DC⊥于H点.连结PB,在点P运动过程中,++的最小值为.PM PH PB8.如图1,边长为a 的正方形发生形变后成为边长为a 的菱形,如果这个菱形的一组对边之间的距离为h ,我们把a h的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD 分成2个等边三角形),则这个菱形的“形变度”为2:3.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,(AEF A ∆、E 、F 是格点)同时形变为△A E F ''',若这个菱形的“形变度” 1615k =,则A E F S '''=V .三.解答题(共2小题)9.如图,在等腰三角形ABC 中,AB AC =,AH BC ⊥,点E 是AH 上一点,延长AH 至点F ,使FH EH =.求证:四边形EBFC 是菱形.10.如图(1),ABC ∆为等腰三角形,AB AC a ==,P 点是底边BC 上的一个动点,//PD AC ,//PE AB . (1)用a 表示四边形ADPE 的周长为 ;(2)点P 运动到什么位置时,四边形ADPE 是菱形,请说明理由;(3)如果ABC ∆不是等腰三角形(图2),其他条件不变,点P 运动到什么位置时,四边形ADPE 是菱形(不必说明理由).参考答案与试题解析一.选择题(共4小题)【分析】由菱形的判定依次判断可求解.【解答】解:A、一组对边平行且相等的四边形是平行四边形,不一定是菱形,故A选项不符合题意;B、对角线相等的平行四边形是矩形,故B选项不符合题意;C、对角线垂直的四边形不一定是菱形,故C选项不符合题意;D、对角线互相垂直且平分的四边形是菱形,故D选项符合题意;故选:D.【点评】本题考查了菱形的判定,掌握菱形的判定是本题的关键.【分析】根据菱形的判定定理判断即可.【解答】解:Q四边形ABCD是平行四边形,=时,四边形ABCD是菱形;故符合题意;∴①当AB BC②当AC BD⊥时,四边形ABCD是菱形;故符合题意;③当90∠=︒时,四边形ABCD是矩形;故不符合题意;ABC④当AC BD=时,四边形ABCD是矩形;故不符合题意;故选:D.【点评】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.【分析】由条件OA OC=根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四=,OB OD边形,再由矩形和菱形的判定定理即可得出结论.【解答】解:OA OC=,Q,OB OD=∴四边形ABCD为平行四边形,A、AC BDQ,=∴四边形ABCD是矩形,故选项A不符合题意;B、AB BCQ,⊥∴四边形ABCD是矩形,故选项B不符合题意;Q,∠=︒AOBC、60不能得出四边形ABCD是菱形;选项C不符合题意;D、AC BDQ,⊥∴四边形ABCD是菱形,故选项D符合题意;故选:D.【点评】此题主要考查了菱形的判定、矩形的判定;关键是掌握对角线互相垂直的平行四边形是菱形.【分析】利用菱形的判定依次进行判断即可.【解答】解:A、若AO OC=,=,且BO DO∴四边形ABCD是平行四边形,//∴AB CD∠=∠BAO OCD∴∠=∠,且OAB OAD∴∠=∠OAD OCD∴=,AD CD∴四边形ABCD是菱形故A选项不符合题意B、若BC DC==,BO DO∴是BD的垂直平分线AC∴=AB AD则不能判断四边形ABCD是菱形故B选项符合题意,=,Q,BO DOC、OAB OAD∠=∠∴=,且BO DOAB AD=∴垂直平分BDAC=BC CD∴=,且AD BC∴===AB AD BC CD∴四边形ABCD是菱形故C选项不符合题意D、OAB OAD=,∠=∠Q,BO DO∴=,且BO DOAB AD=AC∴垂直平分BD=BC CD∴=,且AD CD∴===AB AD BC CD∴四边形ABCD是菱形故D选项不符合题意故选:B.【点评】本题主要考查了菱形的判定与性质,熟练地掌握菱形的判定,注意与矩形、正方形、平行四边形的判定进行比较,是提高同学们综合能力的关键. 二.填空题(共4小题)【分析】可以添加条件OA OC =,根据对角线互相垂直平分的四边形是菱形可判定出结论. 【解答】解:OA OC =, OB OD =Q ,OA OC =,∴四边形ABCD 是平行四边形,AC BD ⊥Q ,∴平行四边形ABCD 是菱形,故答案为:OA OC =.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.【分析】首先根据勾股定理求得10AB =,由菱形的性质可得OD OB =,CD CB =,根据勾股定理可得OB 的值,由2AD AB OB =-可求AD 的长. 【解答】解:如图,连接CE 交AB 于点O . Rt ABC ∆Q 中,90ACB ∠=︒,4AC =,3BC =,2210AB AC BC ∴=+=若平行四边形CDEB 为菱形时,CE BD ⊥,OD OB =,CD CB =. Q1122AB OC AC BC =g g , 245OC ∴=. 22185OB BC OC ∴=-= 1425AD AB OB ∴=-=故答案为:145【点评】本题考查了菱形的判定与性质.求出OB 的长是本题的关键.【分析】(1)在ADO ∆中,由勾股定理可求得10AD =,由AC BD ⊥,AO CO =,可知DO 是AC 的垂直平分线,由线段垂直平分线的性质可知AD DC =;(2)由PM PH +为定值,当PB 最短时,PM PH PB ++有最小值,由垂线的性质可知当点P 与点O 重合时,OB 有最小值.【解答】解:(1)AC BD ⊥Q 于点O , AOD ∴∆为直角三角形.22228610AD AO OD ∴=+=+=. AC BD ⊥Q 于点O ,AO CO =, 10CD AD ∴==.故答案为:10;(2)如图1所示:连接PD .ADP CDP ADC S S S ∆∆∆+=Q ,∴111222AD PM DC PH AC OD +=g g g ,即1111010166222PM PH ⨯⨯+⨯⨯=⨯⨯. 10()166PM PH ∴⨯+=⨯. 9648105PM PH ∴+==, ∴当PB 最短时,PM PH PB ++有最小值,Q 由垂线段最短可知:当BP AC ⊥时,PB 最短.∴当点P 与点O 重合时,PM PH PB ++有最小,最小值4878655=+=. 故答案为:10,785. 【点评】本题主要考查了勾股定理、垂线段的性质、三角形的面积公式、垂线段的性质,利用面积以及三角形的面公式求得PM PH +的值是解答问题(2)的关键;利用垂线段的性质得到BP 垂直于AC 时,PM PH PB ++有最小值是解答问题(3)的关键.【分析】求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求AEF ∆的面积,根据两面积之比=菱形的“形变度”,即可解答. 【解答】解:如图,在图2中,形变前正方形的面积为:2a ,形变后的菱形的面积为:233a =g, ∴菱形形变前的面积与形变后的面积之比:22323a = Q 这个菱形的“形变度”为23∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,112222422AEF S ∆=⨯⨯+⨯⨯=,Q 若这个菱形的“形变度” 1615k =, ∴1615AEF A E F S S ∆'''=V ,即41615A E F S '''=V , 154A E F S '''∴=V . 故答案为:154. 【点评】本题考查了正方形的性质,菱形的性质以及四边形综合,根据题意得出菱形形变前的面积与形变后的面积之比是解题关键. 三.解答题(共2小题)【分析】根据题意可证得BCE ∆为等腰三角形,由AH CB ⊥,则BH HC =,从而得出四边形EBFC 是菱形. 【解答】证明:AB AC =Q ,AH CB ⊥,BH HC ∴=,……………………………………………………3分FH EH =Q ,∴四边形EBFC 是平行四边形,………………………………6分又AH CB ⊥Q ,∴四边形EBFC 是菱形.………………………………………10分【点评】本题考查了菱形的判定和性质,以及等腰三角形的性质,是基础知识要熟练掌握.【分析】(1)由题意可得四边形ADPE 为平行四边形,由平行线的性质和等腰三角形的性质可得DB DP =,即可求四边形ADPE 的周长;(2)当P 为BC 中点时,四边形ADPE 是菱形,由等腰三角形的性质和平行线的性质可得AE EP =,则平行四边形ADPE 是菱形;(3)P 运动到A ∠的平分线上时,四边形ADPE 是菱形,首先证明四边形ADPE 是平行四边形,再根据平行线的性质可得13∠=∠,从而可证出23∠=∠,进而可得AE EP =,然后可得四边形ADPE 是菱形. 【解答】解:(1)//PD AC Q ,//PE AB∴四边形ADPE 为平行四边形AD PE ∴=,DP AE =,AB AC =Q B C ∴∠=∠, //DP AC QB DPB ∴∠=∠ DB DP ∴=∴四边形ADPE 的周长2()2()22AD DP AD BD AB a =+=+==故答案为:2a …………………………………………………………………………2分 (2)当P 为BC 中点时,四边形ADPE 是菱形.………………………………3分 理由如下:连结AP ……………………………………………………………………………4分//PD AC Q ,//PE AB∴四边形ADPE 为平行四边形…………………………………………………………5分AB AC =Q ,P 为BC 中点PAD PAE ∴∠=∠…………………………………………………………………………6分//PE AB QPAD APE ∴∠=∠ PAE APE ∴∠=∠EA EP∴=………………………………………………………………………………7分∴四边形ADPE是菱形…………………………………………………………………8分(3)P运动到A∠的平分线上时,四边形ADPE是菱形,…………………………10分PE AB,Q,//PD AC//∴四边形ADPE是平行四边形,Q平分BACAP∠,∴∠=∠,12//Q,AB EP∴∠=∠,13∴∠=∠,23∴=,AE EP∴四边形ADPE是菱形.【点评】本题主要考查了菱形的判定,等腰三角形的性质,关键是掌握一组邻边相等的平行四边形是菱形.。
初中数学菱形的性质菱形的判定练习题(附答案)

初中数学菱形的性质菱形的判定练习题一、单选题1.已知,□ABCD 中,若∠A+∠C=120°,则∠B 的度数是( )A.100°B.120°C.80°D.60°2.四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是( )A.//AD BCB.OA OC =,OB OD =C.//AD BC ,AB DC = D .AC BD ⊥3.正方形具有而矩形不一定具有的性质是( )A.四个角都相等B.四条边相等C.对角线相等D.对角线互相平分4.如图,在菱形ABCD 中,AC=8,BD=6,则△ABD 的周长等于( )A.18B.16C.15D.145.菱形具有而一般平行四边形不具有的性质是( )A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直6.如图,已知四边形ABCD 是平行四边形,要使它成为菱形,那么需要添加的条件可以是( )A.AC⊥BDB.AB=ACC.∠ABC=90°D.AC=BD二、证明题7.如图,四边形ABCD 是菱形,DE AB ⊥交BA 的延长线于点,E DF BC ⊥交BC 的延长线于点F.求证:DE DF =.三、填空题8.如图,平行四边形ABCD 中,AC 、BD 相交于点O ,若=6AD ,=16AC BD +,则BOC △的周长为 .9.如图,在菱形ABCD 中,对角线6,10AC BD ==.则菱形ABCD 的面积为 .10.如图,四边形ABCD 的对角线,AC BD 交于点O ,有下列条件:①,?AO CO BO DO ==;②AO BO CO DO ===.其中能判断ABCD 是矩形的条件是__________(填序号)11.如图,E 是正方形ABCD 边BC 延长线上一点,CE=AC,AE 交CD 于F,则∠AFC 的度数为__________。
2023-2024学年九年级数学上册《第一章 菱形的性质与判》同步训练及答案(北师大版)

2023-2024学年九年级数学上册《第一章菱形的性质与判》同步训练及答案(北师大版)学校:___________班级:___________姓名:___________考号:___________一.选择题(共8小题,满分32分)1.在数学活动课上,老师和同学判断教室中的瓷砖是否为菱形,下面是某小组拟定的4种方案,其中不正确的是()A.测量两条对角线是否分别平分两组内角B.测量四个内角是否相等C.测量两条对角线是否互相垂直且平分D.测量四条边是否相等2.若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.10B.12C.16D.203.如图,菱形ABCD,∠DAB=70°,点E是对角线AC上一点,点F是边BC上一点,且DE=FE,则∠DEF的度数为()A.100°B.110°C.120°D.140°4.如图,在菱形ABCD中,∠DAB=45°,DE⊥BC于点E,交对角线AC于点P,过点P作PF⊥CD于点F.若△PDF的周长为8.则菱形ABCD的面积为()A.16B.16√2C.32D.32√25.如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=6,DB=8,AE⊥BC于点E,则AE=()A .6B .8C .245D .4856.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是( )A .150°B .135°C .120°D .100°7.如图,菱形ABCD 的周长为40cm ,对角线AC 、BD 相交于点O ,DE ⊥AB ,垂足为E ,DE :AB =4:5,则下列结论:①DE =8cm ;②BE =4cm ;③BD =4√5cm ;④AC =8√5cm ;⑤S菱形ABCD =80cm 2,正确的有( )A .①②④⑤B .①②③④C .①③④⑤D .①②③④⑤8.如图,菱形ABCD 的对角线AC 与BD 交于点O ,过点C 作AB 垂线交AB 延长线于点E ,连接OE ,若AB =2√5,BD =4,则OE 的长为( )A .6B .5C .2√5D .4二.填空题(共8小题,满分40分)9.如图,菱形ABCD 中,若BD =8,AC =6,则AB 的长等于 ,菱形ABCD 的面积等于 .10.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A (0,4),D (﹣3,0),若点C 在x 轴正半轴上,则点B 的坐标为 .11.菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF .AD=10,EF=4,则BG的长.12.在四边形ABCD中,对角线AC,BD交于点O.现存在以下四个条件:①AB∥CD;②AO=OC;③AB=AD;④AC平分∠DAB.从中选取三个条件,可以判定四边形ABCD为菱形.则可以选择的条件序号是(写出所有可能的情况).13.菱形ABCD中,AB=5,AC=8,点E为AC上的动点,连接BE,以AE、BE为边作平行四边形AEBF,则EF长的最小值为.14.如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为.15.如图,已知AB=2√2,C为线段AB上的一个动点,分别以AC,CB为边在AB的同侧作菱形ACED和菱形CBGF,点C,E,F在一条直线上,∠D=120°.P、Q分别是对角线AE,BF的中点,当点C在线段AB上移动时,点P,Q之间的距离最短为(结果保留根号).16.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与写B、C 重合.过P作PE⊥AC于E,PF⊥BD于F,连接EF,则EF的最小值等于.三.解答题(共6小题,满分48分)17.如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.求证:四边形AEDF是菱形.18.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.19.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.20.在菱形ABCD中,∠ABC=60°,E是AB上一点(不与点A,B重合),线段CE的垂直平分线交CE 于点F,交BD于点G,连接AG,EG.(1)根据题意补全图形,并证明AG=EG;(2)用等式表示线段AG与CE之间的数量关系,并证明.21.如图,在菱形ABCD中,BE⊥CD于点E,DF⊥BC于点F.(1)求证:BF=DE;(2)分别延长BE和AD交于点G,若∠A=45°,AB=1,求DG的值.22.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C 作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=8,求CE的长.参考答案一.选择题(共8小题,满分32分)1.解:A、测量两条对角线是否分别平分两组内角,能判定菱形,故故选A不符合题意;B、测量四个内角是否相等,能判定矩形,不能判定菱形,故选项B符合题意;C、测量两条对角线是否互相垂直且平分,能判定菱形,故选项C不符合题意;D、测量四条边是否相等,能判定菱形,故选项D不符合题意.故选:B.2.解:在菱形ABCD中,AC=8,BD=6,如图:∵ABCD为菱形∴AC⊥BD,BO=3,AO=4.∴AB=5.∴周长=4×5=20.故选:D.3.解:连接BD交AC于G,连接BE∵四边形ABCD是菱形,∠DAB=70°,ED=EF∴ED=EB=EF,∠AGD=90°,∠DCE=∠BCE=35°,∠GBC=55°∴∠EDB=∠EBD,∠DEG=90°﹣∠EDB,∠EBD+∠DBC=∠EFB=∠CEF+∠ECF ∴∠CEF=20°+∠EBD∴∠DEF=∠DEG+∠CEF=90°﹣∠EDB+20°+∠EBD=110°4.解:∵四边形ABCD是菱形∴BC=CD,∠BCD=∠BAD,∠ACB=∠ACD,AD∥BC ∴∠BAD+∠B=180°∵∠DAB=45°∴∠BCD=∠BAD=45°∵DE⊥BC∴△CDE是等腰直角三角形∴∠CDE=45°,CD=√2DE∵PF⊥CD∴△DPF是等腰直角三角形∴PF=DF,PD=√2PF设PF=DF=x,则PD=√2x∵△PDF的周长为8∴x+x+√2x=8解得:x=8﹣4√2∵∠ACB=∠ACD,DE⊥BC,PF⊥CD∴PE=PF=x∴DE=x+√2x=(1+√2)×(8﹣4√2)=4√2∴BC=CD=√2DE=8∴菱形ABCD的面积=BC×DE=8×4√2=32√2故选:D.5.解:∵四边形ABCD是菱形∴BD⊥AC,OC=OA,OB=OD∵AC=6,DB=8∴OC=3,OB=4∴BC=√OB2+OC2=√32+42=5∵AC=6,DB=8∴菱形ABCD的面积=12×AC⋅BD=12×6×8=24∴AE=S菱形ABCDBC=245故选:C.6.解:过A作AE⊥BC由题意知AE⊥BC,且E为BC的中点则△ABC为等腰三角形即AB=AC,即AB=AC=BC∴∠ABC=60°∴∠BAD=180°﹣∠ABC=180°﹣60°=120°.故选:C.7.解:∵菱形ABCD的周长为40cm∴AB=14×4cm=10cm∵DE:AB=4:5∴DE=8cm故①正确;∵DE⊥AB,且AD=10cm,DE=8cm∴AE=√AD2−DE2=√102−82=6(cm)∴BE=AB﹣AE=10cm﹣6cm=4cm故②正确;∵DE=8cm,BE=4cm∴BD=√BD2+BE2=√82+42=4√5(cm)故③正确;∵四边形ABCD是菱形∴BO=12BD=2√5cm,且AC⊥BD∴AO=√AB2−BO2=√102−(2√5)2=4√5(cm)故④正确;∴S菱形ABCD=12AC•BD=12×8√5×4√5=80(cm2)故⑤正确;∴正确的为①②③④⑤故选:D.8.解:∵四边形ABCD是菱形∴OA=OC,BD⊥AC,∵CE⊥AB ∴OE=OA=OC∵BD=4∴OB=12BD=2在Rt△AOB中,AB=2√5,OB=2∴OA=√AB2−OB2=4∴OE=OA=4.故选:D.二.填空题(共8小题,满分40分)9.解:设AC与BD交于点O∵四边形ABCD是菱形∴AC⊥BD,AO=12AC=3,BO=12BD=4∴AB=√AO2+BO2=√32+42=5∵BD=8,AC=6∴菱形的面积=12×AC×BD=24故答案为:5,24.10.解:∵菱形ABCD的顶点A(0,4),D(﹣3,0)∵∠AOD=90°∴AD=√42+32=5∵四边形ABCD是菱形∴AB=AD=5∴B(5,4);故答案为:(5,4).11.解:∵四边形ABCD是菱形∴OB=OD∵E是AD的中点∴OE是△ABD的中位线∴OE∥FG∵OG∥EF∴四边形OEFG是平行四边形∵EF⊥AB∴∠EFG=90°∴平行四边形OEFG是矩形;∵四边形ABCD是菱形∴BD⊥AC,AB=AD=10∴∠AOD=90°∵E是AD的中点∴OE=AE=12AD=5;∵四边形OEFG是矩形∴FG=OE=5∵AE=5,EF=4∴AF=√AE2−EF2=√25−16=3∴BG=AB﹣AF﹣FG=10﹣3﹣5=2故答案为2.12.解:如:若②AO=OC;③AB=AD;④AC平分∠DAB则四边形ABCD 是菱形证明:∵AC 平分∠DAB∴∠DAO =∠BAO在△AOD 和△AOB 中{AD =AB ∠DAO =∠BAO AO =AO∴△AOD ≌△AOB (ASA )∴DO =CB∵AO =OC∴四边形ABCD 是平行四边形又∵AB =AD∴四边形ABCD 是菱形若①AB ∥CD ; ②AO =OC ;④AC 平分∠DAB 或①AB ∥CD ; ③AB =AD ;④AC 平分∠DAB 或 ②AO =OC ;③AB =AD ;④AC 平分∠DAB .都可以判定四边形ABCD 为菱形.故答案为:②③④或①②④或①③④或②③④.13.解:如图∵四边形ABCD 是菱形∴AO =CO =4,AC ⊥BD∴BO =√AB 2−AO 2=√25−16=3∵四边形AEBF 是平行四边形∴BF ∥AE∴当EF ⊥AC 时,EF 有最小值此时EF=BO=3故答案为:3.14.解:如图,连接AC交BD于点O∵四边形AECF是菱形∴AC⊥BD,AO=OC,EO=OF又∵点E、F为线段BD的两个三等分点∴BE=FD∴BO=OD∵AO=OC∴四边形ABCD为平行四边形∵AC⊥BD∴四边形ABCD为菱形;∵四边形AECF为菱形,且周长为20∴AE=5∵BD=24,点E、F为线段BD的两个三等分点∴EF=8,OE=12EF=12×8=4由勾股定理得,AO=√AE2−OE2=√52−42=3∴AC=2AO=2×3=6∴S四边形ABCD=12BD•AC=12×24×6=72;故答案为:72.15.解:连接PC、CQ.∵四边形ACED,四边形CBGF是菱形,∠D=120°∴∠ACE =120°,∠FCB =60°∵P ,Q 分别是对角线AE ,BF 的中点∴∠ECP =12∠ACE ,∠FCQ =12∠BCF∴∠PCQ =90°设AC =2a ,则BC =2√2−2a ,PC =a ,CQ =√32BC =√3(√2−a ).∴PQ =√PC 2+QC 2=√a 2+3(√2−a)2=4(a −3√24)2+32.∴当a =3√24时,点P ,Q 之间的距离最短,最短距离是√62. 解法二:连接CD 、CG 、DG ,构造中位线解决,当DG 与AD 或BG 垂直时,取最值.故答案为:√62. 16.解:连接OP ,如图所示:∵四边形ABCD 是菱形,AC =12,BD =16∴AC ⊥BD ,BO =12BD =8,OC =12AC =6 ∴BC =√OB 2+OC 2=√82+62=10∵PE ⊥AC ,PF ⊥BD ,AC ⊥BD∴四边形OEPF 是矩形∴FE =OP ∵当OP ⊥BC 时,OP 有最小值此时S △OBC =12OB ×OC =12BC ×OP∴OP=6×810=4.8∴EF的最小值为4.8故答案为:4.8.三.解答题(共6小题,满分48分)17.证明:∵AD平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD∴∠AOE=∠AOF=90°∵在△AEO和△AFO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF∴△AEO≌△AFO(ASA)∴EO=FO∵EF垂直平分AD∴EF、AD相互平分∴四边形AEDF是平行四边形又EF⊥AD∴平行四边形AEDF为菱形.18.(1)证明:∵CE∥AB,BE∥CD ∴四边形BDCE是平行四边形∴CE=BD∵CE=AD∴BD=AD又∵∠ACB=90°∴CD=12AB=BD∴四边形BDCE是菱形;(2)解:连接DE,如图所示:由(1)得:四边形BDCE是菱形∴BC⊥DE BD=BE OB=OC∵EF⊥BD,点F是BD的中点∴BE=DE∴BE=DE=BD∴∠DBE=60°∠EBC=12∠EBD=30°∴OE=12EB=3∴OB=√EB2−OE2=√62−32=3√3∴BC=2OB=6√3.19.(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,AO=CO∴∠AEF=∠CFE在△AOE和△COF中{∠AEF=∠CFE ∠AOE=∠COF AO=CO∴△AOE≌△COF(AAS)∴OF=OE∵AO=CO∴四边形AFCE是平行四边形;∵EF平分∠AEC∴∠AEF=∠CEF∴∠CFE=∠CEF∴CE=CF∴四边形AFCE是菱形;(2)解:由(1)得:四边形AFCE是菱形∴AC⊥EF AO=CO=12AC=1∴∠AOE=90°∵∠DAC=60°∴OE=√3AO=√3∴EF=2OE=2√3∴四边形AFCE的面积=12AC×EF=12×2×2√3=2√3.20.(1)证明:如图,连接CG∵GF是CE的垂直平分线∴CG=GE∵四边形ABCD是菱形∴AD=CD∠ADB=∠BDC 在△ADG和△CDG中{AD=CD∠BDA=∠BDC DG=DG∴△ADG≌△CDG(SAS)∴AG=CG∴AG=GE;(2)解:CE=√3AG,理由如下:延长EG,交CD于点H∵GE=GC GF⊥CE∴∠CGF=∠EGF=12∠CGE,EF=CF∵AB∥CD∵AG=GE∴∠GAE=∠GEA=∠CHG∵△ADG≌△CDG∴∠DCG=∠DAG∵AB∥CD,∠ABC=60°∴∠DAB=120°∴∠DAG+∠BAG=120°∵∠CGE=∠GHC+∠GCH=∠DAG+∠GAE=120°∴∠FGE=60°∴∠GEF=30°∴GE=2GF,EF=√3GF∴EC=√3GE=√3AG.21.(1)证明:∵四边形ABCD是菱形∴CB=CD∵BE⊥CD于点E,DF⊥BC于点F∴∠BEC=∠DFC=90°在△BEC与△DFC中{∠BEC=∠DFC ∠C=∠CBC=CD∴△BEC≌△DFC(AAS)∴EC=FC∴BF=DE;(2)解:如图,延长AD,BE交于点G∵四边形ABCD是菱形∴AB∥CD∴∠ABG=∠BEC=90°∵∠A=45°∴∠G=∠A=45°∴AB=BG=1∴AG=√2∴DG=√2−1.22.(1)证明:∵AB∥CD∴∠OAB=∠DCA∵AC为∠DAB的平分线∴∠OAB=∠DAC∴∠DCA=∠DAC∴CD=AD∵AB∥CD∴四边形ABCD是平行四边形∵AD=AB∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形BD=8∴OA=OC,BD⊥AC OB=OD=12BD=4∴∠AOB=90°∴OA=√AB2−OB2=√62−42=2√5∴AC=2OA=4√5∴菱形ABCD的面积=12AC×BD=12×4√5×8=16√5∵CE⊥AB∴菱形ABCD的面积=AB×CE=6CE=16√5∴CE=8√5 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学菱形的判定及性质练习题 一、单选题 1.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且22.5BAE ∠=︒,EF AB ⊥,垂足为F ,则EF 的长为( )A. 1B. 2C. 422-D. 324-2.如图,点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 、BD 的距离之和是( )A. 125B. 245C. 65D.不确定3.如图,下列条件之一能使平行四边形ABCD 是菱形的为( )①AC⊥BD ②∠BAD=90° ③AB=BC ④AC=BDA.①③B.②③C.③④D.①②③4.如图,在菱形ABCD 中, 2AB =,60?BAD ∠=,E 是AB 的中点, P 是对角线AC 上的一个动点,则PE PB +的最小值为( )A. 1B.3C. 2D.55.菱形具有而一般平行四边形不具有的性质是( )A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直6.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )=A.AB CD=B.AD BC=C.AB BC=D.AC BD=;②7.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB BC⊥中选两个作为补充条件,使ABCD为正方形(如=;④AC BDABC90∠=︒;③AC BD图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④AC BD相交于点,O H为AD边的中点,菱形ABCD的周长8.如图,在菱形ABCD中,对角线,为28,则OH的长等于( )A.3.5B. 4C. 7D. 149.下列说法中正确的是( )A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形10.如图,在△ABC中,点D、E、F 分别在BC、AB、CA上,且DE//CA,DF//BA,则下列三种说法:①如果∠BAC=90°,那么四边形AEDF是矩形;②如果AD 平分∠BAC,那么四边形AEDF 是菱形;③如果AD⊥BC 且AB=AC,那么四边形AEDF 是菱形。
其中正确的有( )A.3个B.2个C.1个D.0个11.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB,CD 交于点E,F,连接BF 交AC 于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD 是菱形;④MB:OE=3:2.其中正确结论的个数是( )A.1B.2C.3D.412.方程2273?x x -=-化成一般形式后,二次项系数、一次项系数、常数项分别是( )A.2,-7,-3B.2,-7,3C.2,3,-7D.2,3,713.关于x 的一元二次方程(a-5)x 2-4x-1=0有实数根,则a 满足( )A.a≥1且a≠5B.a>1且a≠5C.a≥1D.a>114.已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A.10B.14C. 10或14D. 8或10 15.某商品原价100元,连续两次涨价%x 后售价为120元,下面所列方程正确的是( ) A. ()21001%120x -=B. ()21001%120x +=C. ()210012%120x +=D. ()221001120x +=二、解答题16.已知:如图,在菱形ABCD 中,对角线AC 、BD 相交于点O,DE//AC,AE//BD.1.求证:四边形AODE 是矩形;2.若AB=6,∠BCD=120°,求四边形AODE 的面积.17.如图,在Rt ABC △中,90,53,30.B BC C ∠==∠=°°点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点,D E .运动的时间是t s(0t >).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)求证:AE DF =.(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由.(3)当t 为何值时,DEF △为直角三角形?请说明理由.18.如图,在边长为10的菱形ABCD 中,对角线16BD =,对角线,AC BD 相交于点G ,点O 是直线BD 上的动点,OE AB ⊥于E ,OF AD ⊥于F1.求对角线AC 的长及菱形ABCD 的面积.2.如图①,当点O 在对角线BD 上运动时,OE OF +的值是否发生变化?请说明理由.3.如图②,当点O 在对角线的延长线上时,OE OF +的值是否发生变化?若不变,请说明理由;若变化,请探究,OE OF 之间的数量关系19.如图,在Rt ABC △中, 90ABC ∠=︒,先把ABC △绕点B 顺时针旋转90︒后得DBE △,再把ABC △沿射线AB 平移至FEG △,DE 、FG 相交于点H .1.判断线段DE 、FG 的位置关系,并说明理由;2.连接CG ,求证:四边形CBEG 是正方形.20.已知:如图,在四边形ABCD 中,//,,AD BC AD CD E =是对角线BD 上一点,且EA EC =.(1)求证:四边形ABCD 是菱形;(2)如果BE BC =,且:2:3CBE BCE ∠∠=,求证:四边形ABCD 是正方形.21.已知:平行四边形ABCD 的两边,AB AD 的长关于x 的方程21024m x mx -+-=的两个实数根. (1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;(2)若AB 的长为2,那么ABCD 的周长是多少?22.在等腰ABC ∆中,三边分别为a 、b 、c ,其中5a =,若关于x 的方程()2260x b x b +++-=有两个相等的实数根,求ABC ∆的周长.23.已知关于x 的一元二次方程240x x m -+=.(1)若方程有实数根,求实数m 的取值范围;(2)若方程的两实数根分别为12,x x ,且满足12522x x +=,求实数m 的值.24.已知关于二的方程220x mx m ++-=.(1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.三、计算题25.解方程:26.解方程:x 2-1=2(x+1).27.解方程: ()()()221331;2340x x x x +=++-=28.解下列方程1. ()2150x --=;2. 2 42x x -=.四、填空题29.如图,在矩形ABCD 中,对角线AC,BD 交于点O,已知∠AOD=120°,AB=2.5,则AC 的长为__________。
30.如图,菱形ABCD 的对角线AC 、BD 相交于点O,且AC=8,BD=6,过点O 作OH 丄AB,垂足为H,则点O 到边AB 的距离为__________.31.如图,E 是正方形ABCD 边BC 延长线上一点,CE=AC,AE 交CD 于F,则∠AFC 的度数为__________。
32.如图,在ABC ∆中,点D 是BC 的中点,点E 、F 分别在线段AD 及其延长线上,且DE DF =,给出下列条件:①BE EC ⊥;②//BF CE ;③AB AC =.从中选择一个条件使四边形BECF 是菱形,你认为这个条件是__________.(填序号)33.已知一元二次方程232=0x x --的两个实数根分别为12x x ,,则12(1)(1)x x --的值是 .参考答案 1.答案:C解析:由已知,得ADE ∆是等腰三角形, BEF ∆是等腰直角三角形,所以4DE AD ==,424BE =-,设EF x =,则()222424x =-,解得422x =- (舍负),故选C.2.答案:A解析:连结OP .∵4AD =,3CD =∴22345AC =+=又∵矩形的对角线相等且互相平分∴ 2.5AO OD cm ==∴()11112.5 2.5 2.5342222APO POD S S PE PF PE PF ∆∆+=⨯+⨯=⨯+=⨯⨯ ∴125PE PF += 故选A.考点:1.矩形的性质;2.相似三角形的判定与性质;3.压轴题;4.动点型.3.答案:A解析:∵四边形ABCD 是平行四边形,①若AC⊥BD,则可得其为菱形,故①选项正确,②中∠BAD=90°,得到一矩形,不是菱形,所以②错误,③中一组邻边相等,也可得到一菱形,所以③成立,④中并不能得到其为矩形,菱形或正方形等,所以④不成立,故A 选项中①③都正确,B 中②不成立,C 中④错误,而D 中多一个选项②也不对,则能使▱ABCD 是菱形的有①或③.故选A.考点:1.菱形的判定;2.平行四边形的性质. 4.答案:B解析:连接BD ,由菱形的对角线互相垂直平分,可得B 、D 关于AC 对称,连接DE ,与AC 交于点P ,连接PB ,则PD PB =,∴PE PB PE PD DE +=+=,即DE 就是PE PB +的最小值,∵60?BAD ∠=,AD AB =,∴ABD ∆是等边三角形,∵AE BE =,∴DE AB ⊥,在Rt ADE ∆中, 2222213DE AD AE =-=-=,故选B.考点:菱形的性质5.答案:D解析:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.考点:1、菱形的性质;2、平行四边形的性质.6.答案:D解析:因为四边形ABCD 的对角线互相平分,所以四边形ABCD 是平行四边形,又对角线相等的平行四边形是矩形,因此需要添加的条件是AC BD =,故选:D .考点:1.平行四边形的判定;2.矩形的判定.7.答案:B解析:根据正方形的判断方法可知,满足条件①②或①③或②④或③④时,四边形ABCD 是正方形,故选B.8.答案:A解析:∵菱形ABCD 的周长为28,2847,,AB OB OD ∴=÷== H 为AD 边中点,OE ∴是ABD △的中位线,117 3.5.22OE AB ∴==⨯=故选A. 9.答案:D解析:A 、两条对角线垂直且平分的四边形是菱形;B 、对角线垂直、平分且相等的四边形是正方形;C 、两条对角线相等的平行四边形是矩形.考点:1、矩形;2、菱形;3、正方形的判定定理10.答案:A解析:∵DE//CA,DF//BA,∴四边形AEDF 是平行四边形;∵∠BAC=90°,∴四边形AEDF 是矩形;∵AD 平分∠BAC,∴∠EAD=∠FAD,∴∠FAD=∠ADF,∴AF=DF,∴四边形AEDF 是菱形;∵AD⊥BC 且AB=AC,∴AD 平分∠BAC,∴四边形AEDF 是菱形;故①②③正确.故选A.考点:1、矩形的判定;2、菱形的判定.11.答案:C解析:连接BD,∵四边形ABCD 是矩形,∴AC=BD,AC、BD 互相平分,∵O 为AC 中点,∴BD 也过O 点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC 是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF 与△CBF 中 FO FC BF BF OB BC ===⎧⎪⎨⎪⎩∴△OBF≌△CBF(SSS),∴△OBF 与△CBF 关于直线BF 对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD 是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB 错误.∴②错误, ∵∠OMB=∠BOF=90°,∠OBF=30°,∴3MB =,3OF =, ∵OE=OF,∴MB:OE=3:2,∴④正确;故选C.考点:1、菱形的判定与性质;2、全等三角形的判定与性质;3、矩形的性质.12.答案:C解析:方程2273?x x -=-化成一般形式后为: 22370x x +-=∴ 二次项系数、一次项系数、常数项分别是: 2,3,7-故选C13.答案:A解析:因为关于x 的一元二次方程有实根,所以△=b2-4ac=16+4(a-5)≥0,解之得a≥1,∵a -5≠0,∴a≠5,∴实数a 的取值范围是a≥1且a≠5.故选A .考点:1.根的判别式;2.一元二次方程的定义.14.答案:B解析:将2x =代入方程2230x mx m -+=,得4430m m -+=,解得4m =.将4m =代入原方程,得28120x x -+=,解得122,6x x ==,662+>,∴等腰三角形ABC 的三边长可以是2,6,6,此时三角形ABC 的周长为26614++=;226+<,∴等腰三角形ABC 的三边长不可以是2,2,6.故选B.15.答案:B解析:依题意得两次涨价后售价为()21001%x +∴方程为: ()21001%120x +=.故选B.16.答案:1.∵四边形ABCD 是菱形∴AC⊥BD,即∠AOD=90°∵DE//AC,AE//BD∴四边形AODE 是平行四边形∵∠AOD=90°∴□AODE 是矩形2.∵四边形ABCD 是菱形 ∴12AO OC AC ==,BO=OD,AB=BC, AB∥CD ∴∠ABC+∠BCD=180°∵∠BCD=120°∴∠ABC=60°∴△ABC 是等边三角形∴AC=AB=6∴OA=3根据Rt△ABO 的勾股定理可得BO = 即DO =∴3S AO DO =⨯=⨯=解析:1.根据两组对边分别平行得出平行四边形,根据菱形的性质得出矩形;2.根据菱形得出△ABC 为正三角形,得出OB 和AO 的长度,然后计算面积. 考点:1、矩形的判定;2、菱形的性质.17.答案:(1)证明:在DFC △中,90,30,2,DFC C DC t ∠=︒∠=︒= .DF t ∴=又,.AE t AE DF =∴=(2)解:能.,,//.AB BC DF BC AE DF ⊥⊥∴又由(1)知,AE DF =,∴四边形AEFD 为平行四边形.在Rt ABC △中.设AB x =,则由30C ∠=°,得2AC x =,由勾股定理,得222AB BC AC +=.即2224x x +=解得:5x = (负值舍去),5.210.AB AC AB ∴=∴==10 2.AD AC DC t ∴=-=-由已知得点D 从点C 运动到点A 的时间为1025÷= (s),点E 从点A 运动到点B 的时间为515÷= (s).若使AEFD 为菱形,则需AE AD =,即102,t t =-解得103t =,符合题意. 故当103t =时,四边形AEFD 为菱形. (3)解:①当90EDF ∠=°时,四边形EBFD 为矩形.在Rt AED △中,30ADE C ∠=∠=°.2,AD AE ∴=即1022t t -=,解得52t =,符合题意. ②当90DEF ∠=°时,由(2)知//EF AD ,90.ADE DEF ∴∠=∠=°9060,30.A C AED ∠=-∠=∴∠=°°°2AE AD ∴=,即2(102)t t =-,解得4t =,符合题意.③当90EDF ∠=°时,DEF △不存在.综上所述,当t 的值为52或4时,DEF △为直角三角形. 解析: 18.答案:解:(1)在菱形ABCD 中,AC CG =,AC BD ⊥,1116822BG BD ==⨯=由勾股定理得6AG ===,∴22612AC AG ==⨯=.菱形ABCD 的面积=1112169622AC BD =⨯⨯= (2)不发生变化,理由如下:如图①, 连接AO ,则AB ABD O AOD S S S =+△△△∴111222BD AG AB OE AD OF =+ 即1111661010222OE OF ⨯⨯=⨯+⨯ 解得9.6OE OF +=,是定值,不变(3)发生变化.如图②,连接AO ,则AB ABD O AOD S S S =-△△△∴111222BD AG AB OE AD OF =- 即1111661010222OE OF ⨯⨯=⨯-⨯ 解得9.6OE OF -=,是定值,不变∴+OE OF 的值发生变化,OE OF ,之间的数量关系为9.6OE OF -=解析:19.答案:1. DE FG ⊥,理由如下:由题意得A EDB GFE ∠=∠=∠,90ABC DBE ∠=∠=,∴90BDE BED ∠+∠=,∴90GFE BED ∠+∠=,∴90FHE ∠=︒,即DE FG ⊥.2.证明:由平移的性质得//CB GE ,CB GE =,∴四边形CBEG 是平行四边形.∵90ABC GEF ∠=∠=,∴四边形CBEG 是矩形.∵BC BE =,∴四边形CBEG 是正方形.解析:20.答案:证明:(1)在ADE △与CDE △中,,,,AD CD DE DE ADE CDE EA EC =⎧⎪=∴≅⎨⎪=⎩△△.ADE CDE ∴∠=∠//,.AD BC ADE CBD ∴∠=∠,.AD CD BC AD =∴=∴四边形ABCD 为平行四边形.又AD CD =∴四边形ABCD 是菱形. (2),.BE BC BCE BEC =∴∠=∠ :2:3,CBE BCE ∠∠=218045233CBE ∴∠=⨯=++°° ∵四边形ABCD 是菱形,45,90ABE ABC ∴∠=∴∠=°°∴四边形ABCD 是正方形.解析:21.答案:(1)四边形ABCD 是菱形,AB AD ∴=. 又,AB AD 的长是关于x 的方程21024m x mx -+-=的两个实数根,221()(1)02()44m m m -=∴-=--=∆, 1.m ∴=∴当m 为1时,四边形ABCD 是菱形.当1m =时,原方程为2104x x -+=, 即21()02x -=,解得1212x x ==.∴菱形ABCD 的边长为12. (2)把2x =代入方程得142024m m -+-=,解得52m =. 将52m =代入方程得25102x x -+=, ∴方程的另一根1122AD =÷=. ABCD ∴的周长是12(2)52⨯+=. 解析:22.答案:∵关于x 的方程()2260x b x b +++-=有两个相等的实数根, ∴()()22460b b ∆=+--=,即2 820? 0b b +-=;解得2b =,10b =- (舍去);①当a 为底, b 为腰时,则225+<,构不成三角形,此种情况不成立;②当b 为底, a 为腰时,则52552-<<+,能够构成三角形;此时ABC ∆的周长为: 55212++=;故ABC ∆的周长是12.解析:23.答案:1.∵方程有实数根,∴1640m ∆=-≥.∴m 的取值范围是4m ≤.2.由题意, 124x x +=,12522x x += ,解得12x =-,26x =.2612m =-⨯=-,符合,故m 的值是-12解析:24.答案:(1)解:根据题意,将1x =代入方程220x mx m ++-=,得120m m ++-=,解得12m =. (2) 证明:22241(2)48(2)40m m m m m ∆=-⨯⨯-=-+=-+>∴不论m 取何实数,该方程都有两个不相等的实数根.解析:25.答案:此题考查一元二次方程的解法,有配方法,因式分解法,十字相乘法,求根公式法; 解:此题中,所以此方程的解是:,即解是:解析:26.答案:x1=-1,x2=3 解析:27.答案:()() ()()()()2212212133130300,3 23401101,4x xx xx xx xx xx xx x+=+-=-===+-=-+===-解析:28.答案:1.12.2±解析:29.答案:5解析:∵∠AOD=120°∴∠AOB=60°∵ABCD为矩形∴OA=OB∴△AOB为等边三角形∴AO=2.5则AC=2AO=5.考点:矩形的性质30.答案:2.4解析:首先利用菱形的性质得出AO=4,BO=3,∠AOB=90°,进而利用勾股定理得出AB的长,再利用三角形面积公式求出HO的长.∵菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,∴AO=4,BO=3,∠AOB=90°,∴在Rt△AOB中,5 AB=,∵OH⊥AB,∴HO×AB=AO×BO,∴352.44AO BOHOAB⨯⨯===.故答案为:2.4.考点:菱形的性质.31.答案:112. 5°解析:根据正方形的性质可得∠ACB=45°,AC=CE,则说明∠E=∠CAE,根据三角形外角的性质可得:∠E+∠CAE=∠ACB,求出∠E-22.5°,最后根据∠AFC=∠E+∠DCE进行求解考点:1、三角形外角的性质;2、等腰三角形的性质;3、正方形的性质32.答案:③解析:由题意得:BD=CD,ED=FD,∴四边形EBFC 是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC 是矩形,②BF∥CE,根据EBFC 是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形, ③AB=AC,∵AB AC DB DC AD AD =⎧⎪=⎨⎪=⎩,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF 是菱形.考点:菱形的判定.33.答案:4-解析:由根与系数的关系,得121232x x x x +==-,,所以121212(1)(1)()12314x x x x x x --=-++=--+=-。