七年级下册数学平行线的判定及性质

合集下载

人教版七年级数学课件《平行线的判定》

人教版七年级数学课件《平行线的判定》
A.①②
B.①③
C.①④
D.③④
2.如图,下列条件中,能判断直线.l1//l2的是( B )
A.∠2=∠3
C.∠4+∠5=180°
B.∠1=∠3
D.∠2=∠4
达标检测
人教版数学七年级下册
3.如图,下列条件中,能判断直线l1//l2的是( C )
A.∠1=∠2
C.∠1+∠3=180°
B.∠1=∠5
D.∠3=∠5
得∠1=∠2(等量代换),
内错角相等,两直线平行
所以_________(________________________).
AE∥GF
针对练习
人教版数学七年级下册
已知如图所示,∠ = ∠,点、、在同一条直线上,
∠ = ∠ + ∠,且平分∠,试说明 ∥ 的理由.
复习回顾
人教版数学七年级下册
如何用直尺和三角板过直线AB外一点P做AB的平行线CD.
知识精讲
人教版数学七年级下册
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
起着什么样的作用?
知识精讲
人教版数学七年级下册
可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
4.如图,下列结论中正确的是( C)
A.若∠1=∠4,则m//c
B.若∠1=∠2,则a//b
C.若∠1+∠3=180,则n//c
D.若∠2+∠3=180°,则m//n
达标检测
人教版数学七年级下册
5.如图(1),光线AB,CD被一个平面镜反射,此时

CD
∠1=∠3,∠2=∠4,则AB // _____,BE_____DF.

七年级数学下册课件(北师大版)平行线的性质

七年级数学下册课件(北师大版)平行线的性质
A.35° B.40° C.45° D.50°
3 如图,在平行线a,b 之间放置一块直角三角板,三角板的 顶点A,B 分别在直线a,b上,则∠1+∠2的值为( A )
A.90° B.85° C.80° D.60°
4 如图,AB∥CD,点E 在线段BC 上,若∠1=40°,
∠2=30°,则∠3的度数是( A ) A.70° B.60° C.55° D.50°
2.3平行线的性质
第1课时





条件

线 同位角相等
的 内错角相等 判 定 同旁内角互补
结论 两直线平行
猜想:交换它们的条件与结论,是否成立?
两直线平行
同位角相等 内错角相等 同旁内角互补
知识点 1 “同位角”的性质
探究 如图,利用坐标纸上的直线,或者用直尺和三
角尺画两条平行线a∥b,然后, 画一条截线c 与这两条平行线
1 如图所示,AB∥CD,AC∥BD. 分别找出与∠1相等或互补的角.
解:如图,与∠1相等的角有∠3, ∠5,∠7,∠9,∠11,∠13,∠15; 与∠1互补的角有∠2,∠4,∠6,∠8,∠10,∠12, ∠14,∠16.
2 如图所示,要在一条公路的两侧铺设平行管道,已知 一侧铺设的角度为120°,为使管道对接,另一侧铺设 的角度大小应为( D ) A.120° B.100° C.80° D.60°
总结
解决学具操作题,关键是要掌握学具作为几何 图形具有的性质特征,以及学具作为特殊图形中特 殊内角的度数.
例2 如图,将一张长方形的纸片沿EF 折叠后,点D,C 分 别落在D′,C ′位置上,ED ′与BC 的交点为点G,若 ∠EFG=50°,求∠EGB 的度数.

人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件

人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件

4
b
2
∴ 2+ 4=180°
线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.
应用格式:
∵a∥b(已知)
∴∠2+∠4=180 °
a
1
4
b
2
(两直线平行,内错角相等)
c
典例精析
例 如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠所C以=梯18形0的°另-∠外B两=1个80角°分-1别15是°8=06°5°、 65°.
四、平行线的判定与性质 讨论:平行线三个性质的条件是什么?结论是
什么?它与判定有什么区别?(分组讨论)
如图,已知a//b,那么2与3相等吗?为什么?
解 ∵ a∥b(已知),
∴∠1=∠2(两直线平行,同位角相等).
a
1
又∵ ∠1=∠3(对顶角相等),
3
b
2
∴ ∠2=∠3(等量代换).
c
总结归纳
性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
应用格式:
∵a∥b(已知)
解: ∠A =∠D.理由:
∵ AB∥DE( 已知 )
D
∴∠A=_∠__C_P_E__ ( 两直线平行,同位角相等)
A
∵AC∥DF( 已知 )
F C
P E
图1 B
∴∠D=_∠__C_P_E_ ( 两直线平行,同位角相等 )

七年级下册数学平行线的判定及性质

七年级下册数学平行线的判定及性质

(一)重要知识点:1、两直线平行的判定方法方法一两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行方法二两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简称:内错角相等,两直线平行方法三两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行几何符号语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行。

平行线的判定是写角相等,然后写平行。

判断下列说法是否正确,如果不正确,请给予改正:⑴不相交的两条直线必定平行线。

⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。

⑶过一点可以且只可以画一条直线与已知直线平行如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?2、平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补。

A BC DEF1234A BE134几何符号语言: ∵AB ∥CD∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD∴∠3=∠2(两直线平行,同位角相等) ∵AB ∥CD∴∠4+∠2=180°(两直线平行,同旁内角互补)3、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。

4、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,那么……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

新人教版七年级数学下册平行线及判定

新人教版七年级数学下册平行线及判定

③过一点可以而且只可以画一条直线与已知直线
平行。
(╳)
D 2、用符号“∥”表示图中平行四
C
边形的两组对边分别平行。
AB∥ CD,AD∥ BC。 A
B
巩固练习
下列说法正确的是( D )
A、在同一平面内,两条直线的位置关系有相交, 垂直,平行三种。
B、在同一平面内,不垂直的两直线必平行。 C、在同一平面内,不平行的两直线必垂直。 D、在同一平面内,不相交的两直线一定不垂直。
5.2 平行线及其判定 5.2.2 平行线的判定
平行线的画法
一放 二靠 三移 四画
从画图过程,三角板起到什么作用?
要判断直线a //b,你有办法了吗?
平行线的判定定理1: 两条直线被第三条直线所截, 如果同位角相等,那么两直线 平行。简单地说: 同位角相等,两直线平行。 如图: ∵ ∠1=∠2(已知)
C
相交的两
Hale Waihona Puke 条直线。 abB
直线AB平行
AB D
CD 于直线CD
a b 直线a平行
于直线b
平面内的两条直线除平行 外还有什么位置关系?
同一平面内的两条不重 合的直线的位置关系只有两种:
相交或平行
课内练习
1、判断下列说法是否正确,并说明理由。
①不相交的两条直线是平行线。
(╳)
②在同一平面内,两条不相交的线段是平行线。(╳)
E
A
B
4
C
7
D
F
两条直线被第三条直线所截, 如果同旁内角互补,那么这两条直线平行.
简单地说:同旁内角互补,两直线平行.
判定两条直线平行的方法
文字叙述
符号语言

七年级数学下册教学课件《平行线的判定与性质的综合运用》

七年级数学下册教学课件《平行线的判定与性质的综合运用》

(2)由(1)可知AB∥EF, ∴∠3=∠ADE(两直线平行,内错角相等). 又∠3=∠B(已知), ∴∠ADE=∠B(等量代换). ∴DE∥BC(同位角相等,两直线平行). ∴∠EDG=∠BGD=55°(两直线平行,内错角相等). ∵DE平分∠ADG(已知), ∴∠ADG=2∠EDG=110°(角平分线的定义). 又AB∥EF, ∴∠1=∠ADG=110°(两直线平行,同位角相等).
(2)∵DE∥BC,∴∠C = ∠AED = 40°(两直线平行,
同位角相等)
4.已知:如图,∠1+∠B=∠C.试说明BD∥CE.
解:如图,作射线AP,使AP∥BD, ∴∠PAB=∠B(两直线平行,内错角相等). P 又∠1+∠B=∠C(已知), ∴∠1+∠PAB=∠C(等量代换), 即∠PAC=∠C. ∴AP∥CE(内错角相等,两直线平行). 又AP∥BD, ∴BD∥CE(如果两条直线都与第三条直线平 行,那么这两条直线也互相平行).
解:∵∠1=∠2(已知),∠2=∠DHE(对顶角相等), ∴∠1=∠DHE(等量代换). ∴AB∥CD (同位角相等,两直线平行). ∴∠B+∠D =180°(两直线平行,同旁内角互补). ∵∠D=50°(已知), ∴∠B=180°-∠D=180°-50°=130°.
②如图,已知AB∥CD,DA平分∠CDE,∠A =∠AGB.
拓展提升
如图 , 点E在AB上 , 点F在CD上 , CE , BF分别交AD于 点G,H.已知∠A =∠AGE,∠D=∠DGC. (1)AB与CD平行吗? 请说明理由. ( 2 ) 若∠2+∠1=180° , 且∠BEC=2∠B+30° , 求∠C 的度数.
解:(1)AB∥CD.理由如下: ∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC(对 顶角相等),∴∠A=∠D (等量代换). ∴AB∥CD (内错角相等,两直线平行).

七年级下册数学知识点归纳

七年级下册数学知识点归纳

七年级下册第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平移命题、定理二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。

同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

命题:判断一件事情的语句叫命题。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

三、定理与性质对顶角的性质:对顶角相等。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

第六章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

5-2-2平行线的判定-七年级下册人教版数学课件

5-2-2平行线的判定-七年级下册人教版数学课件

课堂练习
1.如图5.2-35,己知∠1=145°,∠2=145°,则AB∥CD,依据是 _同___位__角__相__等___,__两__直__线___平__行___.
图5.2-35
课堂练习
2.如图5.2-36 是一条街道的两个拐角,∠ABC与∠BCD均为140°,则 街道AB与CD的关系是_________,这是因___________________.
中考在线 考点:平行线的判定
【例1】如图5.2-27,下列说法错误的是( C ).
A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠5=180°,则a∥c
知识梳理
图5.2-27
【解析】根据平行线的判定进行判断:A.若a∥b,b∥c,则a∥c,利用了 平行公理,正确;B.若∠1=∠2,则a∥c,利用了内错角相等,两直线平行, 正确;C.∠3=∠2,不能判断b∥c,错误;D.若∠3+∠5=180°,则a∥c,利 用同旁内角互补,两直线平行,正确;故选C.
【答案】证明:∵AB⊥BC,BC⊥CD, ∴∠ABC=∠DCB=90°,∵∠1=∠2, ∴∠ABC-∠1=∠DCB-∠2, ∴∠CBE=∠BCF,∴BE∥CF.
图5.2-51
课后习题
9.如图5.2-52所示,已知∠1=50°,∠2=65°,CD平分∠ECF,则 CD∥FG.请说明理由.
图5.2-52
第5章 相交线与平行线
5.2.2 平行线的判定
教学新知
方法1:平行线的定义. 方法2:两条直线都与第三条直线平行,那么这两条直线也平行. 方法3:同位角相等,两直线平行. 方法4:内错角角相等,两直线平行. 方法5:同旁内角互补,两直线平行.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)重要知识点:
1、两直线平行的判定方法
方法一两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行
方法二两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简称:内错角相等,两直线平行
方法三两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行
几何符号语言:
∵∠3=∠2
∴AB∥CD(同位角相等,两直线平行)
∵∠1=∠2
∴AB∥CD(内错角相等,两直线平行)
∵∠4+∠2=180°
∴AB∥CD(同旁内角互补,两直线平行)
请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行。

平行线的判定是写角相等,然后写平行。

判断下列说法是否正确,如果不正确,请给予改正:
⑴不相交的两条直线必定平行线。

⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。

⑶过一点可以且只可以画一条直线与已知直线平行
如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?
2、平行线的性质:
A B
C D
E
F
1
2
3
4
1
2
性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补。

几何符号语言:

AB ∥CD
∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD ∴∠3=∠2(两直线平行,同位角相等)
∵AB ∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补)
3、两条平行线的距离
如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。

4、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。

⑵命题的组成
每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,那么……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。

对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。

注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。

5、平行线的性质与判定
①平行线的性质与判定是互逆的关系 两直线平行同位角相等; 两直线平行内错角相等; 两直线平行同旁内角互补。

其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。

1=∠B ,求证:∠2=∠C
A B C D
E F 1 2 3 4 A E G B
C F
H D
3
AB ∥DF ,DE ∥BC ,∠1=65°,求∠2、∠3的度数
6、平移变换
①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点
③连接各组对应点的线段平行且相等
2、平移的特征:
①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。

②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。

如图,△ABC 经过平移之后成为△DEF ,那么:
⑴点A 的对应点是点_________;⑵点B 的对应点是点______。

⑶点_____的对应点是点F ;⑷线段AB 的对应线段是线段_______; ⑸线段BC 的对应线段是线段_______;⑹∠A 的对应角是______。

A D F B
E C 1 2 3
4
⑺____的对应角是∠F 。

(二)试题精选:
1.如图(4),给出下列论断:①AD ∥BC:②AB ∥CD;③∠A=∠C.以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.
D
C B
A
F
E
O D
C
B
A
c
l
N
M
b a
2
1
(4) (5) (6)
2.如图(5),直线AB 、CD 、EF 相交于同一点O,而且
∠BOC=23∠AOC,∠DOF=1
3
∠AOD,那么∠FOC=______度.
3.如图(6),直线a 、b 被C 所截,a ⊥L 于M,b ⊥L 于N,∠1=66°,则∠2=________.
4. 如图,图中的内错角的对数是( ) A. 2对 B. 3对 C. 4对 D. 5对
5.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( ) A. 42138 、
B. 都是10
C. 42138 、或4210 、
D. 以上都不对
针对性练习:
1.已知:如图,∠=∠∠=∠123,,B AC DE //,且B 、
A E
3
1
2
4 B
C
D
5
C 、
D 在一条直线上。

求证:A
E BD //
2.已知:如图,∠=∠CDA CBA ,DE 平分∠CDA ,BF 平分∠CBA ,且∠=∠ADE AED 。

求证:DE FB //
3.已知:如图,∠+∠=∠=∠BAP APD 18012 ,。

求证:∠=∠E F
D F C
A E
B A B
1 E
F 2 C
P
D。

相关文档
最新文档