初中数学双柏县鄂嘉中学中考模拟数学模拟考试卷.docx
云南省楚雄州双柏县中考数学模拟试题(含解析)

云南省楚雄州双柏县2016届中考数学模拟试题一、填空题(本大题共6个小题,每小题3分,满分181.﹣6的绝对值是.2.一元二次方程2x2﹣2=0的解是.3.如图,已知a∥b,∠1=135°,则∠2= .4.函数自变量的取值范围是.5.如图,⊙O的直径CD⊥AB,∠A=30°,则∠D= .6.如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是()A.a2•a2=a4B.(a﹣b)2=a2﹣b2C.2+=2D.(﹣a3)2=﹣a68.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.9.2016年3月全国两会政府工作报告中指出:城镇新增就业人数超过6400万人,城镇保障性安居工程住房建设4013万套,上亿群众喜迁新居.将6400万用科学记数法表示为()A.6.4×107B.6.4×108C.6.4×103D.64×10610.不等式组的解集是()A.x≥0 B.x>﹣2 C.﹣2<x≤3D.x≤311.九年级某班40位同学的年龄如下表所示:年龄(岁)13 14 15 16人数 3 16 19 2则该班40名同学年龄的众数和中位数分别是()A.19,15 B.15,14.5 C.19,14.5 D.15,1512.已知扇形的面积为4π,扇形的弧长是π,则该扇形半径为()A.4 B.8 C.6 D.8π13.若等腰三角形的一个内角是40°,则它的顶角是()A.100°B.40° C.100°或40°D.60°14.直线y=﹣x与双曲线y=在同一坐标系中的大致位置是()A.B.C.D.三、解答题(本大题共9个小题,满分70分)15.计算:先化简,再求值:(﹣)÷,其中x=.16.如图,已知∠ABO=∠DCO,OB=OC,求证:△ABC≌△DCB.17.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?18.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)19.为了解我县1800名初中毕业生参加云南省数学学业水平考试的成绩情况(得分取整数),我们随机抽取了部分学生的数学成绩,将其等级情况制成不完整的统计表如下:等级A级(优秀)B级(良好)C级(及格)D级(不及格)(≥108分)(≥84分且<108分)(≥72分且<84分)(<72分)人数22 28 18根据以上提供的信息解答下列问题:(1)若抽取的学生的数学成绩的及格率(C级及其以上为及格)为77.5%,则抽取的学生数是多少人?其中成绩为C级的学生有多少人?(2)求出D级学生的人数在扇形统计图中的圆心角.(3)请你估计全县数学成绩为A级的学生总人数.20.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.21.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.22.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.23.如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值;(2)求抛物线E2所表示的二次函数的表达式;(2)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年云南省楚雄州双柏县中考数学模拟试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分181.﹣6的绝对值是 6 .【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.【点评】规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一元二次方程2x2﹣2=0的解是x1=1,x2=﹣1 .【考点】解一元二次方程-直接开平方法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用平方根定义开方即可求出解.【解答】解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为:x1=1,x2=﹣1【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握完全平方公式是解本题的关键.3.如图,已知a∥b,∠1=135°,则∠2=45°.【考点】平行线的性质.【分析】先求出∠3的度数,根据平行线的性质得出∠2=∠3,即可求出答案.【解答】解:∵∠1=135°,∴∠3=180°﹣∠1=45°,∵a∥b,∴∠2=∠3=45°,故答案为:45°【点评】本题考查了平行线的性质的应用,能根据平行线的性质得出∠2=∠3是解此题的关键,注意:两直线平行,内错角相等.4.函数自变量的取值范围是x≠﹣1 .【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】该函数由分式组成,故分母不等于0,就可以求出x的范围.【解答】解:根据题意得:x+1≠0,解得x≠﹣1.【点评】本题主要考查:当函数表达式是分式时,分式的分母不能为0.5.如图,⊙O的直径CD⊥AB,∠A=30°,则∠D=30°.【考点】圆周角定理;垂径定理.【分析】由⊙O的直径CD⊥AB,∠A=30°,由垂径定理得=,然后由圆周角定理,求得∠D的度数.【解答】解:∵⊙O的直径CD⊥AB,∠A=30°,∴=,∠AOC=90°﹣∠A=60°,∴∠D=∠AOC=30°.故答案为:30°.【点评】此题考查了圆周角定理与垂径定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.如图,是用火柴棒拼成的图形,则第n个图形需2n+1 根火柴棒.【考点】规律型:图形的变化类.【专题】压轴题.【分析】按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n﹣1)个,那么此时火柴棒的根数应该为:3+2(n﹣1)进而得出答案.【解答】方法一:解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.方法二:当n=1时,s=3,当n=2时,s=5,当n=3时,s=7,经观察,此数列为一阶等差,∴设s=kn+b,,∴,∴s=2n+1.【点评】此题主要考查了图形变化类,本题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是()A.a2•a2=a4B.(a﹣b)2=a2﹣b2C.2+=2D.(﹣a3)2=﹣a6【考点】完全平方公式;实数的运算;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、完全平方公式、幂的乘方,即可解答.【解答】解:A、a2•a2=a4,正确;B、(a﹣b)2=a2﹣2ab+b2,故错误;C、2与不能合并,故错误;D、(﹣a3)2=a6,故错误;故选:A.【点评】本题考查了同底数幂的乘法、完全平方公式、幂的乘方,解决本题的关键是熟记完全平方公式.8.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是横着的“目”字.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.9.2016年3月全国两会政府工作报告中指出:城镇新增就业人数超过6400万人,城镇保障性安居工程住房建设4013万套,上亿群众喜迁新居.将6400万用科学记数法表示为()A.6.4×107B.6.4×108C.6.4×103D.64×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6400万=64000000=6.4×107,故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.不等式组的解集是()A.x≥0 B.x>﹣2 C.﹣2<x≤3D.x≤3【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解①得:x≤3,解②得:x>﹣2,则不等式组的解集是:﹣2x≤3.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).11.九年级某班40位同学的年龄如下表所示:年龄(岁)13 14 15 16人数 3 16 19 2则该班40名同学年龄的众数和中位数分别是()A.19,15 B.15,14.5 C.19,14.5 D.15,15【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数是一组数据中出现次数最多的数据.【解答】解:根据众数的定义在这组数据中15出现次数最多,则众数为15,则中位数是(15+15)÷2=15,∴该班唱团成员年龄的众数和中位数分别为15,15.故选D.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12.已知扇形的面积为4π,扇形的弧长是π,则该扇形半径为()A.4 B.8 C.6 D.8π【考点】扇形面积的计算;弧长的计算.【分析】设该扇形的半径为r,再由扇形的面积公式即可得出结论.【解答】解:设该扇形的半径为r,则πr=4π,解得r=8.故选B.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.13.若等腰三角形的一个内角是40°,则它的顶角是()A.100°B.40° C.100°或40°D.60°【考点】等腰三角形的性质.【专题】分类讨论.【分析】已知等腰三角形的一个内角为40°,根据等腰三角形的性质可分情况解答:当40°是顶角或者40°是底角两种情况.【解答】解:此题要分情况考虑:①40°是它的顶角;②40°是它的底角,则顶角是180°﹣40°×2=100°.所以这个等腰三角形的顶角为40°或100°.故选C.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.直线y=﹣x与双曲线y=在同一坐标系中的大致位置是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据函数解析式中系数k的符合判定函数图象所经过的象限,然后作出判断即可.【解答】解:∵直线y=﹣x中的k=﹣1<0,∴该直线经过第二、四象限;∵双曲线y=中的k=1>0,∴该直线经过第一、三象限;观察选项,D选项符合题意.故选:D.【点评】本题考查了正比例函数的图象及反比例函数的图象,能根据函数关系式判断出所经过的象限是解答本题的关键.三、解答题(本大题共9个小题,满分70分)15.计算:先化简,再求值:(﹣)÷,其中x=.【考点】分式的化简求值.【分析】根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•﹣•=3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8,当x=时,原式=2x+8=2×+8=9.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.如图,已知∠ABO=∠DCO,OB=OC,求证:△ABC≌△DCB.【考点】全等三角形的判定;全等三角形的性质;等腰三角形的性质.【专题】证明题.【分析】根据ASA推出△ABO≌△DCO,根据全等三角形的性质得出∠A=∠D,求出∠ABC=∠DCB,根据AAS推出即可.【解答】证明:∵在△ABO和△DCO中∴△ABO≌△DCO(ASA),∴∠A=∠D,∵OB=OC,∴∠OBC=∠OCB,∵∠ABO=∠DCO,∴∠ABO+∠OBC=∠DCO+∠OCB,即∠ABC=∠DCB,在△ABC和△DCB中,∴△ABC≌△DCB(AAS).【点评】本题考查了全等三角形的判定定理、性质定理和等腰三角形的性质的应用,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,符合SSA和AAA 不能推出两三角形全等.17.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【考点】二元一次方程组的应用.【专题】应用题;方程思想.【分析】由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解.【解答】解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:,解得:,答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩.【点评】此题考查的是二元一次方程组的应用,关键是确定两个相等关系列方程组求解.18.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.19.为了解我县1800名初中毕业生参加云南省数学学业水平考试的成绩情况(得分取整数),我们随机抽取了部分学生的数学成绩,将其等级情况制成不完整的统计表如下:等级A级(优秀)(≥108分)B级(良好)(≥84分且<108分)C级(及格)(≥72分且<84分)D级(不及格)(<72分)人数22 28 18根据以上提供的信息解答下列问题:(1)若抽取的学生的数学成绩的及格率(C级及其以上为及格)为77.5%,则抽取的学生数是多少人?其中成绩为C级的学生有多少人?(2)求出D级学生的人数在扇形统计图中的圆心角.(3)请你估计全县数学成绩为A级的学生总人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据D级的人数和所占的百分比求出抽取的学生总人数,再用总人数减去其它级的人数,即可求出成绩为C级的学生数;(2)用360°乘以D级学生的人数所占的百分比即可;(3)全县的人数乘以A级的学生所占的百分比即可.【解答】解:(1)根据题意得:18÷(1﹣77.5%)=18÷22.5%=80(人),则80﹣22﹣28﹣18=12(人);答:抽取的学生数是80人,其中成绩为C级的学生有12人;(2)D级学生的人数在扇形统计图中的圆心角度数是:360°×22.5%=81°;(3)根据题意得:1800×(22÷80)=495(人).答:估计全县数学成绩为A级的学生总人数有495人.【点评】本题考查的是图表和扇形统计图的综合运用,读懂统计表,从统计表中得到必要的信息是解决问题的关键.20.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:y=﹣20x+1890 ;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【考点】一次函数的应用.【分析】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:(1)y=90(21﹣x)+70x=﹣20x+1890,故答案为:y=﹣20x+1890.(2)∵购买B种树苗的数量少于A种树苗的数量,∴x<21﹣x,解得:x<10.5,又∵x≥1,∴x的取值范围为:1≤x≤10,且x为整数,∵y=﹣20x+1890,k=﹣20<0,∴y随x的增大而减小,∴当x=10时,y有最小值,最小值为:﹣20×10+1890=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.【点评】题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.21.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【解答】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.【点评】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.23.如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值;(2)求抛物线E2所表示的二次函数的表达式;(2)在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A(1,m)代入y=x2,求得m的值即可;(2)设抛物线E2的函数表达式为y=ax2(a≠0),将点B(2,2)代入抛物线的解析式求得a的值即可;(3)当∠BB′Q=90°时,将x=2代入y=x2,可求得点Q的纵坐标,当∠BQB′=90°时,设点Q2的坐标为(t,t2),依据两点间的距离公式和勾股定理的逆定理列出关于t的方程求解即可.【解答】解:(1)∵抛物线E1经过点A(1,m)∴m=12=1(2)∵抛物线E2的顶点在原点,可设它对应的函数表达式为y=ax2(a≠0)又∵点B(2,2)在抛物线E2上∴2=a×22,解得:a=∴抛物线E2所对应的二次函数表达式为y=x2(3)如图所示:①当点B为直角顶点时,过B作Q1B⊥BB′交抛物线E1于Q,则点Q1与B的横坐标相等且为2,将x=2代入y=x2得y=4,∴点Q1的坐标为(2,4).②当点Q2为直角顶点时,则有Q2B′2+Q2B2=B′B2,过点Q2作GQ2⊥BB′于G,设点Q2的坐标为(t,t2)(t>0),则有(t+2)2+(t2﹣2)2+(2﹣t)2+(t2﹣2)2=4,整理得:t4﹣3t2=0,∵t>0,∴t2﹣3=0,解得t1=,t2=﹣(舍去),∴点Q的坐标为(,3),综上所述,存在符合条件的点Q坐标为(2,4)与(,3).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数图象上点的坐标与函数解析式的关系、待定系数法求二次函数的解析式、勾股定理的逆定理的应用、两点间的距离公式,依据勾股定理的逆定理和两点间的距离公式列出关于t的方程是解题的关键.。
双柏县中考数学模拟考试题卷(一)

双柏县中考数学模拟试题卷(一)(命题:双柏县教研室 郎绍波)一、选择题(本大题共7个小题,每小题只有一个正确选项,每小题3分,满分21分) 1.下列运算正确的是【 】A 3273-=B .235()a a = C .(π -3)0=1 D .623x x x ÷=2.-2的倒数等于【 】 A . 12-B . 12C . -2D . 2 3.4月3日,由云南、广西、贵州等10家卫视联合发起,以“凝聚力量、奉献爱心、鼓舞士气,团结一心抗击西南干旱”为主题的《抗旱救灾——我们在行动》大型公益晚会在北京举行,共募集抗旱救灾慈善善款2.77亿元,用科学记数法可表示为【 】元A .2.77×100B .2.77×102C .2.77×108D .277×106 4.如图所示几何体的左视图是【 】A .B .C .D .5.不等式组1021x x +>⎧⎨-<⎩的解集是【 】A .1x >-B .3x <C .13x -<<D .31x -<<6.如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F , 已知160∠=°,则2∠=【 】 A .20° B .60° C .30° D .45° 7.已知反比例函数xky =的图象经过点P (-l ,2),则这个函数的图象位于【 】 A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限CDBA E F12二、填空题(本大题共8个小题,每小题3分,满分24分)8.某班共有a 个学生,其中女生人数占45%,用代数式表示该班的男生人数是________.9.因式分解34x x -= ______________.10.如图,AB 是⊙O 的直径,C 是⊙O 上一点, ∠BOC=60°,则∠C 的度数为 . 11.函数12y x =-中自变量x 的取值范围为 . 12.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为 . 13.已知圆锥的底面半径为3cm ,母线长为6cm ,则该圆锥的侧面积为 . 14.相切两圆的圆心距是7,其中一圆的半径是4,则另一圆的半径是 . 15.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表: 所剪次数12 3 4 … n 正三角形个数 471013… a n则a n = (用含n 的代数式表示). 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:2211x x x x+-÷ ,其中2x =17.(8分)如图,已知命题:如图,点A ,D ,B ,E 在同一条直线上,且AD =BE , ∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个..适当条件使它成为真命题,并加以证明.AB COEABCD18.(8分)某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°。
中考数学第二次模拟考试数学试题及答案

云南省楚雄双柏县中考数学第二次模拟考试数学试题一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.-2的绝对值等于【 】A .±2B . -2C .2D . 4 2.下列运算正确的是【 】A .242-=-B .235()a a = C .333235x x x D .x x x 842÷=3.云南省政府工作报告中指出:高度重视义务教育,全面免除城乡义务教育阶段学生学杂费,使638万名农村中小学学生享受到免费教科书及练习册。
“638万”用科学计数法表示为【 】A .6.38×102B .6.38×106C .6.38×105D . 63.8×105 4.方程(3)3x x x +=+的解是【 】A .x =0B .x 1=0,x 2= -3C .x 1=1,x 2=3D .x 1=1,x 2= -3 5.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ABD =20°,则∠ADC 的度数为【 】A .70°B .60°C .50°D .40°6.圆锥的底面半径为3cm ,母线为9 cm ,则圆锥的侧面积为【 】2cm A .6πB .9πC .12πD .27π7.如图是一个正方体的表面展开图,则图中“京”字所在 面的对面所标的字是【 】A .北B .京C .奥D .运8.如图所示,已知等边三角形ABC 的边长为1,按图中所示的规律,用个这样的等边三角形镶嵌而成的四边形的周长是【 】A. B. C. D. 二、填空题(本大题共7个小题,每小题3分,满分21分) 9.化简:28-= __.10.若等腰三角形的一个外角为70,则它的底角为 度.11.如图,是甲、乙两地5月下旬的日平均气温统计图,则甲、乙两地这10天日平均气温油运 奥 京 北 加第7题第8题CA B ……A第5题BCD O的方差大小关系为:2S 甲 2S 乙.(填“>”或“<”)12.函数2+=x y 中自变量x 的取值范围为 .13.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是 .14.请写出一个图象位于第二、四象限的反比例函数: . 三、解答题(本大题共9个小题,满分75分)16.(6分)求不等式组⎪⎩⎪⎨⎧<≤341112x x x -- 的整数解.17.(6分)先化简代数式22221244a b a b a b a ab b --÷-+++,然后选择一个使原式有意义的 a 、b 值代入求值.18.(8分)如图,点C 、E 、B 、F 在同一直线上, AC ∥DF ,AC=DF ,CE=FB .求证:AB ∥DE . 19.(9分) A ,B ,C 三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一 A B C笔试 85 95 90 口试 80 85第18题 AF B E CD 10095 9085 80 75 70分数/分 图一竞选人ABC笔试口试(1)请将表一和图一中的空缺部分补充完整. (2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二 (没有弃权票,每名学生只能推荐一个), 请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选. 20.(10分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式;(2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?21.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC△的顶点均在格点上,点C 的坐标为(41)-,. (1)把ABC △向上平移5个单位后 得到对应的111A B C △,画出111A B C △, 并写出1C 的坐标;(2)以原点O 为对称中心,再画出与111A B C △关于原点O 对称的222A B C △,并写出点2C 的坐标.22.(8分)小明站在A 处放风筝,风筝飞到C 处时的线长为20米, 这时测得∠CBD=60°,若牵引底端B 离地面1.5米,求此时风筝离地面高度。
云南省楚雄州双柏县重点名校2024届中考数学四模试卷含解析

云南省楚雄州双柏县重点名校2024届中考数学四模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°2.如图,反比例函数kyx(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.43.某车间20名工人日加工零件数如表所示:日加工零件数4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6 4.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A .B .C .D .5.在一个不透明的袋子中装有除颜色外其余均相同的m 个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 摸球试验次数 100 1000 5000 10000 50000 100000 摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( ) A .5B .10C .15D .206.若正多边形的一个内角是150°,则该正多边形的边数是( ) A .6 B .12 C .16 D .187.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩8.点A (a ,3)与点B (4,b )关于y 轴对称,则(a+b )2017的值为( ) A .0B .﹣1C .1D .720179.已知:如图是y =ax 2+2x ﹣1的图象,那么ax 2+2x ﹣1=0的根可能是下列哪幅图中抛物线与直线的交点横坐标( )A .B .C .D .10.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( ) A .极差是3.5B .众数是1.5C .中位数是3D .平均数是3二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的边与坐标轴平行时,t =______.12.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.13.如图,已知直线l :3,过点(2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,……;按此做法继续下去,则点M 2000的坐标为______________.14.计算:12×(﹣2)=___________. 15.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x 钱,则可列关于x 的方程为______.16.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m=0(m >0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:112220182018111111...αβαβαβ++++++的值为_____.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系xOy 中,直线()30y kx k =+≠与x 轴交于点A ,与双曲线()0my m x =≠的一个交点为B (-1,4).求直线与双曲线的表达式;过点B 作BC ⊥x 轴于点C ,若点P 在双曲线my x=上,且△PAC的面积为4,求点P 的坐标.18.(8分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究. 问题背景:在矩形ABCD 中,点E 、F 分别是BC 、AD 上的动点,且BE=DF ,连接EF ,将矩形ABCD 沿EF 折叠,点C 落在点C′处,点D 落在点D′处,射线EC′与射线DA 相交于点M . 猜想与证明:(1)如图1,当EC′与线段AD 交于点M 时,判断△MEF 的形状并证明你的结论; 操作与画图:(2)当点M 与点A 重合时,请在图2中作出此时的折痕EF 和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN 并延长MN交EF于点O.求证:MO⊥EF 且MO平分EF;(4)若AB=4,AD=43,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.19.(8分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?20.(8分)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=kx(k≠0)的值时,写出自变量x的取值范围.21.(8分)先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.22.(10分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.23.(12分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.24.先化简,再求值:2231422a a a a a a-÷--+-,其中a 与2,3构成ABC ∆的三边,且a 为整数. 参考答案一、选择题(共10小题,每小题3分,共30分) 1、D 【解题分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【题目详解】 ∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°, 故选D . 【题目点拨】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 2、C 【解题分析】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、矩形OABC 的面积与|k|的关系,列出等式求出k 值. 【题目详解】由题意得:E 、M 、D 位于反比例函数图象上,则OCE OAD k k S S 22∆∆==,,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,∵函数图象在第一象限,k>0,∴k k94k 22++=.解得:k=1.故选C.【题目点拨】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.3、D【解题分析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案选D.4、B【解题分析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【题目详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.5、B【解题分析】由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m 值.【题目详解】 解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,故选择B. 【题目点拨】本题考查了概率公式的应用. 6、B【解题分析】设多边形的边数为n ,则有(n-2)×180°=n×150°,解得:n=12, 故选B. 7、A 【解题分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【题目详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4), ∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A. 【题目点拨】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 8、B 【解题分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数,可得答案. 【题目详解】 解:由题意,得 a=-4,b=1.(a+b )2017=(-1)2017=-1, 故选B . 【题目点拨】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.9、C【解题分析】由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;B、方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;C、抛物线y=ax2与直线y=﹣2x+1的交点,即交点的横坐标为方程ax2+2x﹣1=0的根,C符合题意.此题得解.【题目详解】∵抛物线y=ax2+2x﹣1与x轴的交点位于y轴的两端,∴A、D选项不符合题意;B、∵方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,∴B选项不符合题意;C、图中交点的横坐标为方程ax2+2x﹣1=0的根(抛物线y=ax2与直线y=﹣2x+1的交点),∴C选项符合题意.故选:C.【题目点拨】本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键.10、C【解题分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【题目详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误;D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【题目点拨】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.二、填空题(本大题共6个小题,每小题3分,共18分)11、 243255和 【解题分析】(1)由等腰三角形的性质可得AD=BD ,从而可求出OD=4,然后根据当O ,D ,C 共线时,OC 取最大值求解即可; (2)根据等腰三角形的性质求出CD ,分AC ∥y 轴、BC ∥x 轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可. 【题目详解】(1)15,,42BC AC CD AB AD BD AB ∴==⊥∴===, 190,,42AOB AD BD OD AB ︒∠==∴==, 当O ,D ,C 共线时,OC 取最大值,此时OD ⊥AB. ∵,4OD AB OD AD BD ⊥===, ∴△AOB 为等腰直角三角形,∴OA t === ;(2)∵BC=AC ,CD 为AB 边的高, ∴∠ADC=90°,BD=DA=12AB=4,∴,当AC ∥y 轴时,∠ABO=∠CAB , ∴Rt △ABO ∽Rt △CAD ,∴AO AB CD AC =,即835t =, 解得,t=245,当BC ∥x 轴时,∠BAO=∠CBD , ∴Rt △ABO ∽Rt △BCD ,∴AO AB BD BC =,即845t =, 解得,t=325 , 则当t=245或325时,△ABC 的边与坐标轴平行.故答案为t=245或325.【题目点拨】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.12、(673,0)【解题分析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0,据此可解. 【题目详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0, ∵2019÷3=673,∴P 2019 (673,0)则点P 2019的坐标是 (673,0).故答案为 (673,0).【题目点拨】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.13、 (24001,0)【解题分析】分析:根据直线l 的解析式求出60MON ∠=︒,从而得到130MNO OM N ,∠=∠=︒根据直角三角形30°角所对的直角边等于斜边的一半求出212OM OM =⋅, 然后表示出n OM 与OM 的关系,再根据点n M 在x 轴上,即可求出点M 2000的坐标详解:∵直线l :y =,∴60MON ∠=︒,∵NM ⊥x 轴,M 1N ⊥直线l ,∴1906030MNO OM N ,∠=∠=︒-︒=︒∴212,242ON OM OM ON OM OM ====⋅,同理,222212(2)OM OM OM =⋅=⋅, …,22221(2)222n n n OM OM +=⋅=⋅=,所以,点n M 的坐标为21(2,0).n +点M 2000的坐标为(24001,0).故答案为:(24001,0).点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.14、-1【解题分析】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.【题目详解】()1212⨯-=-, 故答案为 1.-【题目点拨】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.15、x 45x 357--= 【解题分析】 设羊价为x 钱,根据题意可得合伙的人数为455x -或37x -,由合伙人数不变可得方程. 【题目详解】设羊价为x 钱, 根据题意可得方程:45357x x --=, 故答案为:45357x x --=. 【题目点拨】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.16、40362019. 【解题分析】利用根与系数的关系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式变形,再代入,即可求出答案.【题目详解】∵x 2+2x-m 2-m=0,m=1,2,3, (2018)∴由根与系数的关系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式=3320182018112211223320182018 αβαβαβαβαβαβαβαβ+++++++⋯+ =222212233420182019+++⋯+⨯⨯⨯⨯ =2×(111111112233420182019-+-+-+⋯+-) =2×(1-12019) =40362019, 故答案为40362019. 【题目点拨】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a .三、解答题(共8题,共72分)17、(1)直线的表达式为3y x =-+,双曲线的表达方式为4y x =-;(2)点P 的坐标为1(2,2)P -或2(2,2)P - 【解题分析】分析:(1)将点B (-1,4)代入直线和双曲线解析式求出k 和m 的值即可;(2)根据直线解析式求得点A 坐标,由S △ACP =12AC •|y P |=4求得点P 的纵坐标,继而可得答案. 详解:(1)∵直线()30y kx k =+≠与双曲线y =m x (0m ≠)都经过点B (-1,4), 34,14k m ∴-+==-⨯,1,4k m ∴=-=-,∴直线的表达式为3y x =-+,双曲线的表达方式为4y x=-.(2)由题意,得点C 的坐标为C (-1,0),直线3y x =-+与x 轴交于点A (3,0),4AC ∴=, ∵142ACP P S AC y ∆=⋅=, 2P y ∴=±,点P 在双曲线4y x=-上, ∴点P 的坐标为()12,2P -或()22,2P -.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.18、(1)△MEF 是等腰三角形(2)见解析(3)证明见解析(4)163π 【解题分析】(1)由AD ∥BC ,可得∠MFE =∠CEF ,由折叠可得,∠MEF =∠CEF ,依据∠MFE =∠MEF ,即可得到ME =MF ,进而得出△MEF 是等腰三角形;(2)作AC 的垂直平分线,即可得到折痕EF ,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ ≌△D'FP ,可得PF =QE ,依据△NC'P ≌△NAP ,可得AN =C'N ,依据Rt △MC'N ≌Rt △MAN ,可得∠AMN =∠C'MN ,进而得到△MEF 是等腰三角形,依据三线合一,即可得到MO ⊥EF 且MO 平分EF ;(4)依据点D'所经过的路径是以O 为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【题目详解】(1)△MEF 是等腰三角形.理由:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠MFE=∠CEF ,由折叠可得,∠MEF=∠CEF ,∴∠MFE=∠MEF ,∴ME=MF ,∴△MEF 是等腰三角形.(2)折痕EF 和折叠后的图形如图所示:(3)如图,∵FD=BE ,由折叠可得,D'F=DF ,∴BE=D'F ,在△NC'Q 和△NAP 中,∠C'NQ=∠ANP ,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN ,∵∠C'QN=∠BQE ,∠APN=∠D'PF ,∴∠BQE=∠D'PF ,在△BEQ 和△D'FP 中,{BQE DPFBE D F AP C Q∠=∠='=',∴△BEQ ≌△D'FP (AAS ),∴PF=QE ,∵四边形ABCD 是矩形,∴AD=BC ,∴AD ﹣FD=BC ﹣BE ,∴AF=CE ,由折叠可得,C'E=EC ,∴AF=C'E ,∴AP=C'Q ,在△NC'Q 和△NAP 中,{C NQ ANPNC Q NAP AP C Q''∠∠=∠='∠=,∴△NC'P ≌△NAP (AAS ),∴AN=C'N ,在Rt △MC'N 和Rt △MAN 中,{MN MN AN C N==', ∴Rt △MC'N ≌Rt △MAN (HL ),∴∠AMN=∠C'MN ,由折叠可得,∠C'EF=∠CEF ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFE=∠FEC ,∴∠C'EF=∠AFE ,∴ME=MF ,∴△MEF 是等腰三角形,∴MO ⊥EF 且MO 平分EF ;(4)在点E 由点B 运动到点C 的过程中,点D'所经过的路径是以O 为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=2404161803ππ⨯⨯=. 故答案为163π. 【题目点拨】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.19、1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.【解题分析】此题可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y == 答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【题目点拨】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系20、(1)4y x=;(2)1<x <1. 【解题分析】(1)将点A 的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y =-x +5的值大于反比例函数y =k x ,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【题目详解】解:(1)∵一次函数y=﹣x+5的图象过点A (1,n ),∴n=﹣1+5,解得:n=1,∴点A 的坐标为(1,1).∵反比例函数y=k x (k≠0)过点A (1,1), ∴k=1×1=1,∴反比例函数的解析式为y=4x. 联立54y x y x =-+⎧⎪⎨=⎪⎩,解得:14x y =⎧⎨=⎩或41x y =⎧⎨=⎩, ∴点B 的坐标为(1,1).(2)观察函数图象,发现:当1<x <1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=k x(k≠0)的值时,x 的取值范围为1<x <1.本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.21、1 3【解题分析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解. 【题目详解】解:原式=()()2a a1 a11a1a2---⨯--=a a2 -∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0, ∴a=-1,将a=-1代入aa2-得,原式=1 3【题目点拨】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.22、25%【解题分析】首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.【题目详解】设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1=14=25%,x2=﹣134(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25% 23、证明见解析试题分析:首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC ≌△DEF .试题解析:∵AF=DC ,∴AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中∴△ABC ≌△DEF (SSS )24、1【解题分析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a 的值,然后代入进行计算即可.试题解析:原式=()()()()()()()()()2113212232323233a a a a a a a a a a a a a a a a +--⋅+=+==+--------- , ∵a 与2、3构成△ABC 的三边,∴3−2<a <3+2,即1<a <5,又∵a 为整数,∴a =2或3或4,∵当x =2或3时,原分式无意义,应舍去,∴当a =4时,原式=14-3=1。
2024届云南省双柏县联考中考数学仿真试卷含解析

2024届云南省双柏县联考中考数学仿真试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)1.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是( ) 年龄 13 14 15 25 28 30 35 其他 人数3053317 12209 23A .平均数B .众数C .方差D .标准差4.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A.5元,2元B.2元,5元C.4.5元,1.5元D.5.5元,2.5元5.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是()A.(3,1)B.(2,2)C.(1,3)D.(3,0)6.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.87.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=55,那么点C的位置可以在()A.点C1处B.点C2处C.点C3处D.点C4处8.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为()A.12cm B.122cm C.24cm D.242cm9.若代数式22xx-有意义,则实数x的取值范围是()A.x=0 B.x=2 C.x≠0D.x≠210.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为()A.20 B.15 C.30 D.60二、填空题(本大题共6个小题,每小题3分,共18分)11.已知平面直角坐标系中的点A (2,﹣4)与点B关于原点中心对称,则点B的坐标为_____12.不等式组1020xx+≥⎧⎨->⎩的整数解是_____.13.如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.14.在△ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则△ABC的面积为______cm1.15.请写出一个开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________16.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.三、解答题(共8题,共72分)17.(8分)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12 棱数b9 12面数c 5 8 观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式. 18.(8分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,(1)求证:BC=2AD;(2)若cosB=34,AB=10,求CD的长.19.(8分)解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.20.(8分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)21.(8分)分式化简:(a-22ab ba-)÷a ba-22.(10分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)23.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?24.为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=CDBC,可得BC=cos cosCD hBCDα=∠.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.2、C【解题分析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.3、B【解题分析】分析:根据平均数的意义,众数的意义,方差的意义进行选择.详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.故选B.点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4、A【解题分析】可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【题目详解】设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元. 故选A . 【题目点拨】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组. 5、B 【解题分析】作出点A 、B 绕点C 按顺时针方向旋转90°后得到的对应点,再顺次连接可得△A 1B 1C ,即可得到点B 对应点B 1的坐标. 【题目详解】解:如图所示,△A 1B 1C 即为旋转后的三角形,点B 对应点B 1的坐标为(2,2).故选:B . 【题目点拨】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键. 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 6、B 【解题分析】首先证明:OE=BC ,由AE+EO=4,推出AB+BC=8即可解决问题; 【题目详解】∵四边形ABCD 是平行四边形, ∴OA=OC , ∵AE=EB , ∴OE=BC ,∵AE+EO=4, ∴2AE+2EO=8, ∴AB+BC=8,∴平行四边形ABCD 的周长=2×8=16, 故选:B . 【题目点拨】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握 三角形的中位线定理,属于中考常考题型. 7、D 【解题分析】 如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =54DC AC AC==,∴5, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+,故答案为D. 8、D 【解题分析】过A 作AD ⊥BF 于D,根据45°角的三角函数值可求出AB 的长度,根据含30°角的直角三角形的性质求出斜边AC 的长即可. 【题目详解】如图,过A 作AD ⊥BF 于D , ∵∠ABD=45°,AD=12, ∴sin 45ADAB ︒=2, 又∵Rt △ABC 中,∠C=30°, ∴2 故选:D .【题目点拨】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.9、D【解题分析】根据分式的分母不等于0即可解题.【题目详解】解:∵代数式22xx有意义,∴x-2≠0,即x≠2,故选D.【题目点拨】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.10、B【解题分析】有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.【题目详解】∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=12BD=1.同理求得EH∥AC∥GF,且EH=GF=12AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.故选B.【题目点拨】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形; (2)有三个角是直角的四边形是矩形; (1)对角线互相平分且相等的四边形是矩形.二、填空题(本大题共6个小题,每小题3分,共18分) 11、(﹣2,4) 【解题分析】根据点P(x,y)关于原点对称的点为(-x,-y )即可得解. 【题目详解】解:∵点A (2,-4)与点B 关于原点中心对称, ∴点B 的坐标为:(-2,4). 故答案为:(-2,4). 【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键. 12、﹣1、0、1 【解题分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案. 【题目详解】1020x x +≥⎧⎨->⎩, 解不等式10x +≥得:1x ≥-, 解不等式20x ->得:2x <,∴不等式组的解集为12x -≤<, ∴不等式组的整数解为-1,0,1.故答案为:-1,0,1. 【题目点拨】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解. 13、3 【解题分析】∵a c eb d f===k ,∴a=bk ,c=dk ,e=fk ,∴a+c+e=bk+dk+fk=k(a+b+c), ∵a+c+e=3(b+d+f),∴k=3,故答案为:3.14、2或2.【解题分析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC ,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理15、221y x x =-++(答案不唯一)【解题分析】根据二次函数的性质,抛物线开口向下a <0,与y 轴交点的纵坐标即为常数项,然后写出即可.【题目详解】∵抛物线开口向下,并且与y 轴交于点(0,1)∴二次函数的一般表达式2y ax bx c =++中,a <0,c =1,∴二次函数表达式可以为:221y x x =-++(答案不唯一).【题目点拨】本题考查二次函数的性质,掌握开口方向、与y 轴的交点与二次函数二次项系数、常数项的关系是解题的关键. 16、4n+2【解题分析】 ∵第1个有:6=4×1+2;第2个有:10=4×2+2; 第3个有:14=4×3+2; ……∴第1个有: 4n +2;故答案为4n +2三、解答题(共8题,共72分)17、8,15,18,6,7;2a c b +-=【解题分析】分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n 棱柱的关系,可知n 棱柱一定有(n+1)个面,1n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.详解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 8 10 11棱数b 9 11 15 18面数c 5 6 7 8根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+1个面,共有1n个顶点,共有3n条棱;故a,b,c之间的关系:a+c-b=1.点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+1)个面,1n个顶点和3n条棱是解题关键.18、(1)证明见解析;(2)CD=7.【解题分析】(1)根据三角函数的概念可知tanA=CDAD,cos∠BCD=CDBC,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.【题目详解】(1)∵tanA=CDAD,cos∠BCD=CDBC,tanA=2cos∠BCD,∴CDAD=2·CDBC,∴BC=2AD.(2)∵cosB=BDBC=34,BC=2AD,∴BDAD=32.∵AB=10,∴AD=25×10=4,BD=10-4=6,∴BC=8,∴CD=22BC BD-=27.【题目点拨】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.19、x≥3 5【解题分析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:()3172323x xxx x⎧--<⎪⎨--≤⎪⎩①②,由①得,x>﹣2;由②得,x≥35,故此不等式组的解集为:x≥35.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20、解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.【解题分析】易得M在AB的垂直平分线上,且到C的距离等于AB的一半.21、a-b【解题分析】利用分式的基本性质化简即可.【题目详解】22ab b a b a a a ⎛⎫---÷ ⎪⎝⎭=222a ab b a a a b ⎛⎫-+⨯ ⎪-⎝⎭=()2a b a a a b-⨯-=-a b . 【题目点拨】此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.22、215.6米.【解题分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【题目详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点 在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米∴115.6tan 60BN DN =≈米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【题目点拨】本题主要考查三角函数,正确做辅助线是解题的关键.23、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)4.【解题分析】试题分析:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.试题解析:设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.24、(1)300人(2)b=0.15,c=0.2;(3)1 6【解题分析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率. 详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.。
云南省楚雄州双柏县2021-2022学年中考数学模试卷含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°2.不等式组1040xx+>⎧⎨-≥⎩的解集是()A.﹣1≤x≤4B.x<﹣1或x≥4C.﹣1<x<4 D.﹣1<x≤43.在平面直角坐标系xOy中,将点N(–1,–2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(–1,2)C.(–1,–2)D.(1,–2)4.二次函数y=﹣12(x+2)2﹣1的图象的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣25.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A.B.C.D.6.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF 的面积之比为()A .3:4B .9:16C .9:1D .3:17.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为( )A .64×105B .6.4×105C .6.4×106D .6.4×1078.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF9.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°10.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 二、填空题(共7小题,每小题3分,满分21分)11.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是_____. 12.分解因式: 22a b ab b -+=_________.13.一辆汽车在坡度为12.4:的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.14.化简:18=_____. 15.如图,设△ABC 的两边AC 与BC 之和为a ,M 是AB 的中点,MC =MA =5,则a 的取值范围是_____.16.如图,四边形ABCD 是菱形,☉O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE ,若∠D=78°,则∠EAC=________°.17.ABCD 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向D 移动,P 、Q 两点从出发开始到__________秒时,点P 和点Q 的距离是10 cm.三、解答题(共7小题,满分69分)18.(10分)在平面直角坐标系中,一次函数34y x b =-+的图象与反比例函数k y x=(k≠0)图象交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D ,其中A 点坐标为(﹣2,3).求一次函数和反比例函数解析式.若将点C 沿y 轴向下平移4个单位长度至点F ,连接AF 、BF ,求△ABF 的面积.根据图象,直接写出不等式34k x b x-+>的解集. 19.(5分)如图,在平面直角坐标系中,直线y x m =-+与x 轴交于点(4,0)A ,与y 轴交于点B ,与函数(0)k y x x=>的图象的一个交点为(3,)C n .(1)求m ,n ,k 的值;(2)将线段AB 向右平移得到对应线段A B '',当点B '落在函数(0)k y x x=>的图象上时,求线段AB 扫过的面积.20.(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.21.(10分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.22.(10分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.23.(12分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°+12;(2)解方程:x(x﹣4)=2x﹣824.(14分)如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=5,tan∠FAC=12,求FC的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【详解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=12∠BOC=27°故选:C.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、D试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.3、A【解析】根据点N(–1,–2)绕点O旋转180°,所得到的对应点与点N关于原点中心对称求解即可.【详解】∵将点N(–1,–2)绕点O旋转180°,∴得到的对应点与点N关于原点中心对称,∵点N(–1,–2),∴得到的对应点的坐标是(1,2).故选A.【点睛】本题考查了旋转的性质,由旋转的性质得到的对应点与点N关于原点中心对称是解答本题的关键.4、D【解析】根据二次函数顶点式的性质解答即可.【详解】∵y=﹣12(x+2)2﹣1是顶点式,∴对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.5、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6、B可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.7、C【解析】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6400000=6.4×106,故选C.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8、B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.9、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.10、C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b ++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:372291x x +≥⎧⎨-<⎩①② 解①得:x ≥﹣53, 解②得:x <1, ∴不等式组的解集为﹣53≤x <1, ∴其非负整数解为0、1、2、3、4共1个,故答案为1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.12、【解析】先提取公因式b ,再利用完全平方公式进行二次分解.解答:解:a 1b-1ab+b ,=b (a 1-1a+1),…(提取公因式)=b (a-1)1.…(完全平方公式)13、50.【解析】根据坡度的定义可以求得AC 、BC 的比值,根据AC 、BC 的比值和AB 的长度即可求得AC 的值,即可解题.【详解】解:如图,130AB =米AC tan 1:2.4BCB ==, 设AC x =,则 2.4BC x =,则2222.4130x x +()=,解得50x =,故答案为:50.【点睛】本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题. 142【解析】直接利用二次根式的性质化简求出答案.【详解】11284822===,故答案为24.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.15、10<.【解析】根据题设知三角形ABC 是直角三角形,由勾股定理求得AB 的长度及由三角形的三边关系求得a 的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy 的值,再把该值依据根与系数的关系置于一元二次方程z 2-az+21002a -=0中,最后由根的判别式求得a 的取值范围. 【详解】∵M 是AB 的中点,MC=MA=5,∴△ABC 为直角三角形,AB=10;∴a=AC+BC >AB=10;令AC=x 、BC=y .∴22100x y a x y +⎧⎨+⎩==, ∴xy=21002a -, ∴x 、y 是一元二次方程z 2-az+21002a -=0的两个实根, ∴△=a 2-4×21002a -≥0,即.综上所述,a 的取值范围是10<. 故答案为10<.【点睛】本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.16、1.【解析】解:∵四边形ABCD 是菱形,∠D=78°,∴∠ACB=12(180°-∠D )=51°, 又∵四边形AECD 是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案为:1°17、85或245 【解析】作PH ⊥CD ,垂足为H ,设运动时间为t 秒,用t 表示线段长,用勾股定理列方程求解.【详解】设P ,Q 两点从出发经过t 秒时,点P ,Q 间的距离是10cm ,作PH ⊥CD ,垂足为H ,则PH =AD =6,PQ =10,∵DH =PA =3t ,CQ =2t ,∴HQ =CD −DH −CQ =|16−5t |,由勾股定理,得222(165)610t -+=,解得124.8, 1.6.t t ==即P ,Q 两点从出发经过1.6或4.8秒时,点P ,Q 间的距离是10cm .故答案为85或245. 【点睛】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ =CD −DH −CQ =|16−5t |是解题的关键.三、解答题(共7小题,满分69分)18、(1)y =﹣34x +32,y =-6x ;(2)12;(3) x <﹣2或0<x <4. 【解析】(1)将点A 坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B 坐标,即可求△ABF 的面积;(3)直接根据图象可得.【详解】(1)∵一次函数y =﹣34x +b 的图象与反比例函数y = k x (k ≠0)图象交于A (﹣3,2)、B 两点, ∴3=﹣34×(﹣2)+b ,k =﹣2×3=﹣6 ∴b =32,k =﹣6 ∴一次函数解析式y =﹣3342x +,反比例函数解析式y =6x -. (2)根据题意得:33426y x y x ⎧+⎪⎪⎨-⎪⎪⎩=﹣= , 解得:211242,332x x y y ⎧=⎧=-⎪⎪⎨⎨==-⎪⎪⎩⎩, ∴S △ABF =12×4×(4+2)=12 (3)由图象可得:x <﹣2或0<x <4【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.19、(1)m=4, n=1,k=3.(2)3.【解析】(1) 把点(4,0)A ,分别代入直线y x m =-+中即可求出m=4,再把(3,)C n 代入直线y x m =-+即可求出n=1.把(3,1)C 代入函数(0)k y x x=>求出k 即可; (2)由(1)可求出点B 的坐标为(0,4),点B‘是由点B 向右平移得到,故点B’的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AA’B’B 是平行四边形,再根据平行四边形的面积计算公式计算即可.【详解】解:(1)把点(4,0)A ,分别代入直线y x m =-+中得:-4+m=0,m=4,∴直线解析式为4y x =-+.把(3,)C n 代入4y x =-+得:n=-3+4=1.∴点C 的坐标为(3,1)把(3,1)代入函数(0)k y x x =>得: 13k = 解得:k=3.∴m=4, n=1,k=3.(2)如图,设点B 的坐标为(0,y )则y=-0+4=4∴点B 的坐标是(0,4)当y=4时,34x= 解得,34x = ∴点B’(34,4) ∵A’,B’是由A,B 向右平移得到,∴四边形AA’B’B 是平行四边形,故四边形AA’B’B 的面积=34⨯4=3.【点睛】本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键.20、(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:1 3(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13.考点:概率的计算.21、(1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)【解析】(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.【详解】(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,∴﹣a+3=2,b=﹣×4+3,∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=的图象上,∴k=2×2=4,∴反比例函数的表达式为y=(x>0);(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣×2×2﹣×4×1=4,设点P的坐标为(0,m),则S△OAP=×2•|m|=4,∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.22、见解析【解析】根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.【详解】证明:∵四边形ABCD 是正方形,∴AB=AD ,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF 和△DAE 中,AB AD ABF ADE BF DE ⎧⎪∠∠⎨⎪⎩=== ,∴△BAF ≌△DAE (SAS ),∴∠FAB=∠EAD ,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA ⊥AF .23、(1)3;(1)x 1=4,x 1=1.【解析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8×(12﹣18)﹣=8×38﹣=3;(1)移项得:x (x ﹣4)﹣1(x ﹣4)=0,(x ﹣4)(x ﹣1)=0,x ﹣4=0,x ﹣1=0,x 1=4,x 1=1.【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.24、 (1)见解析;(2)103. 【解析】分析:(1)由AB是直径可得BE⊥AC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长. 作CH⊥AF于H,可证Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.详解:(1)证明:连接BE.∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,而点E为AC的中点,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,设AE=x,则BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如图,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,FC==.点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到Rt△ACH∽Rt△BAC是解(2)的关键.。
2023年云南省楚雄州双柏县中考二模数学试题
型号机器人的单价和为 140 万元,若设甲型机器人每台 x 万元.根据题意,所列方程正
确的是( )
A. 360 480 x 140 x
C. 360 480 140 xx
B. 360 480 140 x x
D. 480 360 140
xx
二、填空题 13.分解因式: ab2 a2b ab =_________. 14.如图, AB∥CD ,若 CEF 60 °,则 FAB 的度数为_________.
试卷第 1 页,共 4 页
A. 20
B. 28
C. 38
D. 62
10.某学习小组 10 名学生参加“数学课后训练”,他们的得分情况如下表:
人数(人) 1 4 3 2
分数(分) 80 90 85 95
那么这 10 名学生所得分数的众数和中位数分別是( )
A.90,90
B.90,85
C.90,87.5
A. 5n 4xn
B. 5n 4 xn
C. 4n 3 xn
D.4n 3xn
8.已知反比例函数 y 2 的图象过点 Pa,b ,则代数式 ab 的值为( )
x
A. 2
B.2
C. 1 2
D. 1
2
9.如图,AD 是 VABC 的外接圆 e O 的直径,若 DAB 62 ,则 ACB 的度数为( )
D.85,85
11.如图,在纸上剪一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆
的半径 r 2 ,扇形的圆心角等于 90 ,则围成的圆锥的母线长 R 的值为( )
A.2
B.4
C.8
D.10
12.为推进垃圾分类,推动绿色发展,某化工厂要购进甲、乙两种型号机器人用来进行
云南省双柏县中考数学模拟考试题卷(一)
云南省双柏县中考数学模拟考试题卷(一)命题:云南省双柏县教研室 郎绍波一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.北京2008年奥运会火炬接力活动的传递总路程约为137000000米,这个数据用科学记数法表示为【 】 A . 1.37×108米 B . 1.37×109米 C .13.7×108米 D . 137×106米 2.如图所示的图案中是轴对称图形的是【 】3.小昆设计了一个关于实数运算的程序:输出的数比该数的平方小1,小刚按此程序输入23后,输出的结果应为【 】A .10B .11C .12D .134.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是【 】A .B .C .D .5.已知⊙O 1和⊙O 2的半径分别为2cm 和5cm ,两圆的圆心距是3.5cm ,则两圆的位置关系是【 】A .内含B .外离C .内切D .相交 6.用两块边长为a 的等边三角形纸片拼成的四边形是【 】 A .等腰梯形 B .菱形 C .矩形 D . 正方形7.三角形的两边长分别是3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是【 】A .9B .11C .13D .11或138.如图,等腰Rt △ABC 绕C 点按顺时针旋转到△A 1B 1C 1的位置(A ,C ,B 1在同一直线上),∠B =90º,如果AB =1,那么AC 运动到A 1C 1所经过的图形面积是【 】 A .23π B .32π C .34π D .43π二、填空题(本大题共7个小题,每小题3分,满分21分)9.-的相反数是_______________.10.不等式:2x +6<0的解集是 .A BC (C 1)B 1 A 1第8题A .2008年北京B .2004年雅典C .1988年汉城D .1980年莫斯科11.一射击运动员在一次射击比赛中打出的成绩如下表所示: 成绩(环)7 8 9 10次数 1 4 4 1 这次成绩的众数是_______________. 12.如图,AB =AD ,∠1=∠2,请你添加一个适当的条件, 使得△ABC ≌△ADE ,则需添加的条件是 (只要写出一个即可).13.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树AB 的高度为 米.14.以边长1的正方形的对角线为边长作第二个正方形,以第二个正方形的对角线为边长作第三个正方形,……,如此做下去得到第n 个正方形.设第n 个正方形的面积为n S ,通过运算找规律,可以猜想出n S = .15.如图,有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D =120︒,则该AB 的长是 cm .三、解答题(本大题共10个小题,满分75分)16.(6分)请将式子:2-11(1)-11⨯++x x x 化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x 的值带入求值.17.(6分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(不要求写画法).18.(6分)如图,已知BE ⊥AD ,CF ⊥AD , 且BE =CF .请你判断AD 是△ABC 的中线 还是角平分线?请说明你判断的理由.第13题 D E CB EB AD2 1第12题 A B C D 第15题 DA B C FA B C19.(8分)为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图. 如下所示: 组别 次数x频数(人数) 第1组 80100x <≤ 6 第2组 100120x <≤ 8第3组 120140x <≤a 第4组 140160x <≤ 18第5组 160180x <≤ 6 请结合图表完成下列问题:(1)表中的a = ;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第 组;(4)若八年级学生一分钟跳绳次数(x )达标要求是:120x <不合格;120140x <≤为合格;140160x <≤为良;160x ≥为优.根据以上信息,请你给学校或八年级同学提一条合理化建议: .20.(6分)小杨同学为了测量一铁塔的高度CD ,如图,他先在A 处测得塔顶C 的仰角为︒30,再向塔的方向直行40米到达B 处,又测得塔顶C 的仰角为︒60,请你帮助小杨计算出这座铁塔的高度.(小杨的身高忽略不计,结果精确到0.1米,参考数据:732.13,414.12≈≈)21.(7分)九年级(4)班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选正班长的概率是多少?(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.22.(7分)为响应承办“绿色奥运”的号召,某中学九年级(2)班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了1815 129 63 080 100 120 140 160 180 跳绳次数 频数(人6 8 6 18 C ︒30 ︒60 第20题A B D50%,结果每人比原计划少栽了2棵树.问实际有多少人参加了这次植树活动?23.(8分)如图,点A 、B 、D 、E 在⊙O 上,弦AE 、BD 的延长线相交于点C .若AB 是⊙O 的直径,D 是BC 的中点.(1)试判断AB 、AC 之间的大小关系,并给出证明;(2)在上述题设条件下,ΔABC 还需满足什么条件,点E 才一定是AC 的中点?(直24.(9分)某化妆公司每月付给销售人员的工资有两种方案. 方案一:没有底薪,只拿销售提成; 方案二:底薪加销售提成.设x (件)是销售商品的数量,y (元)是销售人员的月工资.如图所示,y 1为方案一的函数图象,y 2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售费中提取一定数量的费用):(1)求y 1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)如果该公司销售人员小丽的月工资要超过1000元,那么小丽选用哪种方案最好,至少要销售商品多少件?25.(本小题(1)~(3)问共12分;第(4)问为附加题,共5分,附加题得分可以记入总分,若记入总分后超过120分,则按120分记) 如图,抛物线2y 23=--x x 与x 轴交A 、B 两点 (A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标;(2)求直线AC 的函数表达式;(3)P 是线段AC 上的一个动点,过P 点作y 轴的 平行线交抛物线于E 点,求线段PE 长度的最大值; (4)点G 抛物线上的动点,在x 轴上是否存在点F , 使A 、C 、F 、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;420 560 30 O x y (元2y1y 第24题 第23题 A B D C E OByxACPEO如果不存在,请说明理由.双柏县中考数学模拟考参考答案一.选择题1.A 2.D 3.B 4.A 5.D 6.B 7.C 8.D 二.填空题9. 10.x <-3 11.8、9(环) 12.∠D =∠B 或∠DEA =∠C 或AE =AC 等 13.5.6 14.12n - 15.53 三.解答题16.解:原式=(x +1)(x -1)x -1×(1+1x +1)=(x +1)(x +1+1x +1)=x +x +1=x +2方法一:当x =0时,原式=2 方法二:当x =2时,原式=417.如图,画对一个给3分18.AD 是△ABC 的中线.理由如下:在Rt △BDE 和Rt △CDF 中,因为BE =CF ,∠BDE =∠CDF , 所以Rt △BDE ≌Rt △CDF .所以BD =CD .故AD 是△ABC 的中线.19.(1) a = 12 ;(2)画图答案如图所示:(3)中位数落在第 3 组 (4)只要是合理建议.20.解:在△ABC 中,∠CAB=∠ACB =30°∴AB=CB=40m在Rt △BDC 中, DC =BC·sin60° ∴DC =6.34320≈(米) 答:这座铁塔的高度约为34.6米。
云南省双柏县鄂加中学九年级数学中考模拟试题(含答案)
双柏县鄂嘉中学2010年中考数学模拟试题(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.下列运算中,结果正确的是( )A. 222()x y x y +=+ B.422523x x x =+ C.532)(x x = D .633·x x x =2.如图所示的几何体的俯视图是( )A. B. C . D .3. 不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法正确的是( ) A .检查地震灾区的食品质量应采取普查的方法B .地震一周后,埋在废墟下的人员幸存的可能性很小,我们应放弃搜救行动C .唐家山堰塞湖出现溃坝的概率是93%,说明该堰塞湖溃坝的可能性很大D .我县发生地震的概率很小,则我县一定不会发生地震,我们不必学习相关知识 5. 如图,点A 、B 、C 是⊙O 上的三点,∠BAC=40°, 则∠OBC 的度数是( )A 、80°B 、40°C 、50°D 、20°6. 顺次连结任意四边形四边中点所得的四边形一定是( )A 、矩形B 、平行四边形C 、菱形D 、正方形7. 已知圆锥的底面周长为58cm ,母线长为30cm ,求得圆锥的侧面积为( ) A 、1740 cm 2B 、908 cm 2C 、1125 cm 2D 、870cm 28.如图,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是 ( )A .43B .23C .33D .3二、填空题(本大题共7个小题,每小题3分,满分21分) 9.-20101的相反数是 .10.用“⇒”与“⇐”表示一种法则:(a ⇒b )= -b ,(a ⇐b )= -a ,如(2⇒3)= -3,则()()2010201120092008⇒⇐⇒= .11.如图,已知AD//BC, ∠EAD=50 O ,∠ACB=40 O,则∠BAC= .12.函数31-=x y 的自变量x 的取值范围是 .13.□ABCD 中,∠A 比∠B 大20°,则∠C 的度数为_________. 14.分解因式:22mb ma -= _______________________.15.已知⊙O 1和⊙O 2相切,且圆心距为10cm ,若⊙O 1•的半径为3cm ,⊙O 2•的半径为____ _.三、解答题(本大题共8个小题,满分75分) 16.(本小题6分)解分式方程:1233xx x=+--17.(本小题7分)如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。
楚雄双柏县中考数学第二次模拟考试数学试题
云南省楚雄双柏县20XX 年中考数学第二次模拟考试数学试题一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.-2的绝对值等于【 】A .±2B . -2C .2D . 4 2.下列运算正确的是【 】 AB .235()a a =C .333235x x x D3.20XX 年云南省政府工作报告中指出:高度重视义务教育,全面免除城乡义务教育阶段学生学杂费,使638万名农村中小学学生享受到免费教科书及练习册。
“638万”用科学计数法表示为【 】A .6.38×102B .6.38×106C .6.38×105D . 63.8×105 4.方程(3)3x x x +=+的解是【 】A .x =0B .x 1=0,x 2= -3C .x 1=1,x 2=3D .x 1=1,x 2= -3 5.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ABD =20°, 则∠ADC 的度数为【 】A .70°B .60°C .50°D .40°6.圆锥的底面半径为3cm ,母线为9 cm ,则圆锥的侧面积为【 】2cm A .6πB .9πC .12πD .27π7.如图是一个正方体的表面展开图,则图中“京”字所在 面的对面所标的字是【 】A .北B .京C .奥D .运8.如图所示,已知等边三角形ABC 的边长为1,按图中所示的规律,用2009个这样的等边三角形镶嵌而成的四边形的周长是【 】A.2009 B.2010 C.2011 D.2012 二、填空题(本大题共7个小题,每小题3分,满分21分) 9.化简:28-= __.10.若等腰三角形的一个外角为70,则它的底角为 度.第8题CA B ……第5题第15题11.如图,是甲、乙两地5月下旬的日平均气温统计图,则甲、乙两地这10天日平均气温的方差大小关系为:2S 甲 2S 乙.(填“>”或“<”)12.函数2+=x y 中自变量x 的取值范围为 .13.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是 .14.请写出一个图象位于第二、四象限的反比例函数: .15.如图,在△ABC 和△ADE 中,有以下四个论断:① AB =AD ,② AC =AE ,③ ∠C =∠E ,④ BC =DE ,请以其中三个论断为条件,余下一个论断为结论,写出一个真命题(用序号“☺☺☺ ☺”的形式写出): . 三、解答题(本大题共9个小题,满分75分)16.(6分)求不等式组⎪⎩⎪⎨⎧<≤341112x x x -- 的整数解.17.(6分)先化简代数式22221244a b a b a b a ab b --÷-+++,然后选择一个使原式有意义的 a 、b 值代入求值.18.(8分)如图,点C 、E 、B 、F 在同一直线上, AC ∥DF ,AC=DF ,CE=FB .求证:AB ∥DE .19.(9分) A ,B ,C 三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: A B C笔试 85 95 90 口试 80 85第18题 AF B E CD 95 9085 80 75 70分数/分 图一竞选人ABC笔试口试 1 2 3 4 5 6 7 8 9 10乙地 甲地第11题(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二 (没有弃权票,每名学生只能推荐一个),请计算每人的得票数. (3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.20.(10分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式;(2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?21.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点均在格点上,点C 的坐标为(41)-,. (1)把ABC △向上平移5个单位后 得到对应的111A B C △,画出111A B C △, 并写出1C 的坐标;(2)以原点O 为对称中心,再画出与111A B C △关于原点O 对称的222A B C △,并写出点2C 的坐标.22.(8分)小明站在A 处放风筝,风筝飞到C 处时的线长为20米,这时测得∠CBD=60°,若牵引底端B 离地面1.5米,求此时风筝离地面高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题(每空xx 分,共xx分)试题1:-的相反数是()A.B.- C. D.试题2:中国老龄办公布的《“十一五”期间中国老龄事业发展状况》称,“十一五”期间,中国养老保障制度不断完善。
截至2011年初,全国城镇基本养老保险参保人数为25673 0000人,保留两个有效数字后为()A、 B、 C、 D、试题3:下列各式计算结果正确的是()A、a+a=a2B、(3a)2=6a2C、(a+1)2=a2+1D、a ·a=a2试题4:把不等式组的解集表示在数轴上,正确的是()评卷人得分某商场对上周女装的销售情况进行了统计,如下表:颜色黄色绿色白色紫色红色数量(件)100 180 220 80 520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A、平均数B、中位数C、众数D、方差试题6:下列命题中的真命题是( ).A、对角线互相垂直的四边形是菱形B、中心对称图形都是轴对称图形C、两条对角线相等的梯形是等腰梯形D、等腰梯形是中心对称图形试题7:如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2008次交换位置后,小鼠所在的座号是().A、1B、2C、3D、4试题8:函数中,自变量的取值范围是 .试题9:若等腰三角形中有一个角等于,则这个等腰三角形的顶角的度数为 .试题10:方程组的解是 .分解因式:= 。
试题12:用一个半径为8,圆心角为的扇形围成一个圆锥的侧面,则圆锥的高为 .试题13:已知,且,则b= .试题14:期中考试后,小明的讲义夹里放了8K大小的试卷纸共12页,其中语文4页、数学2页、英语6页,他随机从讲义夹中抽出1页,是数学卷的概率是 .试题15:图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图2的新几何体,则该新几何体的体积为cm3.(计算结果保留)1 2试题16:先化简,再求值:,选一个你喜欢的实数x代入求值.试题17:一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.(1)求口袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是,你认为对吗?请你用列表或画树状图的方法说明理由.试题18:学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)求该班共有多少名学生?(2)在图(1)中,将表示“步行”的部分补充完整;(3)在扇形统计图中,计算出“骑车”部分所对应的圆心角的度数;(4)如果全年级共600名同学,请你估算全年级步行上学的学生人数?试题19:在一次数学活动课上,某校初三数学老师带领学生去测河宽,如图13所示,某学生在河东岸点处观测到河对岸水边有一点,测得在北偏西的方向上,沿河岸向北前行20米到达处,测得在北偏西的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈,sin31°≈)试题20:如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系以后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).(1)将Rt△ABC沿X轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形,并写出点A1的坐标。
(2)将原来的Rt△ABC绕着点B顺时针旋转90°得到Rt△A2B2C2,试在图画出Rt△A2B2C2的图形。
试题21:如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.试题22:迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?试题23:如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.试题1答案:A试题2答案:B试题3答案:D试题4答案:C试题5答案:C试题6答案:C试题7答案:A试题8答案:试题9答案:或试题10答案:试题11答案:试题12答案:试题13答案:4试题14答案:1/6试题15答案:60试题16答案:解:===当x=3时,原式==(x取除了0,1,-1,2以外的数。
答案不唯一)试题17答案:解:(1)设红球的个数为,由题意得,解得,.答:口袋中红球的个数是1.(2)小明的认为不对.树状图如下:∴,,.∴小明的认为不对.试题18答案:解:(1)25×2=50人;(2)图略,步行人数是10;(3)圆心角度数=×3600=1080;(4)估计该年级步行人数=600×20%=120.试题19答案:解:过点C作CD⊥AB,垂足为D,设CD=,在Rt△BCD中,∠CBD=45°∴BD=CD=米.在Rt△ACD中,∠DAC=31°,AD=AB+BD=(20+)米,CD=米.∵∠DAC=∴∴所以这条河宽度约为30米试题20答案:;试题21答案:解:(1)连结OC,∵CD切⊙O于点C,∴∠OCD=90°.∵∠D=30°,∴∠COD=60°.∵OA=OC,∴∠A=∠ACO=30°.(2)∵CF⊥直径AB, CF=,∴CE=,∴在Rt△OCE中,OE=2,OC=4.∴,.∴试题22答案:设搭配A种造型x个,则B种造型为个,依题意,得:解得:,∴∵x是整数,x可取31、32、33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:33×800+17×960=42720(元)方法二:方案①需成本:31×800+19×960=43040(元);方案②需成本:32×800+18×960=42880(元);方案③需成本:33×800+17×960=42720(元);∴应选择方案③,成本最低,最低成本为42720元.试题23答案:(1)设抛物线的解析式为y=ax2+bx+c,则有:解得:,所以抛物线的解析式为y=x2-2x-3.(2)令x2-2x-3=0,解得x1=-1,x2=3,所以B点坐标为(3,0).设直线BC的解析式为y=kx+b,则,解得,所以直线解析式是y=x-3.当x=1时,y=-2.所以M点的坐标为(1,-2).(3)方法一:要使∠PBC=90°,则直线PC过点C,且与BC垂直,又直线BC的解析式为y=x-3,所以直线PC的解析式为y=-x-3,当x=1时,y=-4,所以P点坐标为(1,-4).方法二:设P点坐标为(1,y),则PC2=12+(-3-y)2,BC2=32+32;PB2=22+y2由∠PBC=90°可知△PBC是直角三角形,且PB为斜边,则有PC2+BC2=PB2.所以:[12+(-3-y)2]+[32+32]=22+y2;解得y=-4,所以P点坐标为(1,-4).。