加密和密码学的毕业论文AES加密算法

合集下载

AES算法研究及应用毕业论文

AES算法研究及应用毕业论文

AES算法研究及应用毕业论文摘要.I Abstract II 第1章绪论11.1 11.2 11.3 11.4 1第2章 AES22.1 22.2 2第3章 AES33.1 33.2 3第4章 AES44.1 44.2 全面与平衡 (4)第5章 AES算法的应用价值 (5)5.1 连续报道 (5)5.2 系列报道 (5)5.3 整合报道 (5)第6章 AES算法的攻击研究 (6)6.1 分兵把守 (6)6.2 通力合作 (7)结语 (8)参考文献 (9)附录 (10)致谢 (11)AES加密算法研究摘要报道等报道方式,实的操作。

关键词:新闻整体真实;操作;连续报道;系列报道;整合报道Research of AES Encryption AlgorithmAbstractThe theory of essential truth is not only an important aspect of the Marxist theoryof truth in journalism, but also a majorsocialistic journalism. However, there arethis theory into practice. Even somecarrying this theory out. This thesistruth. The operation of this theory is anprinciple of the scientific view ofcomplete and balance, journalists canbasis of interaction and combination of individual efforts and group work.Key words: essential truth in journalism; operate; successive report;serial report;Integrated report第1章绪论1.1 课题研究背景及目的新闻传播活动要求新闻报道达到整体真实是新闻真实更高层次的要求[1-4]。

毕业设计论文AES加密算法

毕业设计论文AES加密算法

毕业设计论文AES加密算法摘要随着信息技术的快速发展,人们对数据安全问题的关注日益增加。

AES(Advanced Encryption Standard)是目前应用最广泛的对称加密算法之一,被广泛应用于保护数据的机密性。

本文主要探讨了AES加密算法的原理、过程及其在信息安全中的应用,以期提高数据的安全性。

1.引言随着网络的迅猛发展,信息的传输已经成为我们日常生活中不可或缺的一部分。

然而,信息的传输安全问题也愈发凸显,特别是在敏感信息的保护方面。

因此,保护信息安全和隐私已成为重要的议题。

2.AES加密算法的选择和设计AES加密算法是由美国国家标准与技术研究院(NIST)制定的一种对称加密算法。

与其他对称加密算法相比,AES算法在安全性和效率方面表现更优秀。

在选择AES算法时,需要考虑加密算法的安全性、性能和算法的复杂度等因素。

3.AES加密算法的原理AES加密算法采用分组密码的方式,将明文按照一定的分组长度进行分组,再对每个分组进行轮函数的处理。

在AES算法中,明文分组长度为128位,密钥长度为128、192或256位。

AES算法由四个基本的运算模块构成,包括字节代换(SubBytes)、行移位(ShiftRows)、列混淆(MixColumns)和轮密钥加(AddRoundKey)。

4.AES加密算法的过程在AES加密算法的过程中,首先需要进行密钥的扩展,根据密钥的长度生成多轮的轮密钥。

然后,对明文进行分组、轮函数的处理和轮密钥加操作。

最后得到密文。

5.AES加密算法的应用AES加密算法广泛应用于各个领域,特别是在信息安全领域。

在网络通信中,AES算法被用于保护数据的机密性,防止数据被非法获取。

在存储介质中,AES算法可以被用于加密存储的数据,确保数据的安全性。

此外,AES算法还广泛应用于数字版权保护、无线通信和智能卡等领域。

6.AES加密算法的优化和改进尽管AES加密算法在安全性和效率方面表现出色,但仍有一些改进和优化的空间。

密码学中的AES算法原理及应用

密码学中的AES算法原理及应用

密码学中的AES算法原理及应用随着互联网的发展,信息安全越来越成为人们关注的焦点。

在这种背景下,密码学技术应运而生。

密码学是一门研究如何通过在信息传输过程中对信息进行加密和解密以保护信息安全的学科。

其中,AES(Advanced Encryption Standard)算法是一种被广泛应用的对称加密算法,本文将为大家介绍AES算法的原理和应用。

一、AES算法简介AES算法是一种Rijndael算法的具体实现。

Rijndael算法是比利时密码学家Vincent Rijmen和Joan Daemen在1998年提出的一种对称密钥加密算法,经过多次改进后,于2001年成为美国联邦政府采用的标准加密算法,即AES算法。

在2016年的比赛中,AES算法被确定为了所有的对称加密算法的最终标准。

AES算法的安全性主要基于以下几个方面:首先,AES算法采用的密钥长度极长,可以达到128、192、256位。

其次,AES算法采用的加密模式是分组密码,其中分组长度为128位,远高于其他对称加密算法。

此外,AES算法的结构也非常复杂,采用了多层轮函数的结构,每个轮函数由不同的操作构成,包括字节代换、行移位、列混合以及加轮密钥。

二、AES算法的原理1.字节代换字节代换是AES算法中最基本的一个步骤。

在该步骤中,每个输入字节都会被替换为一个预置的8位无符号整数。

字节代换采用了一个长度为256个元素的S盒进行替换。

S盒可以通过一个由GF(2^8)域上的多项式所组成的矩阵来生成,其中多项式系数可以是任意8位二进制数。

字节代换运算的输出结果是一个新的矩阵,其中每个元素都替换为了其对应的S盒元素。

2.行移位行移位是AES算法中第二个主要步骤。

在该步骤中,每行字节都向左移位,且第一行不移动,第二行移位1位,第三行移位2位,第四行移位3位。

行移位操作可以让每行字节在AES轮函数中的位置发生变化,从而增强加密算法的安全性。

3.列混合列混合是AES算法中最复杂的一个步骤,其主要目的是增强字节之间的相互关联性。

加密和密码学的毕业论文AES加密算法

加密和密码学的毕业论文AES加密算法

第一章绪论AES高级加密标准随着Internet的迅猛发展,基于Internet的各种应用也日新月异,日益增长。

但是,由于Int ernet是一个极度开放的环境,任何人都可以在任何时间、任何地点接入Internet获取所需的信息,这也使得在Internet上信息传输及存储的安全问题成为影响Internet应用发展的重要因素。

正因为如此,信息安全技术也就成为了人们研究Internet应用的新热点。

信息安全的研究包括密码理论与技术、安全协议与技术、安全体系结构理论、信息对抗理论与技术、网络安全与安全产品等诸多领域。

在其中,密码算法的理论与实现研究是信息安全研究的基础。

而确保数据加密算法实现的可靠性和安全性对于算法理论应用到各种安全产品中起到了至关重要的作用。

对各类电子信息进行加密,以保证在其存储,处理,传送以及交换过程中不会泄露,是对其实施保护,保证信息安全的有效措施。

1977年1月数据加密标准DES(Data Encryption Standard)正式向社会公布,它是世界上第一个公认的实用分组密码算法标准。

但DES在经过20年的实践应用后,现在已被认为是不可靠的。

1997年1月2日NIST发布了高级加密标准(AES-FIPS)的研发计划,并于同年9月12日正式发布了征集候选算法公告,NIST希望确定一种保护敏感信息的公开、免费并且全球通用的算法作为AES,以代替DES,用以取代DES的商业应用。

在征集公告中,NIST对算法的基本要求是:算法必须是私钥体制的分组密码,支持128bits分组长度和128,192,256bits密钥长度。

经过三轮遴选,Rijndael最终胜出。

2000年10月2日,NIST宣布采用Rijndael算法作为新一代高级加密标准。

Rijndael的作者是比利时的密码专家Joan Daemon博士和Vincent Rijmen博士。

美国国家标准和技术研究所(NIST)在1999年发布了FIPS PUB 46-3,该标准指出DES只能用于遗留系统,同时3DES将取代DES。

(完整版)密码学毕业课程设计-AES加密解密文档

(完整版)密码学毕业课程设计-AES加密解密文档

成都信息工程学院课程设计报告AES加密解密的实现课程名称:应用密码算法程序设计学生姓名:学生学号:专业班级:任课教师:年月日目录1.背景 (1)2.系统设计 (1)2.1系统主要目标 (1)2.2主要软件需求(运行环境) (2)2.3功能模块与系统结构 (2)3 系统功能程序设计 (4)3.1基本要求部分 (4)3.1.1 字节替换 (4)3.1.2行移位 (5)3.1.3列混合 (6)3.1.4密钥加 (6)3.1.5密钥扩展 (7)3.1.6字节替换 (8)3.1.7行移位 (9)3.1.8列混合 (9)3.1.9 加密 (10)3.1.10 解密 (11)4. 测试报告 (12)5.结论 (21)参考文献 (21)1.背景AES,密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。

这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。

经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。

2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。

AES 有一个固定的128位的块大小和128,192或256位大小的密钥大小。

该算法为比利时密码学家Joan Daemen和Vincent Rijmen所设计,结合两位作者的名字,以Rijndael之命名之,投稿高级加密标准的甄选流程。

(Rijdael的发音近于"Rhine doll"。

)AES在软体及硬件上都能快速地加解密,相对来说较易于实作,且只需要很少的记忆体。

作为一个新的加密标准,目前正被部署应用到更广大的范围.2.系统设计2.1系统主要目标基本要求部分:1.在深入理解AES加密解密算法理论的基础上,设计一个AES加密解密软件系统;2.完成一个明文分组的加解密,明文和密钥是十六进制,长度都为64比特(16个16进制数),输入明文和密钥,输出密文,进行加密后,能够进行正确的解密;3. 程序运行时,要求输出每一轮使用的密钥,以及每一轮加密或解密之后的16进制表示的值;4. 要求提供所设计系统的报告及完整的软件。

AES算法设计与实现毕业设计

AES算法设计与实现毕业设计

AES算法的实现
编程语言的选择
C语言:高效、简洁,适合底层开发 Python:易学易用,适合快速原型开发 Java:面向对象,适合大型项目开发 JavaScript:前端开发,适合Web应用开发
加密过程的实现
密钥生成:使用密钥生成器生成密 钥
解密过程:将密文与密钥进行异或 运算,得到明文
添加标题
AES算法设计与实现毕 业设计
汇报人:
目录
添加目录标题
01
AES算法的实现
04
AES算法概述
毕业设计过程与成果
02
05
AES算法的设计
总结与展望
03
06
添加章节标题
AES算法概述
加密算法简介
AES算法:一种高级加密标准,用于保护数据安全 特点:高效、安全、易于实现 应用领域:广泛应用于网络通信、数据存储等领域 加密过程:包括密钥生成、数据加密、数据解密等步骤
对AES算法的改进建议
提高加密速度:优化算法实现,减少计算量 增强安全性:引入新的加密技术,提高抗攻击能力 提高灵活性:支持多种加密模式,满足不同应用场景需求 优化内存管理:减少收获与不足
收获:掌握了AES算法的原理和实 现方法
不足:在实现过程中遇到了一些技 术难题,需要进一步学习和研究
密钥更新:定期更新密钥, 提高安全性
安全性分析
加密算法:采用对称加密算法,安 全性高
加密模式:支持多种加密模式,如 CBC、CFB、OFB等,提高安全性
添加标题
添加标题
添加标题
添加标题
密钥长度:支持128、192、256 位密钥长度,满足不同安全需求
抗攻击能力:具有较强的抗攻击能 力,如抗差分攻击、抗线性攻击等

AES加密算法研究分析

AES加密算法研究分析

AES加密算法研究分析AES(Advanced Encryption Standard)是一种对称分组密码算法,被广泛应用于保护电子数据的加密过程中。

本文将对AES加密算法进行研究和分析,讨论其基本原理、主要特点以及应用领域。

AES算法基本原理:AES算法采用对称分组密码的设计原理,通过对输入的数据进行分组,然后对每个组进行一系列数学操作,最终生成加密后的数据。

AES算法中,数据分组大小为128位(16字节),密钥长度有128、192和256位三种可选。

AES算法主要特点:1.安全性高:AES算法结构复杂,设计坚固,被广泛认可为目前最安全的加密算法之一、即使在计算资源不断提升的情况下,破解AES算法仍然需要极大的计算力。

2.处理速度快:AES算法在现代计算机系统上的加密速度很快,相对于其他加密算法具有较高的加密和解密速度,适用于多种实时性要求较高的场景。

3.算法灵活:AES算法支持不同密钥长度的选择,使其更适应不同安全需求。

而且AES算法结构简单,易于实现,并能够在硬件和软件平台上高效运行。

AES算法应用领域:1.网络通信安全:AES算法被广泛应用于网络通信中数据的加密和解密,例如在VPN虚拟私有网络、HTTPS协议和SSL/TLS加密通信协议中,确保通信过程中数据的保密性和完整性。

2.数据存储安全:AES算法被广泛应用于存储介质的数据加密,例如在硬盘加密、数据库加密和文件加密中,保护敏感数据在存储介质上的安全性。

4.版权保护:AES算法可以用于数字媒体的加密,例如音频、视频和电子书的加密保护,防止未经授权的复制和分发。

5.密码学研究:AES算法是密码学中一个重要的研究领域,研究者通过对AES算法进行分析和改进,不断提升其安全性和性能。

总结:AES算法是一种安全性高、速度快、灵活性强的对称分组密码算法,广泛应用于网络通信安全、数据存储安全、移动设备安全、版权保护以及密码学研究等领域。

研究和分析AES算法对于加强数据安全保护具有重要意义。

实现文件简单的加密和解密学士学位论文

实现文件简单的加密和解密学士学位论文

实现文件简单的加密和解密摘要随着信息社会的到来,人们在享受信息资源所带来的巨大的利益的同时,也面临着信息安全的严峻考验。

信息安全已经成为世界性的现实问题,信息安全问题已威胁到国家的政治、经济、军事、文化、意识形态等领域。

同时,信息安全也是人们保护个人隐私的关键,是社会稳定安全的必要前提条件。

信息安全是一个综合性的交叉学科领域,广泛涉及数学、密码学、计算机、通信、控制、人工智能、安全工程、人文科学等诸多学科,是近几年迅速发展的一个热点学科领域。

信息对抗和网络安全是信息安全的核心热点,它的研究和发展又将刺激、推动和促进相关学科的研究与发展。

现今,加密是一种保护信息安全性最有效的方法。

密码技术是信息安全的核心技术。

本文是一篇关于文件简单加密和解密软件——文件管家的毕业设计论文:用AES 算法实现文件的加密和解密,用MD5实现文件校验功能,用覆盖技术实现文件粉碎功能;并且设计了一套完整的注册码验证体系,防止软件被逆向,从而保护软件的安全。

关键词:文件;加密;解密;粉碎;反逆向;AESSimple implementation fileencryption and decryptionAbstractWith the arrival of the information society, people not only enjoy the enormous benefits of information resources, but also face the severe challenges of information security. Information security has become a worldwide problem. The problem has become a threat to the political, economic, military, cultural, ideological and other aspects of a country. Meanwhile, the information security is the key of protecting individual privacy and the prerequisite for social stability and security.Information security is a comprehensive interdisciplinary field, involving a wide range of disciplines such as mathematics, cryptography, computer, communications, control, artificial intelligence, security, engineering, humanities and so on, It has been being a hot subject with rapid development. Information countermeasure and network security is a core focus, whose research and developments will stimulate and accelerate the study and progress of related disciplines. So far, the password to information security technology is the most effective method. Cryptography is the core technology of information security.This article is about a software named File Manager, which can simply encrypt and decrypt files. The software uses AES algorithm to encrypt and decrypt files, MD5 to check the files, and overlay technique to achieve the feature of file shredder. Meanwhile, there is a complete set of design registration code verification system, which is used to protect the software from reverse, thus to protect the security of the software.Key words:file; encrypt; decrypt; shredder; Anti-Reverse; AES目录摘要 (i)Abstract (ii)1 绪论 (1)1.1 论文背景 (1)1.2 主要工作 (1)1.3 本文结构 (1)2 AES介绍 (2)2.1 AES概述 (2)2.2 轮密钥加(AddRoundKey) (3)2.3 字节替代(SubBytes) (3)2.4 行移位(ShiftRows) (5)2.5 列混淆(MixColumns) (6)2.6 密钥调度(Key Schedule) (7)3 系统设计 (8)3.1 设计概述 (8)3.1.1 界面设计 (8)3.1.2 实现代码设计 (8)3.1.3 操作流程 (8)3.2 界面设计 (9)3.2.1 LOGO设计 (9)3.2.2 加密选项卡的设计 (10)3.2.3 解密选项卡的设计 (11)3.2.4 工具箱选项卡的设计 (12)3.3 实现代码设计 (12)3.3.1 加密选项卡的设计 (13)3.3.2 解密选项卡的设计 (14)3.3.3 工具箱选项卡的设计 (15)3.3.4 程序流程图 (16)4 设计结果及分析 (20)4.1 设计结果展示 (20)4.1.1 软件初始化 (20)4.1.2 注册码验证 (22)4.1.3 文件加密 (24)4.1.4 文件解密 (27)4.1.5 文件校验 (29)4.1.6 文件粉碎 (29)4.2 设计结果分析及说明 (30)4.2.1 软件初始化 (30)4.2.2 注册码验证 (32)4.2.3 文件加密 (35)4.2.4 文件解密 (37)4.2.5 文件校验 (38)4.2.6 文件粉碎 (39)结论 (41)参考文献 (42)致谢 (43)外文原文 (44)中文翻译 (55)1 绪论1.1 论文背景信息安全是一个综合性的交叉学科领域,广泛涉及数学、密码学、计算机、通信控制、人工智能、安全工程、人文科学等诸多学科,是近几年迅速发展的一个热点学科领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论AES高级加密标准随着Internet的迅猛发展,基于Internet的各种应用也日新月异,日益增长。

但是,由于Int ernet是一个极度开放的环境,任何人都可以在任何时间、任何地点接入Internet获取所需的信息,这也使得在Internet上信息传输及存储的安全问题成为影响Internet应用发展的重要因素。

正因为如此,信息安全技术也就成为了人们研究Internet应用的新热点。

信息安全的研究包括密码理论与技术、安全协议与技术、安全体系结构理论、信息对抗理论与技术、网络安全与安全产品等诸多领域。

在其中,密码算法的理论与实现研究是信息安全研究的基础。

而确保数据加密算法实现的可靠性和安全性对于算法理论应用到各种安全产品中起到了至关重要的作用。

对各类电子信息进行加密,以保证在其存储,处理,传送以及交换过程中不会泄露,是对其实施保护,保证信息安全的有效措施。

1977年1月数据加密标准DES(Data Encryption Standard)正式向社会公布,它是世界上第一个公认的实用分组密码算法标准。

但DES在经过20年的实践应用后,现在已被认为是不可靠的。

1997年1月2日NIST发布了高级加密标准(AES-FIPS)的研发计划,并于同年9月12日正式发布了征集候选算法公告,NIST希望确定一种保护敏感信息的公开、免费并且全球通用的算法作为AES,以代替DES,用以取代DES的商业应用。

在征集公告中,NIST对算法的基本要求是:算法必须是私钥体制的分组密码,支持128bits分组长度和128,192,256bits密钥长度。

经过三轮遴选,Rijndael最终胜出。

2000年10月2日,NIST宣布采用Rijndael算法作为新一代高级加密标准。

Rijndael的作者是比利时的密码专家Joan Daemon博士和Vincent Rijmen博士。

美国国家标准和技术研究所(NIST)在1999年发布了FIPS PUB 46-3,该标准指出DES只能用于遗留系统,同时3DES将取代DES。

3DES密钥长度为168bits,可克服穷举攻击问题,3DES的底层加密算法对密码分析攻击有很强的免疫力,其根本缺点是用软件实现该算法的速度慢,由于此缺陷,3DES不能成为长期使用的加密算法标准。

虽然AES己经生效,但DES和3DES还大量地在各种信息安全产品中使用。

市场上的AES的商用产品还很少,但AES产品取代DES产品已是必然。

对AES的实现和应用进行探讨和研究就具有较大的理论和现实意义。

2001年11月26日联邦信息处理标准出版社发布了正式的AES标准即FIPS PUBS 197,其中制定的标准生效时间为2002年5月26日。

AES最终会取代3DES,但过程可能需要几年时间。

Rijndael算法是一种可变分组长度和密钥长度的迭代型分组密码,它的分组长度和密钥长度均可独立地指定为128bits,192bits,256bits,它以其安全性和多方面的优良性能,成为AES的最佳选择(在高级加密标准规范中,密钥的长度可以是128,192,256bits三者中的任意一种,但分组长度只能是128bits)。

Rijndael算法能抵抗现在的所有已知密码攻击,用S盒作为非线性组件,表现出足够的安全性能,其采用的实现方式非常利于防止能量攻击和计时攻击,算法利用了掩码技术防止这些攻击,它在广泛的计算环境中的硬件和软件实现性能都表现得非常优秀,它固有的分布执行机制使得密钥建立时间极短且灵活性强,非常利于在各种平台上执行,它对R AM和ROM的要求低,使其非常适合在存储器受限的环境中使用,并且表现出很好的性能。

其有很好的并行执行能力。

AES对所有已知的攻击具有免疫性,其设计简单,在各种平台上执行速度快而且代码紧凑。

AES 不使用Feistel结构,而是每一轮都使用代换和混淆并行地处理整个数据分组。

AES输入的密钥被扩展成扩展轮密钥。

AES的结构包括四个不同阶段:字节代换,行移位,列混淆,轮密相加,它们提供了混淆,扩散以及非线性功能。

AES算法结构简单,由10个加密轮次组成。

AES应用了在有限域中的乘法和加法运算法则。

AES每个阶段均可逆,解密算法中用相对应的逆函数即可。

从AES的应用看,目前AES算法主要用于基于私钥数据加密算法(对称密钥加密算法)的各种信息安全技术和安全产品中,AES通常被认为是DES算法的取代者,为原有的数据加密应用提供更强的数据安全保障。

所以在原来DES标准应用的领域中,AES存在着巨大的应用价值。

当前网络技术发展迅猛,所以对于基于网络的数据加密的要求也日益提高,AES的应用首先体现在了网络信息安全领域中。

在AES标准公布前,IPSec协议中ESP(封装安全负载)所用的数据加密算法主要用的是DES和其代替者3DES,随着AES标准的公布,IETF的IPSec工作组下一步正试图使AES成为ESP使用的默认加密算法,要求所有IPSec实现必须兼容AES加密算法。

现在大多数提供VPN设备和解决方案的公司都已经使用AES加密算法来代替原来产品中使用的DES加密算法,并将此作为宣传企业产品的重要砝码。

AES在网络技术中另一个主要应用是无线网络应用。

由于无线网络的通信信道相对于有线网络来说是一个更为开放的环境,安全性的要求相对于有线网络来说将会更高。

目前,无线网络的国际标准主要有两个:一个是用于WLAN的协议(Wi-Fi);另一个是用于WMAN的协议(WiMAX)。

这两个协议在制定的初期所采用的安全机制中主要使用的分别是RC4和DES, 2004年后这两个协议也都将AES加入到协议的安全机制中。

此外,其他的一些无线网络技术为了保障数据传输安全性也都使用了AES。

ZigBee技术就是一个典型的代表,它作为新一代的无线传感器网络采用了 Zi gBee协议(一种低功率WPAN)。

ZigBee技术是一种近距离,低复杂度,低功耗,低数据速率,低成本的双向无线通信技术,主要适合于自动控制和远程控制领域,可以嵌入各种设备中。

Zig Bee的MAC层使用了AES算法进行加密,并且它基于AES算法生成一系列的安全机制,用来保证MAC帧的机密性,完整性,一致性和真实性。

除了保障网络应用的信息安全外,AES在其他的信息安全领域中也有着广泛的应用。

从AES硬件实现的应用上看,主要研究的方向有射频IC(集成电路)卡中的数据安全,智能安全卡和对硬盘数据的加密等方面。

目前射频IC卡在国内的应用范围很广泛,从市民乘车使用的公交IC卡、学校食堂使用的饭卡到新一代的居民身份证中都嵌入了IC芯片。

在IC卡中所存储的数据通常都是含有持卡人的各人隐私信息的,这些信息如果不经过加密处理很容易在不经意间从各种渠道泄露出去。

因此如何在射频IC卡中加入数据加密功能成为AES应用研究的方向。

从AES软件实现的应用上看,其应用领域也十分广泛,包含语音、视频信息的加密,数据库中的数据加密以及当前关注度很高的电子商务安全等。

随着计算机性能的提高,尤其是对于多媒体信息的处理能力的增强,越来越多的多媒体信息出现在人们的日常生活中。

和一般的文字信息类似,多媒体信息也存在对需要保密的信息加密的问题。

由于多媒体信息的数据量很大,如果对其直接进行数据加密的话,其效率很低,将会影响多媒体信息的传播及使用。

因此,在对多媒体信息加密时,不仅要考虑到数据加密算法AES的使用方法,还要设计相应的加密过程。

关于AES在数据库中的应用,其主要的研究方向在于如何生成,分配和管理在数据输入输出中所用的密钥以及安全的数据加密的策略上,形成一个完整的数据加密系统。

关于AES在电子商务中的应用,其研究的重心在于电子商务基础平台中的密码协议和交易安全协议中AES的应用。

如将AES应用在SSL (安全套接字层)协议中:在实时数据网络传输前,发送方通过身份认证后,用SSL安全通道发送AES密钥到接收方,同时用AES算法对实时数据加密,然后基于UDP协议通过互联网发送加密的实时数据到接收方。

这样接收方可以用接收到的AES密钥解密加密后的实时数据得到具体的实时数据。

此外,将AES与其他的密码算法相结合,尤其是一些公钥加密算法(非对称加密算法),设计出的新的密码也是AES应用研究的主要方向之一。

目前比较典型的研究包括:AES与RSA相结合的混合加密体系,AES与ECC(椭圆曲线加密算法)相结合的加密体系,利用NTRU公钥密码体系分配AES密钥,AES在公钥加密体系PKI中的应用,AES在数据签名中的应用等等。

高级加密标准AES(Rijndael)算法在各行业各部门中将获得广泛的应用,成为虚拟专用网、SO NET(同步光网络)、远程访问服务器(RAS)、高速ATM/Ethernet路由器、移动通信、卫星通信、电子金融业务等的加密算法,并逐渐取代DES在IPSec、SSL和ATM中的使用。

IEEE 草案已经定义了AES加密的两种不同运行模式,成功解决了无限局域网(WLAN)标准中的诸多安全问题。

综上所述,AES的研究从理论到实现,从实现到应用,己经深入到了信息安全技术的各个领域,继续研究与开发新的AES实现和应用具有很重要的理论和实践意义。

当前,从应用的角度上看,拓展数据加密技术应用领域,将现有的关于AES的研究成果与非信息安全领域的相关技术与应用相结合,从而得到新的应用将是一个很好的研究方向。

LDPC低密度奇偶校验码信道编码是以信息在信道上的正确传输为目标的编码,在研究中它着重强调的是如何避免少量的差错信号对信息内容的影响。

从信息论角度来看的信道编码指的是差错控制编码,包括各种形式的纠错、检错马,可以统称为纠错编码。

LDPC码即低密度奇偶校验码(Low Density Parity Check Code,LDPC),最早在20世纪60年代由麻省理工学院的Robert Gallager在他的博士论文中提出的一种具有稀疏校验矩阵的线性分组纠错码,但限于当时的技术条件,缺乏可行的译码算法,此后的35年间基本上被人们忽略,其间由Tanner在1981年推广了LDPC码并给出了LDPC码的图表示,即后来所称的Tanner图。

1 993年Berrou等人发现了Turbo码,在此基础上,1995年前后MacKay和Neal等人对LDPC码重新进行了研究,提出了可行的译码算法,从而进一步发现了LDPC码所具有的良好性能,迅速引起强烈反响和极大关注。

经过十几年来的研究和发展,研究人员在各方面都取得了突破性的进展,LDPC码的相关技术也日趋成熟,甚至已经开始有了商业化的应用成果,并进入了无线通信等相关领域的标准。

LDPC码是通过校验矩阵H定义的一类线性分组码(linear block codes),为使译码可行,在码长较长时需要校验矩阵满足“稀疏性”,即校验矩阵中1的密度比较低,也就是要求校验矩阵中1的个数远小于0的个数,并且码长越长,密度就要越低。

相关文档
最新文档