电介质及其介电特性 基本介电现象
电介质理论(一)课件

击穿电压是电介质的重要电气性能参数,它反映了电介质在 强电场下的耐受能力。击穿电压的大小与电场强度、电介质 厚度、温度、湿度等因素有关。
击穿的微观机制
电极过程
在强电场的作用下,电介质中的 电子或离子在电极表面附近聚集 形成空间电荷层,形成导电通道
,导致电介质击穿。
热击穿
电介质在强电场作用下,内部热量 积累导致温度升高,当温度达到电 介质的热分解温度或熔点时,电介 质失去绝缘性能。
02
电介质的理论基础
电极化现象
定义
电极化现象是指电介质在电场作 用下发生的极化状态变化,即电 介质内部正负电荷中心发生相对 位移,导致电介质表面出现极化
电荷的现象。
分类
电极化现象可分为电子极化、离 子极化和取向极化等类型。
Байду номын сангаас
影响因素
电极化现象受到电场强度、电介 质种类和温度等因素的影响。
电极化的微观机制
电极化强度
电极化强度是描述电介质极化状态的物理量,表示单位体积内电 介质极化电荷的总量。
电场与电极化强度关系
电场与电极化强度之间存在一定的关系,即电极化强度与电场成正 比,与电介质种类和温度等因素有关。
电极化的能量损耗
电极化的过程中会产生能量损耗,主要表现在电介质内部的摩擦和 热能散失等方面。
03
电子极化
取向极化
电子极化是由于电场作用下电子云相 对于原子核发生位移,导致电子和原 子核之间的相互作用发生变化。
取向极化是由于电场作用下分子或分 子的排列方向发生变化,导致正负电 荷中心相对位移。
离子极化
离子极化是由于电场作用下离子在电 介质中的位移,导致正负离子之间的 相互作用发生变化。
电介质物理.

65oC 276oC
50Hz 3×106 Hz
6×10-4 3×10-4
1×1010 3.5×106
1.4×1011 4×106
结论:
① 与 基本相当;
②高频(2×106 Hz)下,介质损耗也是电导损耗。
电介质的损耗
无机玻璃——以共价键结合为主, s
,g
0, tan
0 r
如食盐Nacl晶体,石英,云母等。
只有e和a,r n2 , g 0
损耗主要来自电导
tan 1.81010 1 ( 1 )
0 r
f r
电介质的损耗
Nacl晶体的tan,与计算值
温度
f
tan ( m) ( m)
低频 高频
电介质在电场作用下的往往会发生电能转变为其 它形式的能(如热能)的情况,即发生电能的损 耗。常将电介质在电场作用下,单位时间消耗的 电能叫介质损耗。
电介质的损耗
电介质的损耗
在电压U的作用下,电介质单位时间内消耗的能量
电导损耗
产生原因
松弛极化 典型的为偶极子转向极化
电介质的损耗
在直流电压作用下,介质中存在载流子,有泄露电流 I R
偶极子取向极化(Dipolar Polarizability)
Response is still slower
空间电荷极化(Space Charge Polarizability)
Response is quite slow, τ is large
4. 材料的介电性
4.2 电介质的极化
4. 材料的介电性
①瓷——较常用 绝缘子 ②玻璃
③有机——复合的 陶瓷:不均匀结构,含三相①结晶相,②玻璃相,③气隙
电介质极化与介电常数

几种介电质的介电常数
材料类别 气体介质(标准大气条件)
弱极性
液体介质
极性
强极性
固体介质
中性或 弱极性
极性
离子性
名称
空气
变压器油 硅有机液体
蓖麻油 氯化联苯
丙酮 酒精 水
石蜡 聚苯乙烯 聚四氯乙烯
松香 沥青
纤维素 胶水 聚氯乙烯 沥青
云母 电瓷
相对介电常数εr(20℃)
1.00058
2.2 ~ 2.5 2.2 ~ 2.8
4.5 4.6 ~ 5.2
22 33 81
2.0 ~ 2.5 2.5 ~ 2.6 2.0 ~ 2.2 2.5 ~ 2.6 2.6 ~ 2.7
6.5 4.5 3.0 ~ 3.5 2.6 ~2.7
5~7 5.5 ~ 6.5
讨论电介质极化的意义:
1、选择绝缘:
电容器 r 大 电容器单位容量体积和重可减少
能产生,与频率无关
当物质原子里的电子轨道受
4、极化强度与电矩的大小成正比 ,且随着外电场的增强而增 大
5、与温度基本无关 6、不引起能量损耗
到外电场 E 的作用时,其负电荷 作用中心相对于原子核产生位移 ,形成电矩,称电子的位移极化 。
二、离子的位移极化
极化机理:
在外电场作用下,正、负离子发生偏移,使整个分子呈现极 性,正负离子的中心之间产生电矩,称离子的位移极化
电介质极化的概要
名称
产生极化的地方、 特征等
到达平衡 的时间
电子式极化 离子式极化 偶极子极化 夹层介质界面极化 空间电荷极化
任何物质的原子中 离子组成的物质 极性分子组成的物质 复合介质的交界面
电极近旁
10-15秒 10-13秒 10-10 ~ 10-2秒 数秒 ~ 数日 数秒 ~ 数日
电介质中的极化现象与介电常数

电介质中的极化现象与介电常数电介质是一种能将电场中的电荷正负离子重新分布的材料,当电介质置于外加电场中时,其内部的正负离子会发生极化现象,使介质中产生一个与外加电场方向相反但大小相同的极化电场。
这个极化过程是由于正负离子在电场作用下移动所引起的。
本文将讨论电介质中的极化现象与介电常数。
一、极化现象的机理在电介质中,正负离子之间存在有电相互作用,当外加电场作用于电介质时,电场力会将正负离子向相反方向移动,这种离子移动产生了两种电极化现象:取向极化和电荷极化。
1. 取向极化取向极化主要指的是电介质中的分子在电场作用下,由于自发定向而出现极化现象。
电场力可以使分子的正极和负极重新排序,使得整个电介质的正极和负极方向与外加电场方向相反,从而形成一个与外加电场方向相反但大小相同的极化电场。
2. 电荷极化电荷极化是由电介质中的正负离子在电场作用下发生移动而产生的。
正离子会向电场方向移动,而负离子则向相反的方向移动,导致电介质中产生一个内部电场,与外加电场方向相反。
二、介电常数的概念介电常数是反映电介质中电极化程度的物理量,用ε或ε_r表示。
它定义为电介质中产生的电场强度与外加电场强度之比。
介电常数越大,说明电介质在外加电场下电极化程度越高。
介电常数既可以是常数,也可以是频率相关的量。
对于静态或低频区域,介电常数是常数,而在高频区域,介电常数则会随频率的增加而变化。
三、介电常数的影响因素介电常数的大小受到多个因素的影响,以下是其中几个主要因素:1. 分子结构和极性分子结构和极性对电介质的介电常数有重要影响。
极性分子的电介质通常具有较高的介电常数,因为极性分子能更容易受到电场的影响,形成较强的极化。
2. 温度介电常数通常随着温度的升高而减小。
这是因为温度的升高会增加电介质中分子的热运动,使分子难以保持定向,从而降低电介质的极化程度。
3. 频率介电常数在不同频率下也会有所不同。
在高频区域,极化过程会受到分子间相互作用和电场反向作用的影响,导致介电常数的变化。
介电性能

介电性能由于无机介质材料在电场的作用下,带电质点发生短距离的位移,而不是传导电流,因此在电场中表现出特殊的性状,大量地用于电绝缘体和电容元件。
在这些应用中,涉及到介电常数、介电损耗因子和介电强度等。
6.1介质的电极化通过定义电介极化强度,建立起电介质内部电介极化强度与宏观电场之间的关系,电介极化强度与作用在晶体点阵中一个原子位置上的局部电场之间的关系,推导出介电常数与质点极化率的关系。
分析讨论各种极化的微观机制及影响极化率的因素。
6.1.1 介质的极化强度6.1.1.1电偶极矩(1)基本概念一个正点电荷q 和另一个符号相反数量相等的负点电荷-q ,由于某种原因而坚固地互相束缚于不等于零的距离上,形成一个电偶极子。
若从负电荷到正电荷作一矢量l ,则这个粒子具有的电偶极矩可表示为矢量p=ql (6.1) 电偶极矩的单位为C ⋅m (库仑⋅米)(2)外电场对点偶极子的作用在外电场E 的作用下一个点电偶极子p 的位能为U=-p ⋅E (6.2)上式表明当电偶极矩的取向与外电场同向时,能量为最低,而反向时能量为最高。
点电偶极子所受外电场的作用力f 和作用力矩M 分别为⋅ f=p ·∇E (6.3)M=p ⨯E (6.4)因此力使电偶极矩向电力线密集处平移,而力矩则使电偶极矩朝外电场方向旋转。
(3)电偶极子周围的电场距离点电偶极子p 的r 处的电场为543r r o πεpr r p 2)(E(r)-⋅= (6.5)6.1.1.2极化强度(1)定义称单位体积的电偶极矩为这个小体积中物质的极化强度。
极化强度是一个具有平均意义的宏观物理量,其单位为C/m 2。
(2)介质的极化强度与宏观可测量之间的关系极化强度为P=(ε-ε0)E=ε0 (εr -1)E (6.6) 把束缚电荷和自由电荷的比例定义为电介质的相对电极化率χe有 P= ε0χe E (6.7) 式(6.10)为作用物理量E 与感应物理量P 间的关系.还可以得出电介质的相对介电常数与相对电极化率χe 有以下关系εr =E PE 00εε+=1+χe (6.8)6.1.2宏观电场与局部电场 在外电场的作用下电介质发生极化,整个介质出现宏观电场,但作用在每个分子或原子上使之极化的局部电场(也叫有效场)并不包括该分子或原子自身极化所产生的电场,因而局部电场不等于宏观电场。
第十三章(2)电介质

斜圆柱体元内的电偶极矩为
pi
P dl dS cosθ
i
介质的极化使两底面产生极
化电荷 dS
因此斜柱体元又可看成一个
电偶极子
pi
σ dSdl
i
所以
pi
dl dS
c osθ P
i
P dl dS cosθ σ dSdl
五、闭合曲面内的极化电荷
在已极化的介质内任意作一闭合面S(如图所示)
S 将把位于 S 附近的电介质分子分为两部分: 一部分在 S 内,一部分在 S 外。 电偶极矩穿过S 的分子对S内的极化电荷有贡献。
S
q0
q' q0
设在介质内闭合曲面
S附近极化强度矢量
如图示。
S
取一宏观上足够小
、微观上足够大的 斜圆柱体元。
r R sin θ x R cos θ
知该带电圆环在球心的场强为
-+
-R +
- -P
- -
θ++
o R+s+in
z
- +R d
en
P
dEz
σ(2πR sin θRdθ) 4πε0
R cosθ [(R cosθ)2 (R sin θ)2 ]3/2
知该带电圆环在球心的场强为
pi
0
有极分子在外场中同样有位i 移极化,但是取向极化
效应要比位移极化效应更强。
有极分子的极化
电介质的极化: ①位移极化 位移极化
主要是电子发生位移
E0
无极分子只有位移极化,感生电矩的方向沿外场方向。 ②取向极化
介电性能

正压电效应实验
1880年,Piere 兄弟实验发现 ,对α-石英单 晶体在一定方 向上加力,则 在力的垂直方 向出现正负束 缚电荷—压电 效应。
具有压电效应 的物体—压电 体。
正压电效应:是机械能转换成电能的过程
++++++++++ ----- -- -- --
束缚电荷形成新的电场,该电场与外加电场的方向 相反---退极化场Ed。 宏观电场:E宏=E0+Ed
极化:电介质在电场作用下产生束缚电荷的现象。
极化电荷:电介质在外电场的作用下,在和外电场相垂 直的电介质表面分别出现正、负电荷。这些电荷不能自 由移动,也不能离开,总保持中性。
如,电致伸缩陶瓷PZN(锌铌酸铅陶瓷)
对于一般电介质,电致伸缩效应所产生的应变 实在太小,可以忽略.
压电性产生的原因
石英晶体的化学组成是SiO2,3个Si原子和6个O原 子位于晶包的格点上。Si4+ , O2-。
当材料受到压缩应力的 作用时,A面Si4+挤入两 个O2-间, B面O2- 挤入 两个Si4+间。因此,A面 出现负电荷,B面出现正 电荷。
电击穿
1.电场强度高时会形成电流脉冲发生击穿 ,由此产生点坑、孔洞和通道并连通;
2.击穿发生于材料的表面,通过表面水分 或污染杂质增加了击穿的可能性;
3.电击穿是一种集体现象,能量通过其它 粒子(例如,已经从电场中获得了足够能 量的电子和离子)传送到被击穿的组分中 的原理或分子上。
压电性
电介质作为材料,主要用于电子工程中的绝缘 材料、电容器材料和封装材料—应用的是电介 质的共性性质。
介质和电介质的特性和应用有哪些

介质和电介质的特性和应用有哪些一、介质的概念介质,又称传播介质,是指电磁波传播的媒介。
介质可以是固体、液体、气体,甚至是真空。
不同的介质对电磁波的传播有不同的影响。
介质中电磁波的传播速度与介质的性质有关,如介质的折射率、介电常数等。
二、电介质的特性电介质是指在电场作用下,其内部会产生极化现象,从而影响电场分布的物质。
电介质的主要特性有:1.极化:电介质在外加电场的作用下,内部会产生极化现象,即正负电荷分别向电场方向和相反方向移动,形成局部电荷分布。
2.介电常数:电介质的介电常数(ε)是描述电介质极化程度的物理量,反映了电介质对电场的响应能力。
介电常数越大,电介质的极化程度越高。
3.绝缘性:电介质具有良好的绝缘性能,可以阻止电流的流动。
绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。
4.存储电荷:电介质在去除电场后,仍能保留一定量的电荷,称为电容。
电容是电介质储存电能的能力,广泛应用于电容器中。
三、电介质的应用1.电容器:电容器是利用电介质的储存电荷能力,实现电能存储和释放的元件。
电容器广泛应用于电子设备、电力系统、通讯等领域。
2.绝缘材料:电介质具有良好的绝缘性能,可以阻止电流的流动。
绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。
3.屏蔽材料:电介质可以用于屏蔽电磁干扰,保护电子设备免受外部干扰。
4.介质波导:电介质波导是一种用于传输电磁波的介质管道,广泛应用于光纤通信、微波传输等领域。
四、介质的分类及应用1.固体介质:如陶瓷、玻璃、塑料等。
固体介质在电子元件和微波器件中有广泛应用,如微波谐振器、滤波器等。
2.液体介质:如水、油、酸碱盐溶液等。
液体介质在电力系统中作为绝缘材料和冷却剂,以及化学实验室中的试剂。
3.气体介质:如空气、氮气、氧气等。
气体介质在电力系统中作为绝缘气体,以及灯泡中的填充气体。
4.真空介质:真空是一种特殊的介质,具有极低的介电常数。
在某些高频电路和微波器件中,真空介质可以作为优良的传播介质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成的损耗而引起。
➢ 因此,研究介质损耗的重点就是研究介质 极化形成的动态过程中产生的损耗。
电介质理论及其应用
11
电介质在电场作用下的主要特性
1. 4 介质击穿
在高场强下介质的电导电 流将会成指数式激烈上升,导 致介质进入高导电的非平衡状 态——电介质击穿现象。
而:介质在力场作用下发生的压电效应、在热场作用 下产生的热释电效应、在光照下引起的光电效应、导电性 突变的PTC效应等,则为相反的功能转换特性。
ρv—体电阻率,(·m); γ—体电导率,(S/m)
U—电压(V);E—电场强度(V/m);j—电流密度, (A/m2)
电介质理论及其应用
5
电介质在电场作用下的主要特性
电导特性是任何一种材料(无论导体、半导体、 还是电介质)都具有的电学性质,并非电介质所特 有。但不同材料在电导率的大小上却相差很远:
电介质的基本 介电现象
电介质理论及其应用
1
主要内容:
电介质的基本介电现象
1. 电介质在电场作用下的主要特性
电导、极化、损耗、击穿
2. 电介质的功能特性
电—机械、电—热、电—光 电—压敏、PTC
电介质理论及其应用
2
电介质在电场作用下的主要特性
1. 电介质在电场作用下的主要特性
电介质:在电场作用下能建立极化的一切物质。 存在较强电场并可发生明显极化现象的材料。 电力线能透过的物质(法拉第1839年)。
例如:一般导体γ=109(S/m )
绝缘性能良好的电介质γ=10-18(S/m )
相差1027倍。
导电机理有明显区别,因此对电介质电导需作 专门的讨论。
为什么?
电介质理论及其应用
6
电介质在电场作用下的主要特性
1.2 介质极化
定义:极化是电介质中束缚在分 子内部或局部空间不能完全自由 运动的电荷,在电场作用下产生 局部的迁移而形成感应偶极矩的 物理现象。是电介质特有的性质。
特点:在直流电压作用下 有较稳定的电流通过。
表征:用电阻率ρv或电导 率γ来表征材料的电导特
性。
电介质理论及其应用
RU I
G I U
E j
I v
4
电介质在电场作用下的主要特性
在电介质截面积为S、厚度为L的平板型材料 的情况下,则有:
U EL I jS
由此可得:
R
v
(
L S
)
R—电阻,单位为欧姆(); G—电导,(S)
电介质理论及其应用
16
电介质的功能特性
2. 电介质的功能特性
电介质除了具有上述纯粹的电学特性之外,在其电性 和力学性能、热学性能、光学性能之间还存在密切相关的 功能转换特性。
如:介质在电场作用下的电致伸缩效应、电压敏效应、 场致发光效应和电热效应等,反映了介质把电能转化为机 械能、光能、热能的功能效应。
电介质物理:是研究宏观物质中电位移运动基本规律的科 学。主要研究对象是电介质中电荷的运动迁移现 象以及由此产生的各种效应。
主要特性:电介质在电场作用下最主要的电特性是极化和电 导,以及在此基础上产生的损耗与击穿现象。
电介质理论及其应用
3
电介质在电场作用下的主要特性
1. 1 介质电导
定义:电介质电导是电介 质中存在的少量载流子, 贯穿整个介质而构成“漏 泄电流”的物理现象。
材料介电特性的最主要参数。它们在线性材料中是 与电场强度无关的常数,当电场频率改变时也会改 变;在非线性材料以及在强电场下则还与电场强度 有关。
因此: r 为温度、电场频率、电场强度的函数; v 则为温度、电场强度的函数。
电介质理论及其应用
9
电介质在电场作用下的主要特性
1. 3 介质损耗
在交变电压下,由于极化,使介质中 存在电容 电流和电导电流。
电介质:在电场作用下能产生极化现象的材料。
表征:单位体积电介质中形成的总感应电矩——极化强度。
在线性介质中: P 0E
x——介质极化系数,0——真空介电常数,8.854×10-12F/m
电介质理论及其应用
7
电介质在电场作用下的主要特性
在工程技术中,通常采用比电容率(或相对介电常数) 来作为介质极化的量度。
对电容器而言:希望电容电流大,而引起损耗 的电导电流小。从而引入一个新的介质物理参数—
—介质损耗角正切tan。
电介质理论及其应用
10
电介质在电场作用下的主要特性
定义:
tan
IR IC
I RU
CU
2
Pr Pc
Pr电容介质损耗有功功率, Pc电容无功功率。
➢ 只有电导电流损耗时,tan与成倒数关系。
➢ 极性介质的tan与是有峰值的曲线关系,极性介 质的tan值比非极性介质的tan值大;而且tan随
比电容率是以介质充入真空电容器后,此电容器的电容
量(C)与原真空电容器的电容量(C0)之比来计量。
r
C C0
r 0
r——相对介电常数,它与0的乘积,定义为介质的介电常数
由电工学可得:
r 0Biblioteka D E0 EE
P
r
1
P
0E
电介质理论及其应用
8
电介质在电场作用下的主要特性
体电阻率(v)和相对介电常数(r)是表征
性的四大物理参数。
研究四大参数与电介质材料的组成、结构、 含杂等的关系,以及温度、压力、电场性质(频 率、波形等)的影响。
研究成果广泛用于工程领域——成为“电介 质工程”。
电介质理论及其应用
14
电介质在电场作用下的主要特性
高功率脉冲电容储能技术为例:
W
1 2K
E
2
,....
.
.,K
V t
V
1
i
➢ 电容器的电储能密度W与和E2呈正比
➢ 提高储能密度可采用高ε和高E的电介质材料
➢ 推动了高介电常数低介质损耗材料的研究和发展
➢ 而提高介质的耐电强度则是作为电介质绝缘材料 的一个最主要的共性问题。
电介质理论及其应用
15
电介质在电场作用下的主要特性
涉及的科学与技术问题: ➢ 高储能介质的介电性能——极化、弛豫机理 ➢ 高耐电强度——高介电常数介质的击穿特性 ➢ 结构优化——提高电容器有效储能体积 ➢ 放电特性——快速、大容量、消除电感 ➢ 高可靠性——稳定性与寿命 ➢ 性能评价——测、试、分析技术
主要判据:
dI dU
dU 0 dI
电介质理论及其应用
12
电介质在电场作用下的主要特性
在均匀电场下:如介质厚度d,介质击穿电压UB
EB
UB d
EB ——介质击穿场强,描述电介质耐电压特性的
重要物理参数,它与温度、电场形式有关。
电介质理论及其应用
13
电介质在电场作用下的主要特性
r,v,tan和EB 作为描述绝缘介质基本特