材料基因组计划(MGI)专题学习报告
基因计划心得

基因计划心得基因计划心得篇1基因计划是一项极具挑战性和富有成果的任务,它旨在深入研究生命的本质,以及我们如何更好地利用这些知识来改善人类健康和生活质量。
在参与这项工作之后,我深深地感受到了基因计划的重要性、复杂性和实用性。
首先,基因计划让我更深入地理解了生命的本质。
基因是生命的基石,而基因计划则是对这些基石的深入探索。
通过参与基因计划的各项任务,我得以窥探生命的奥秘,了解到DNA的结构和功能,以及基因如何编码和表达为我们身体所需的蛋白质。
这些知识不仅有助于我们更好地理解健康和疾病,也帮助我们更好地理解人类的发展和适应环境的能力。
其次,基因计划也让我体验到了科学研究的过程。
科学研究需要耐心、细致和批判性思维,而基因计划则提供了这样的一个机会。
从设计实验、收集数据、分析结果到撰写报告,我体验到了科学研究的完整过程,并学会了如何运用科学方法来解决复杂的问题。
这种经验对我未来的职业生涯有着重要的影响。
最后,基因计划也让我更深入地了解了人类和生命的复杂性。
基因只是生命的一部分,而基因计划则揭示了基因如何影响我们的身体、我们的健康和我们的行为。
这种认识让我更加敬畏生命的复杂性和生命的奇迹。
总的来说,基因计划是一项令人印象深刻的任务,它让我深入了解了生命的本质和科学研究的价值,并让我更深入地了解了人类的复杂性和生命的力量。
我非常珍视这次参与基因计划的机会,并希望未来能够继续利用这些知识来改善人类的健康和生活质量。
基因计划心得篇3基因计划是一项旨在深入研究人类基因组并寻找治疗遗传性疾病的方法的庞大科学计划。
我对基因计划产生了浓厚的兴趣,并开始深入了解其背后的科学和技术。
在深入了解基因计划的过程中,我对其科学性和技术性有了更深刻的认识。
基因计划不仅涉及基因组的测序和解读,还包括基因编辑和药物开发等多个领域。
这些技术对于理解和治疗遗传性疾病具有重要意义,同时也有助于推进人类健康和医疗水平。
同时,我也深刻认识到了基因计划背后的伦理和社会问题。
材料基因组计划(MGI)专题学习报告(精选5篇)

材料基因组计划(MGI)专题学习报告(精选5篇)第一篇:材料基因组计划(MGI)专题学习报告材料科学与工程前沿课程报告第一部分:材料基因组计划(MGI)专题学习报告学院:材料科学与工程学院专业:材料科学与工程姓名:XXXXX 学号:XXXXX 班级:XXXXX2012年11月19日第1页材料基因组计划(MGI)专题学习报告摘要:在美国2012 年财政预算中,新增了1 亿美元用以支持一项名为“材料基因组”的创新计划。
美国“材料基因组计划”试图创造一个材料创新框架,以期抓住材料发展中的机遇,这个试图揭示物质构成、不同元素排列与材料功能之间关系,进而实现有目的设计新材料的科学工程,有着更强烈的实用和需求背景,也是美国为保持其在先进材料及高端制造业领域领先地位的一大举措。
十多年前的中国没有能抓住“人类基因组计划”的先机,面临比“人类基因组计划”更为重要和广泛的“材料基因组计划”,我们不能再次丧失历史机遇。
本文主要介绍我对材料基因计划的认识和对我们国家如何能抓住这次历史机遇提出自己的认识并提出展望。
关键词:材料基因组计划历史机遇新材料材料数据库引言:2011 年6 月24 日,美国总统奥巴马宣布启动一项价值超过5亿美元的“先进制造业伙伴关系”(Advanced ManufacturingPartnership,AMP)计划,呼吁美国政府、高校及企业之间应加强合作,以强化美国制造业领先地位,而“材料基因组计划”(Materials Genome Initiative,MGI)作为AMP 计划中的重要组成部分,投资将超过1 亿美元。
“材料基因组”计划是“先进制造业伙伴关系”计划的主要基础部分,新兴材料才是新型制造业的基础。
MGI 的实施正是抓住了AMP计划实施的“牛鼻子”,是重中之重[1]。
这是金融危机之后,美国政府意识到仅靠服务业已无法支撑美国经济走出泥潭,必须重振制造业。
美国制造业的振兴不是传统制造业的复兴,而是新兴制造业的培育,其中建立在材料科学基础上的新材料产业是重点之一。
材料基因组工程

对“材料基因组工程”的认识及看法学号:22011216 姓名:胡方方“材料基因组工程”这是一个既熟悉而又陌生的名词,熟悉的是“材料”和“基因组工程”,然而两者的组合就是我们这些外行人所不能想象得到的,这对我们来说是一个新的领域,因而我对它产生了些许的好奇。
带着好奇的心理,我聆听了邓伟侨教授的一场关于“材料基因组工程”的课外研学讲座。
要了解“材料基因组工程”,对它有一个清晰而又正确的认识。
首先,要弄懂什么是“材料”,什么是“基因组工程”;再来进一步的认识什么是“材料基因组工程”,为什么会出现以及一些现状。
“材料”是人类用于制造物品、器件、构件、机器或其他产品的那些物质。
“基因组工程”就是测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。
物质的基本组成单元就是原子,而将材料与基因组工程联系在一起,不难得出这是将材料与人类做一个类比,基因之于人的性状如同原子之于材料。
我们知道,原子结构决定了物质的性质,性质决定了物质的用途,反之,那么想要得到有着特定功能的物质材料,我们就能够得到组成物质的原子及其原子结构。
材料显微组织及其中的原子排列决定了材料的性能,就像人体细胞里的基因排列决定了人体机能一样。
材料基因工程就是寻找和建立材料从原子排列到相的形成到显微组织的形成到材料性能与使用寿命之间的相互关系,把成分-结构-性能关系的数据库与计算材料设计结合起来,可以大大加快材料研发速度、降低材料研发的成本、提高材料设计的成功率。
人类基因工程计划的实施和取得的进展和成果,以及现实生活中许许多多的的例子给了科学家和研究人员很大的启发。
一、“材料基因组工程”是在何种的时代背景下被提出的。
技术的革新和经济的发展越来越依赖于新材料的进步,就像身体是革命的本钱,良好的材料则是技术革新和经济发展的载体、基石,没有优良的材料作支撑,一切都只是空谈,都是虚无缥缈的,先进的科学技术也就不能够被充分的表达。
材料基因工程在船舶领域的应用思路

材料基因工程,是借鉴生物学上的基因工程技术,研究材料结构、配方、工艺与材料性能变化的关系。
2011年,时任美国总统奥巴马提出了“材料基因组计划”(materials genome initia-tive,MGI),目的是实现材料从设计发现、优化改进到生产应用的全流程加速,最终缩短研发周期并降低成本。
2011年以后,美国、欧盟、日本、俄罗斯和中国均开展了材料基因研究计划。
材料基因工程化应用现状国外材料基因工程的成果集中在建模工具、先进算法及大数据应用等方面,包括材料建模和仿真示范、材料创新平台、数据库、材料测量方法等。
数据库方面主要成果有材料数据知识库、材料资源注册表、材料工程项目数据库、电池联合中心、纳米多孔材料数据平台、集成结构材料科学预测中心共享数材料基因工程在船舶领域的应用思路材料基因应得到船舶行业的重视,短期内材料基因项目可以缩短船用材料研发周期并降低成本,长期来看还可以实现船用材料的按需设计。
中国船舶工业经济与市场研究中心杨世雄2020.3 CHINA SHIP SURVEY 中国船检49热点 Hot Issue据库、能源材料网络、无机晶体结构数据库、宇航结构金属数据库、结构合金手册、工程材料数据库等。
具体应用的领域涉及能源材料领域、气体分离材料领域、催化材料领域及航空航天、船舶等特定应用领域。
能源材料领域:哈佛大学通过机器学习和高通量筛选等进行高性能有机光伏材料的制备。
麻省理工大学的Ceder教授采用高通量计算的方法来对电极材料进行筛选。
加州大学伯克利分校通过高性能计算等研发清洁能源领域的新材料,并预测新材料性能,建立了开放的数据库。
复合材料领域:美国橡树岭国家实验室建立“制造示范工厂”,通过材料基因技术推动低成本碳纤维复合材料在汽车领域的商业应用。
气体分离材料领域:Snurr等通过高通量实验与计算,制备出了高性能的CO2、H2和CH4等的捕获分离材料。
Haranczyk等利用巨正则系综Monte Carlo模拟,筛选出了捕获CO2和捕获存储CH4的高性能材料。
材料基因组计划在新型材料研发中的应用

材料基因组计划在新型材料研发中的应用摘要材料是现代社会发展的重要基石,其性能直接影响着各个领域的进步。
传统材料研发过程周期长、成本高、效率低,难以满足日益增长的需求。
材料基因组计划(Materials Genome Initiative,MGI)应运而生,旨在通过整合计算模拟、高通量实验、数据库和数据挖掘等技术手段,加速新型材料的研发过程。
本文将介绍MGI的理念、关键技术以及在不同领域中的应用,并展望其未来发展趋势。
关键词:材料基因组计划,新型材料研发,计算模拟,高通量实验,数据挖掘1. 引言材料科学与工程是现代科学技术发展的基础,材料的性能决定了产品的性能,直接影响着经济发展和社会进步。
传统材料研发过程通常依赖于试错法,即通过反复实验寻找最优配方和工艺参数,这不仅周期长、成本高,而且效率低下。
随着科学技术的进步,人们对材料性能的需求不断提升,传统研发模式已经难以满足需求。
为了加速材料研发进程,美国政府于2011年启动了材料基因组计划 (MGI),旨在通过整合计算模拟、高通量实验、数据库和数据挖掘等技术手段,加速新型材料的研发过程。
MGI的理念是将材料研发过程数字化,建立材料的“基因组”,通过数据驱动的科学研究,快速筛选出具有优异性能的材料,并预测其性能参数。
2. 材料基因组计划的理念和关键技术2.1 材料基因组计划的理念MGI的核心思想是将材料研发过程转化为一个高效、可预测的系统工程,其主要理念如下:*数据驱动:以数据为核心,建立材料数据平台,收集和整合材料的结构、性能、合成工艺等相关数据,为材料设计、合成、表征和应用提供支撑。
*计算模拟:利用量子力学、分子动力学等计算模拟方法,预测材料的结构、性能和加工工艺,减少实验次数,提高研发效率。
*高通量实验:开发高通量合成、表征和测试技术,快速筛选材料,加速实验验证过程。
*人工智能和机器学习:利用人工智能和机器学习技术,分析海量数据,建立材料性质与结构、成分之间的关联模型,预测材料性能,并优化材料设计。
材料基因组计划(MGI)专题学习报告

材料科学与工程前沿课程报告第一部分:材料基因组计划(MGI)专题学习报告学院:材料科学与工程学院专业:材料科学与工程姓名:XXXXX学号:XXXXX班级:XXXXX2012年11月19日材料基因组计划(MGI)专题学习报告摘要:在美国2012 年财政预算中,新增了1 亿美元用以支持一项名为“材料基因组”的创新计划。
美国“材料基因组计划”试图创造一个材料创新框架,以期抓住材料发展中的机遇,这个试图揭示物质构成、不同元素排列与材料功能之间关系,进而实现有目的设计新材料的科学工程,有着更强烈的实用和需求背景,也是美国为保持其在先进材料及高端制造业领域领先地位的一大举措。
十多年前的中国没有能抓住“人类基因组计划”的先机,面临比“人类基因组计划”更为重要和广泛的“材料基因组计划”,我们不能再次丧失历史机遇。
本文主要介绍我对材料基因计划的认识和对我们国家如何能抓住这次历史机遇提出自己的认识并提出展望。
关键词:材料基因组计划历史机遇新材料材料数据库引言:2011 年6 月24 日,美国总统奥巴马宣布启动一项价值超过5亿美元的“先进制造业伙伴关系”(Advanced Manufacturing Partnership,AMP)计划,呼吁美国政府、高校及企业之间应加强合作,以强化美国制造业领先地位,而“材料基因组计划”(Materials Genome Initiative,MGI)作为AMP 计划中的重要组成部分,投资将超过1 亿美元。
“材料基因组”计划是“先进制造业伙伴关系”计划的主要基础部分,新兴材料才是新型制造业的基础。
MGI 的实施正是抓住了AMP计划实施的“牛鼻子”,是重中之重[1]。
这是金融危机之后,美国政府意识到仅靠服务业已无法支撑美国经济走出泥潭,必须重振制造业。
美国制造业的振兴不是传统制造业的复兴,而是新兴制造业的培育,其中建立在材料科学基础上的新材料产业是重点之一。
2011年9月16日,奥巴马签署了《美国发明法案》,对现行专利体制进行重大变革,并宣布了一系列旨在促进科研成果转化的重要政策措施。
材料基因组计划(MGI)专题学习报告

材料基因组计划(MGI)专题学习报告由于第0周我还没有返校,所以没能听到刘国权老师讲的“材料设计与材料基因组计划”这节课,但是从题目和发到公邮里的资料来看,讲座应该是主要围绕美国的材料基因组计划和我国的材料研究方法及现状来展开的。
下面根据自己查阅到的资料阐述一下自己的理解。
一、美国的材料基因组计划在美国2012年财政预算中,新增了1亿美元用以支持一项名为“材料基因组”的创新计划。
这个计划要实现材料领域发展模式的转变,把新材料研发和应用的速度从目前的10~20年缩短为5~10年。
它试图揭示物质构成、不同元素排列与材料功能之间关系,进而实现有目的设计新材料的科学工程,有着更强烈的实用和需求背景,也是美国为保持其在先进材料及高端制造业领域领先地位的一大举措。
美国的这一举动引起了中国材料科学领域学者专家们的强烈反响。
“材料基因组”计划可以说是悄然启动的,它不像创意来源的人类基因组计划那样璀璨耀眼,但是其意义却十分重大,它将使材料科学研究及其向生产实践的转化发生极大的变化。
材料基因组计划与人类基因组计划最大的相似点是两者都是从对研究对象最基本组份(一为核苷酸-基因-细胞,一为原子-分子-化合物)的了解出发,来试图更多地了解“人”和“材料”,从而达到有目的地创造新生物或者新材料的目的。
材料基因组计划的意义从材料的角度来讲,不同的原子分子组合决定了材料具有不同的性质,我们总是致力于找到更加符合应用要求的材料。
然而现有的材料研究大多数采用的还是寻找和尝试的方法。
因而现阶段材料研发大致是从实验室研发到产品这样一种直线型的模式,周期很长。
据统计现在一种材料从研究开发到形成商用产品,平均周期是18年。
材料基因组的做法是把传统的研发到产品这样一种过程整个翻转过来,即从应用需求出发,反求倒推到符合相应结构功能的材料。
这样一种颠覆性的改变意味着需要对各种材料有足够多的认识和积累,包括结构组成、性能、工艺优化等。
要达到从需求出发反推材料结构的目的就必须结合已知的、可靠的实验数据,用理论和计算模拟去尝试发现新的未知材料,并建立其化学组分、晶体结构和各种物性的数据库,利用信息学、统计学方法,通过数据挖掘探寻材料结构和性能之间的关系模式,为材料设计师提供更多的信息。
《Mg-Y基生物材料结构、力学性能和降解性能研究》范文

《Mg-Y基生物材料结构、力学性能和降解性能研究》篇一一、引言随着现代医疗技术的不断发展,生物材料作为人体植入物、医疗设备和组织工程等领域的核心材料,其性能与安全性的研究显得尤为重要。
Mg-Y基生物材料作为一种新型的生物可降解金属材料,因其良好的生物相容性、可塑性及可降解性,正逐渐成为研究的热点。
本文将重点探讨Mg-Y基生物材料的结构、力学性能及降解性能,以期为相关研究与应用提供理论支持。
二、Mg-Y基生物材料结构研究Mg-Y基生物材料的结构研究主要包括其晶体结构、相组成及微观形貌等方面。
通过X射线衍射(XRD)技术,可以确定材料的晶体结构和相组成。
研究表明,Mg-Y合金中,Y元素的添加可以细化晶粒,提高材料的结晶度。
同时,通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察,可以发现材料具有较为均匀的微观结构,且Y元素的加入能够有效地改善材料的组织均匀性。
三、力学性能研究Mg-Y基生物材料的力学性能是其作为生物医用材料的重要指标之一。
通过拉伸试验、压缩试验和硬度测试等方法,可以评估材料的抗拉强度、抗压强度和硬度等力学性能。
研究显示,适当的Y元素添加可以显著提高Mg基合金的力学性能,使其具有较好的抗拉强度和抗压强度。
此外,材料的塑性可以通过控制合金成分和加工工艺来进一步优化。
四、降解性能研究降解性能是评价生物材料在体内应用过程中能否被人体自然代谢或排出的关键指标。
Mg-Y基生物材料作为可降解金属材料,其降解性能的研究显得尤为重要。
研究表明,Mg-Y基合金的降解速率受多种因素影响,包括合金成分、晶体结构、环境因素(如pH值、离子浓度等)以及体内酶的作用等。
适度的Y元素添加可以减缓材料的降解速率,提高其体内稳定性。
此外,材料的降解过程可以通过体内实验和体外模拟实验进行观察和研究。
五、结论通过对Mg-Y基生物材料结构、力学性能和降解性能的研究,我们可以得出以下结论:1. Mg-Y基生物材料具有优异的晶体结构和微观形貌,适度的Y元素添加可以细化晶粒,提高结晶度,改善组织均匀性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料科学与工程前沿课程报告
第一部分:材料基因组计划(MGI)专题学习报告
学院:材料科学与工程学院
专业:材料科学与工程
姓名:XXXXX
学号:XXXXX
班级:XXXXX
2012年11月19日
材料基因组计划(MGI)专题学习报告
摘要:在美国2012 年财政预算中,新增了1 亿美元用以支持一项名为“材料基因组”的创新计划。
美国“材料基因组计划”试图创造一个材料创新框架,以期抓住材料发展中的机遇,这个试图揭示物质构成、不同元素排列与材料功能之间关系,进而实现有目的设计新材料的科学工程,有着更强烈的实用和需求背景,也是美国为保持其在先进材料及高端制造业领域领先地位的一大举措。
十多年前的中国没有能抓住“人类基因组计划”的先机,面临比“人类基因组计划”更为重要和广泛的“材料基因组计划”,我们不能再次丧失历史机遇。
本文主要介绍我对材料基因计划的认识和对我们国家如何能抓住这次历史机遇提出自己的认识并提出展望。
关键词:材料基因组计划历史机遇新材料材料数据库
引言:
2011 年6 月24 日,美国总统奥巴马宣布启动一项价值超过5亿美元的“先进制造业伙伴关系”(Advanced Manufacturing Partnership,AMP)计划,呼吁美国政府、高校及企业之间应加强合作,以强化美国制造业领先地位,而“材料基因组计划”(Materials Genome Initiative,MGI)作为AMP 计划中的重要组成部分,投资将超过1 亿美元。
“材料基因组”计划是“先进制造业伙伴关系”计划的主要基础部分,新兴材料才是新型制造业的基础。
MGI 的实施正是抓住了AMP计划实施的“牛鼻子”,是重中之重[1]。
这是金融危机之后,美国政府意识到仅靠服务业已无法支撑美国经济走出泥潭,必须重振制造业。
美国制造业的振兴不是传统制造业的复兴,而是新兴制造业的培育,其中建立在材料科学基础上的新材料产业是重点之一。
2011年9月16日,奥巴马签署了《美国发明法案》,对现行专利体制进行重大变革,并宣布了一系列旨在促进科研成果转化的重要政策措施。
可以看出,美国当前的科技政策更加重视科技成果的商业化和开发新市场的改革,“材料基因组计划”也体现出了这一特点:该计划将大大加快材料投入市场的种类及速度,并可通过降低研发成本和周期降低失败风险。
回顾1999 年中国参与了“人类基因组”计划的研究,负责其中3号染色体
短臂上约3000万对碱基的测序任务。
虽然参加时间晚,承担任务最少,占总任务的1%,但工作效率和工作质量却得到了国际HGP项目组的公认,于2001年8 月26日完成了中国卷部分。
但是坦诚的说,中国并没有赶上这次计划的机遇,近10年来,“人类基因组”研究的成果,应用在研究人类乃至生命本质一系列问题上所展示的光辉,无不令世人惊叹,参加“人类基因组”计划(HGP)计划我们晚了,MGI计划我们不能再晚了,要抓住机遇,将我们国家的新材料研究水平提上一个新的水平。
一、“材料基因组计划”的主要内容
“材料基因组计划”是美国经过信息技术革命后,充分认识到材料革新对技术进步和产业发展的重要作用,以及在复兴制造业的战略背景下提出来的。
其主要目的是试图把新材料的开发周期缩短一半,打造全新“环形”开发流程,推动材料科学家重视制造环节,并通过搜集众多实验团队以及企业有关新材料的数据、代码、计算工具等,构建专门的数据库实现共享,致力于攻克新材料从实验室到工厂这个放大过程中的问题。
材料基因组计划主要包括3大系统:材料超级计算系统、材料性能扫描测试技术系统和材料设计性能数据库与信息平台系统。
该计划可能的影响:一是将进一步发挥和加强美国的技术优势和创新能力;二是将进一步增强美国在新材料产业的领先地位;三是为美国进一步做大先进制造业打下关键和坚实的基础,四是将开创新材料研发的新局面。
与“人类基因组工程”类似,“材料基因组工程”是通过高通量的第一性原理计算,结合已知的可靠实验数据,用理论模拟去尝试尽可能多的真实或未知材料,建立其化学组分、晶体和各种物性的数据库,并利用信息学、统计学方法,通过数据挖掘探寻材料结构和性能之间的关系模式,为材料设计师提供更多的信息。
根据以上内容可知MGI的重点内容就是:(1)打造材料创新基础。
将开发新的集成式计算、实验和数据信息学工具,将这些贯穿整个材料研发链,提高预测能力,用新标准实现整个材料的创新基础数字化信息的整合,与现代产品的设计框架无缝结合,推动材料工程研发、设计的快速化、全面化发展。
(2)开发数据共享平台。
数据共享将促进不同开发阶级的各国科学家和工程师跨国跨学科交流。
(3)通过先进材料计划,希望在国家安全材料研发方面投入巨资,特别关注
轻质保护材料、电子材料、储能材料、生物替代材料、稀土关键材料等领域。
美国国家科学院国家研究理事会在其综合计算材料的报告中展望了“材料基因组计划”潜在的优势:结合材料计算工具与信息以及复杂的已在工程领域使用的计算和分析工具,材料的开发周期可从目前的10~20年缩短为2~3年。
二、“材料基因组计划”的意义
国外提出“材料基因组”(亦称之为“材料基因工程”)的概念,“材料基因组”主要包括3大系统:材料超级计算系统、材料性能扫描测试技术系统和材料设计性能数据库与信息平台系统。
此3大系统是新材料设计的3大支柱,其目的就是寻找和建立材料从原子排列到相的形成到显微组织的形成到材料性能与使用寿命之间的相互关系,把成分-结构-性能关系的数据库与计算材料设计结合起来,以期加快材料研发速度、降低材料研发的成本、提高材料设计的成功率,从而缩短材料开发的时间跨度[2]。
“材料基因组(工程)”是一种新提法,本质上仍为材料计算模拟,作为一个交叉领域,综合了凝聚态物理、材料物理学、理论化学、材料力学、工程力学和计算机算法等相关学科。
半导体超晶格材料、非线性光学材料和自旋电子材料等都是材料设计的成功范例。
目前,大部分材料的设计与测试是通过耗时的重复实验来完成的,实际上,有些实验通过计算工具就能完成。
计算不仅可以深入理解材料的细节,节约研发成本,而且在某些特殊情况下,计算可以用来代替或指导实验,例如:材料还未能制备出来,无法测量它们的性质;有些材料可能会对人体健康有害,或者处在高压、超低温、强磁场等某些极端条件下,实验测量很难实现或者耗费巨大。
“材料基因组计划”将为新的研究范式发展提供一个必要的工具集,强大的计算分析将减少对物理实验的依赖,改进的数据共享系统和更加一体化的工程团队将允许设计、系统工程和生产活动的重叠与互动。
这种新的综合设计将结合更多的计算与信息技术,再加上实验与表征方面的进步,将显著加快材料投入市场的种类及速度。
三、“材料基因组计划”的展望
从大的方面来讲,新材料产业已被世界公认为最重要、发展最快的高新技术产业之一。
新材料与信息技术、生物技术共同构成了当今世界高新技术的三大支
柱,成为产业进步、国民经济发展和保证国防安全的重要推动力。
因此,工业发达国家都高度重视新材料在国民经济和国防安全中的基础地位和支撑作用,为保持其经济和科技的领先地位,都把发展新材料作为科技发展战略的优先目标,在制定国家科技与产业发展计划时,无不将新材料列为优先发展的关键技术之一,给予重点关注。
“材料基因组(工程)”科学研究具有2方面的重要作用:一是为高技术新材料研制提供理论基础和优选方案,对新型材料与新技术的发明产生先导性和前瞻性的重大影响;二是可以促进材料科学与工程由定性描述跨入到定量预测阶段,提高材料性能和质量,大幅缩短从研究到应用的周期,对经济发展和国防建设作出重要贡献。
许多国家都加大了材料理论与计算设计方面的人力和财力投入,都在争夺该领域某个方面的领先地位和知识产权。
例如,日本在玻璃、陶瓷、合金钢等材料的数据库、知识库和专家系统方面开展了很多工作;美国在计算材料科学方面一直处于领先水平,橡树岭国家实验室、美国国家标准与技术研究院、麻省理工学院等也都有一定的优势。
材料计算模拟与材料的制备/加工、材料表征同属于共性材料技术。
在未来的发展趋势方面,随着计算技术的快速发展、科学理论模型的日渐成熟,在微观、介观和宏观等不同层次上,在分子、原子、电子等不同层面,按预定性能设计新材料将日趋成熟;以“按需设计材料”为目标的多尺度、跨层次材料设计将得到重视;材料微结构的协同设计也会受到关注。
四、“材料基因组计划”在国内的进展情况
我在“十二五”规划听取意见的时候已经提出过,最重要的是建立材料科学的平台,上海是有这个优势的,这个平台包括材料基因组计划所需要的数据库、工艺流程、大量的原始数据以及国内外同行做成功的大量材料的案例。
比如我所在的中科院上海硅酸盐研究所和国内相关研究所研究各种晶体,在通过大量掺杂数据和由此产生新晶体和新功能方面有不少数据,如果别人能够查阅到这些数据,就能避免将已经探索过的路再走一遍[3]。
要公开自己积累的数据不是那么容易的,这其中牵扯到各个科研机构的利益问题,所以没能够实施。