实验报告液体粘度的测量

合集下载

液体粘度的测定实验报告

液体粘度的测定实验报告

液体粘度的测定实验报告液体粘度的测定实验报告引言:液体粘度是液体内部分子间相互作用力的一种表现形式,是液体流动阻力的度量。

粘度的大小与液体的黏性有关,黏性越大,粘度就越高。

粘度的测定对于工业生产和科学研究具有重要意义。

本实验旨在通过粘度计测定不同液体的粘度,探究液体粘度与温度、浓度等因素之间的关系。

实验方法:1. 实验仪器与试剂准备本实验所需仪器有:粘度计、恒温水浴、分液漏斗、计时器等。

试剂为不同浓度的甘油溶液。

2. 实验步骤(1) 将粘度计放入恒温水浴中,使其温度稳定在25℃。

(2) 用分液漏斗将不同浓度的甘油溶液倒入粘度计中,注意避免气泡的产生。

(3) 开始计时,记录下液体通过粘度计的时间。

(4) 重复上述步骤,取不同浓度的甘油溶液进行测定。

实验结果:根据实验数据,我们得到了不同浓度甘油溶液的粘度测定结果如下:浓度(%)粘度(mPa·s)5 10.210 15.615 20.120 25.5实验讨论:从实验结果可以看出,随着甘油溶液浓度的增加,粘度也随之增加。

这是因为甘油溶液浓度的增加导致溶液中分子间相互作用力增强,使得液体流动受到更大的阻力,从而增加了粘度。

这与我们对液体粘度的理论认识相符。

另外,我们还观察到随着温度的升高,液体的粘度下降。

这是因为温度升高会增加液体分子的热运动能量,使分子间相互作用力减弱,从而降低了液体的黏性和粘度。

这也是为什么在夏季高温天气下,液体更容易流动的原因。

实验结论:通过本实验的测定,我们得出了以下结论:1. 液体粘度与浓度呈正相关关系,浓度越高,粘度越大。

2. 液体粘度与温度呈负相关关系,温度越高,粘度越小。

实验误差与改进:在本实验中,由于实验条件和仪器精度的限制,可能存在一定的误差。

例如,由于温度的变化会对粘度产生影响,而实验中无法完全保证恒温水浴的稳定性,所以温度的测量可能存在一定误差。

此外,由于粘度计的测定结果受到流动速度和液体表面张力等因素的影响,也可能导致实验结果的误差。

液体粘性系数实验报告(3篇)

液体粘性系数实验报告(3篇)

第1篇一、实验目的1. 学习并掌握液体粘性系数的测量方法。

2. 了解斯托克斯公式在液体粘性系数测量中的应用。

3. 掌握实验数据的处理和误差分析。

二、实验原理液体粘性系数是描述液体流动阻力的物理量,其单位为帕·秒(Pa·s)。

斯托克斯公式是描述小球在液体中匀速运动时所受粘滞阻力的公式,即:F = 6πηrv其中,F为粘滞阻力,η为液体粘性系数,r为小球半径,v为小球运动速度。

当小球在液体中下落时,受到三个力的作用:重力、浮力和粘滞阻力。

当小球达到匀速运动时,这三个力的合力为零,即:mg - F浮 - F粘滞 = 0其中,m为小球质量,g为重力加速度,F浮为浮力。

根据上述公式,可以推导出液体粘性系数的测量公式:η = (mg - F浮) / (6πrv)三、实验仪器与材料1. 玻璃圆筒:用于盛放待测液体。

2. 小钢球:用于测量液体粘性系数。

3. 游标卡尺:用于测量小球直径。

4. 秒表:用于测量小球下落时间。

5. 电子天平:用于测量小球质量。

6. 温度计:用于测量液体温度。

四、实验步骤1. 准备实验器材,检查仪器是否完好。

2. 将玻璃圆筒置于水平桌面上,调整至竖直。

3. 在玻璃圆筒中倒入适量待测液体,确保液体高度超过小球直径。

4. 用游标卡尺测量小球直径,记录数据。

5. 用电子天平测量小球质量,记录数据。

6. 用温度计测量液体温度,记录数据。

7. 将小球轻轻放入玻璃圆筒中,用秒表测量小球从释放到达到匀速运动所需时间,记录数据。

8. 重复步骤7,至少测量3次,取平均值。

9. 根据斯托克斯公式和测量数据,计算液体粘性系数。

五、数据处理与结果1. 根据实验数据,计算小球下落时的匀速运动速度v。

2. 根据斯托克斯公式和测量数据,计算液体粘性系数η。

六、误差分析1. 实验误差主要来源于仪器精度和测量方法。

2. 游标卡尺、秒表和电子天平的精度对实验结果有较大影响。

3. 小球释放时的速度和释放点位置对实验结果有一定影响。

液体黏度的测量实验报告

液体黏度的测量实验报告
院(系)名称
班别
姓名
专业名称
学号
实验课程名称
普通物理实验Ⅱ
实验项目名称
液体粘液的测定
实验时间
实验地点
实验成绩
指导老师签名
一、实验目的
1用落球法测定液体的粘滞系数
二、实验使用仪器与材料
圆筒形玻璃容器、米尺、螺旋测微器、游标卡尺、秒表、温度计、钢珠若干
三、实验原理
由斯托克斯公式 ,小球受力平衡时, ,小球作匀速直线运动,得 。
令小球的直径为d,并用 , , 代入上式得:
实验时,待测液体必须盛于圆筒中,故不能满足无限深广的条件,实验证明,若小球沿筒的中心轴线下降,上式须作如下改动方能符合实际情况:
其中D为圆筒内径,H为液柱高度。
四、实验步骤
1、将水准仪放在圆筒底部中央,调整底座使之水平。
2、选取5个金属小球测其直径d,每个小球应在不同的方位测3次取平均。
T(s)
45.3s
46s
47.4s
48s
45.3
47
46.5s
实验数据计算;
=1.060
六、实验总结
1、放入小钢球时要接近液面投放,不能离液面太远。
2、测量小钢球径时要多次测量,避免误差。
3、认真观察小刚球匀速下落的时间,避免产生误差。
3、在盛液体的玻璃圆筒上选定小球作匀速下落的一段距离。将上、下标志线A、B分别置于距液体和管底均为10cm左右
4、测量液体质量 和温度T1
5、用镊子将金属小球放入圆筒液面中心让其自由落下,测量各小球下落通过L的时间t
6、测量圆筒内径D,液体深度H以及AB标志线 距离y,各测3次取平均。
7、实验结束时,再观测液体温度T2,取它们的平均值为液体温度。

液体粘度系数的测量实验报告

液体粘度系数的测量实验报告

液体粘度系数的测量实验报告
液体粘度系数的测量实验报告
一、实验目的
本实验的目的是研究和观察液体的粘度系数。

二、实验原理
液体粘度系数,又称内摩擦系数,它是表示流体阻力力,以及流体在容器内的流动特性的基本参数,其定义为:给定流体流动时,流体的压差和流速之间的反比,即:
粘度系数=压差/流速
三、实验器材
实验所用设备:
(1)液体粘度计:用于测量液体的粘度系数。

(2)流量计:用于测量流体流量。

(3)压力表:用于测量流体的压力。

(4)温度表:用于测量液体的温度。

四、实验步骤
(1)安装设备
首先,将液体粘度计,流量计,压力表以及温度表安装到实验装置上,确保所有的连接口处于恰当的位置,并确保所有设备正常运行。

(2)调整设备
然后,按照实验要求的温度和压力调整温度表和压力表,以确保测量数据的准确性。

(3)测量试样
最终,将液体样品倒入测量设备中,测量出其粘度系数,并将测量结果记录下来。

五、实验结果
实验样品:1号样品
测量温度:25 ℃
测量压力:1.2 MPa
测量结果:粘度系数为0.18 Pa·s
六、实验结论
通过本实验,可以准确测量出所测液体的粘度系数,从而为相关技术的研究提供有力的理论支撑。

流体粘度测量实验报告

流体粘度测量实验报告

一、实验目的1. 理解流体粘度的概念及其测量方法。

2. 掌握旋转法测量液体粘度的原理和操作步骤。

3. 分析实验数据,了解粘度与温度、流速等因素的关系。

二、实验原理粘度是流体内部阻碍其相对流动的一种特性,是表征流体流动性能的重要参数。

本实验采用旋转法测量液体粘度,其原理如下:当流体以一定的速度旋转时,流体中的分子受到旋转剪切力的作用,从而产生内摩擦力。

内摩擦力的大小与流体的粘度成正比。

通过测量旋转时产生的扭矩,可以计算出流体的粘度。

实验过程中,同步电机以稳定的速度旋转,连接刻度圆盘,再通过游丝和转轴带动转子旋转。

如果转子未受到液体的阻力,则游丝、指针与刻度圆盘同速旋转,指针在刻度盘上指出的读数为0。

反之,如果转子受到液体的粘滞阻力,则游丝产生扭矩,与粘滞阻力抗衡,最后达到平衡。

这时与游丝连接的指针在刻度盘上指示一定的读数,即为游丝的扭转角。

将读数乘上特定的系数,即可得到液体的粘度。

三、实验器材1. NDJ-1型旋转式粘度计2. ZWQ1型晶体管3. 直流电源4. 烧杯5. 温度计6. 聚乙烯醇7. 计时器8. 螺旋测微器四、实验步骤1. 准备被测液体,置于直径不小于70mm的烧杯或直筒形容器中,准确控制被测液体温度。

2. 将保护架装在仪器上,旋入连接螺杆。

3. 旋转升降旋扭,使仪器缓慢地下降,转子逐渐浸入被测液体中,直至转子液面标志和液面相平为止。

4. 调正仪器水平,按下指针控制杆,开启电机开关。

5. 转动变速旋扭,使所需转速数向上,对准速度指示点。

6. 放松指针控制杆,使转子在液体中旋转。

7. 记录指针在刻度盘上的读数,即为游丝的扭转角。

8. 将读数乘上特定的系数,得到液体的粘度。

9. 重复以上步骤,分别测量不同温度下液体的粘度。

五、实验数据及处理1. 记录不同温度下液体的粘度数据。

2. 绘制粘度与温度的关系曲线。

3. 分析实验数据,探讨粘度与温度、流速等因素的关系。

六、实验结果与分析1. 实验结果显示,随着温度的升高,液体的粘度逐渐减小。

测定液体粘度实验报告

测定液体粘度实验报告

测定液体粘度实验报告一、实验目的液体的粘度是液体的重要物理性质之一,它反映了液体流动时内摩擦力的大小。

本次实验的目的是通过测量液体在不同条件下的流动时间,来确定液体的粘度,并了解影响液体粘度的因素。

二、实验原理1、粘度的定义液体的粘度是指液体在流动时,由于分子间的内摩擦力而产生的阻力。

粘度的大小通常用动力粘度(μ)或运动粘度(ν)来表示。

动力粘度的定义为:使相距为单位距离的两平行液层,以单位速度相对移动时,在单位面积上所需要的力,其单位为Pa·s(帕斯卡·秒)。

运动粘度是动力粘度与液体密度的比值,即ν =μ/ρ,其单位为m²/s。

2、测量方法本实验采用落球法测量液体的粘度。

将一个小球在液体中自由下落,在重力作用下,小球加速下落,同时受到液体的粘滞阻力。

当小球的重力与粘滞阻力达到平衡时,小球将以匀速下落。

根据斯托克斯定律,小球在液体中匀速下落时,所受的粘滞阻力为:F =6πηrv其中,η为液体的粘度,r 为小球的半径,v 为小球的下落速度。

由于小球下落达到匀速时,重力等于粘滞阻力,即:mg =6πηrv整理可得:η =(mg)/(6πrv)通过测量小球的下落时间 t 和下落距离 h,可以计算出小球的下落速度 v = h/t,从而求出液体的粘度η。

三、实验仪器和材料1、实验仪器落球粘度计、秒表、温度计、游标卡尺、电子天平、玻璃管、小球(若干)。

2、实验材料蒸馏水、乙醇、甘油。

四、实验步骤1、用游标卡尺测量小球的直径,多次测量取平均值,计算小球的半径 r。

2、调整落球粘度计的垂直度,使玻璃管垂直放置。

3、将蒸馏水注入玻璃管中,至一定高度。

4、用电子天平测量小球的质量 m。

5、把小球轻轻放入玻璃管中,使其自由下落,用秒表记录小球通过一定距离 h 所需的时间 t,重复测量多次,取平均值。

6、测量实验时的温度,记录下来。

7、分别更换乙醇和甘油作为实验液体,重复上述步骤进行测量。

液体粘度的测定实验报告

液体粘度的测定实验报告

液体粘度的测定实验报告液体粘度的测定实验报告引言:液体粘度是描述液体流动性质的物理量,具有重要的工程和科学应用价值。

本实验旨在通过测定不同液体的粘度,探究不同因素对粘度的影响,并了解粘度的测定方法和原理。

实验目的:1. 了解粘度的概念和意义;2. 掌握粘度的测定方法;3. 探究温度、浓度等因素对粘度的影响。

实验仪器与试剂:1. 粘度计;2. 不同液体样品(例如水、甘油、油等)。

实验步骤:1. 准备工作:将粘度计清洗干净,并确保其表面无杂质;2. 将待测液体样品倒入粘度计中,注意不要超过刻度线;3. 在恒定温度下,通过观察液体在粘度计中的流动情况,记录下液体流动所需的时间;4. 重复上述步骤,分别测定不同液体样品的粘度。

实验结果与分析:通过实验测得不同液体样品的粘度数据,我们可以得出以下结论:1. 温度对液体粘度有显著影响。

随着温度升高,液体粘度减小。

这是因为温度升高会增加液体分子的热运动能力,使分子间的相互作用减弱,从而降低了粘度。

2. 浓度对液体粘度也有一定影响。

一般来说,浓度越高,液体粘度越大。

这是因为浓度增加会增加溶质与溶剂之间的相互作用力,导致液体分子间的摩擦增加,从而增加了粘度。

3. 不同液体的粘度差异较大。

例如,水的粘度较小,而甘油和油的粘度较大。

这是由于不同液体分子间的相互作用力不同,导致其流动性质不同。

实验结论:1. 温度和浓度是影响液体粘度的重要因素。

温度升高和浓度增加会导致液体粘度减小和增大。

2. 不同液体的粘度差异较大,这与液体分子间的相互作用力有关。

实验误差与改进:1. 实验中可能存在的误差包括温度控制不准确、粘度计读数不准确等。

可以通过使用更精确的温度控制设备和粘度计,以及增加实验重复次数来减小误差。

2. 实验中只选取了少量液体样品进行测定,可以进一步扩大液体样品的种类和数量,以获得更全面的数据。

结语:通过本次实验,我们深入了解了液体粘度的测定方法和原理,探究了温度、浓度等因素对粘度的影响。

液体黏度系数的测量实验报告

液体黏度系数的测量实验报告

液体黏度系数的测量实验报告一、实验目的1、了解测量液体黏度系数的基本原理和方法。

2、掌握使用毛细管法测量液体黏度系数的实验技能。

3、学会处理实验数据,计算液体的黏度系数,并分析误差来源。

二、实验原理液体在流动时,由于分子间的内摩擦力,会产生阻碍液体流动的阻力。

液体的黏度系数就是用来衡量这种内摩擦力大小的物理量。

在本实验中,我们采用毛细管法测量液体的黏度系数。

根据泊肃叶定律,在水平放置的均匀毛细管中,液体作稳定层流流动时,其体积流量 Q 与毛细管两端的压力差Δp、毛细管的半径 r、长度 l 以及液体的黏度系数η 之间有如下关系:\Q =\frac{\pi r^4 \Delta p}{8 \eta l}\若在时间 t 内流过毛细管的液体体积为 V,则体积流量 Q = V / t 。

通过测量压力差Δp 、毛细管的半径 r、长度 l 、液体体积 V 和流过的时间 t ,就可以计算出液体的黏度系数η 。

三、实验仪器1、奥氏黏度计2、恒温槽3、秒表4、移液管5、温度计6、比重瓶7、洗耳球8、蒸馏水9、待测液体(乙醇)四、实验步骤1、清洗黏度计用蒸馏水冲洗奥氏黏度计多次,确保其内部干净无杂质。

2、安装黏度计将清洗干净的奥氏黏度计垂直固定在恒温槽中,使毛细管部分完全浸没在恒温槽的液体中。

3、测量蒸馏水的流动时间用移液管吸取一定量的蒸馏水注入黏度计的球泡中,待液面高于刻度线 a 后,用洗耳球通过乳胶管将蒸馏水吸至刻度线 a 以上。

然后,松开洗耳球,让液体在重力作用下流经毛细管。

当液面经过刻度线 a 时,启动秒表;当液面到达刻度线 b 时,停止秒表,记录蒸馏水的流动时间 t1 。

重复测量三次,取平均值 t1' 。

4、测量待测液体(乙醇)的流动时间用移液管吸取与测量蒸馏水相同体积的待测液体乙醇注入黏度计,按照同样的方法测量乙醇的流动时间 t2 。

同样重复测量三次,取平均值 t2' 。

5、测量恒温槽的温度用温度计测量恒温槽中的液体温度 T 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

肇 庆 学 院
电子信息与机电工程 学院 普通物理实验 课 实验报告
07 级 电子(1) 班 2B 组 实验合作者 李雄 实验日期 2008年4月16日 姓名: 王英 学号 25号 老师评定 实验题目: 液体粘度的测量(落球法) 目的:根据斯托克斯公式用落球法测定油的粘滞系数
橙色字体的数据是在实验室测量出的原始数据,其他数据是计算所得。

实验仪器
摩擦阻力作用,这就是粘滞阻力的作用。

对于半径r 的球形物体,在无限宽广的液体中以速度v 运动,并无涡流产生时,小球所受到的粘滞阻力F 为
rv F πη6= (1)
公式(1)称为斯托克斯公式。

其中η为液体的粘滞系数,它与液体性质和温度有关。

如果让质量为m 半径为r 的小球在无限宽广的液体中竖直下落,它将受到三个力的作用,即重力mg 、液体浮力f 为g r ρπ33
4、粘滞阻力rv πη6,这三个力作用在同一直线上,方向如图1所示。

起初速度小,重力大
于其余两个力的合力,小球向下作加速运动;随着速度的增加,粘滞阻力也相应的增大,合力相应的减小。

当小球所受合力为零时,即 063
403=--rv g r mg πηρπ (2)
小球以速度v 0向下作匀速直线运动,故v 0称收尾速度。

由公式(2)可得
36)34
(rv g
r m πρπη-= (3) 当小球达到收尾速度后,通过路程L 所用时间为t ,则v 0=L /t ,将此公式代入公式(3
)又得
t rL
g
r m ⋅-=πρπη6)34
(3 (4) 上式成立的条件是小球在无限宽广的均匀液体中下落,但实验中小球是在内半径为R
的玻璃圆筒中的液体里下落,筒的直径和液体深度都是有限的,故实验时作用在小球
上的粘滞阻力将与斯托克斯公式给出的不同。

当圆筒直径比小球直径大很多、液体高度远远大于小球直径时,其差异是微小的。

为此在斯托克斯公式后面加一项修正值,就可描述实际上小球所受的粘滞阻力。

加一项修正值公式(4)将变成 t
R r rL g
r m ⋅⎪
⎭⎫ ⎝

+-=4.216)34
(3πρπη (5) 图1
式中R为玻璃圆筒的内半径,实验测出m、r、ρ、t、L和R,用公式(5)可求出液体的粘滞系数η。

数据处理方法一
2.测量记录
待测液体的密度ρ0= 0.950 g/cm3=950Kg/m3
30个小球与盘的总质量m1= 18.7018 g=0.0187018Kg
盛小球的空盘质量m2= 18.5762g=0.0185762Kg
1个小球与盘的质量m=(18.7018-18.5762)/30=4.1866×10-6Kg
容器内径D= 50.50 mm=0.05050m
液体总高度H= 315.5 mm=0.3155m
下落高度L= 115.5 cm=0.115m
液体温度T= 18 °C
重力加速度g= 9.8 m/s2
数据记录及处理结果
数据处理方法二
1、测小钢球的质量:
把30粒小钢球装入小盘中,秤其质量为m 1,再秤空盘的质量为m 2,则每一粒小钢球的质量为m=(m 1-m 2)/30。

秤得:m 1 =18.7018±0.0006(g) m 2=18.5762±0.0006(g) ∴m= (m 1- m 2)/30=(18.7018- 18.5762)/30= 0.00418667 (g) U m =( 0.0006±0.0006)/30=0.00004(g)
结果表示:m =(4.18667±0. 04)×10-3 (g) =(4.18667±0.04)×10-6(K g) 相对不确定度 U Em =U m /m=0.00004/0.00418667= 1% 2、测液体温度及比重:
温度T=18.0±0.6(℃)
ρ=0.9500±0.0003(g ·cm -3)= (0.9500±0.0003)×103(K g ·cm -3) ρ的相对不确定度U E ρ=0.3% 3、测玻璃管内径R 、液深H 内径D=50.50±0.01(mm) R=D /2=25.25±0.01(mm) R 的相对不确定度U ER =0.01÷25.25=0.04% 液深H=315.0±0.6mm , H 的相对不确定度U EH =0.6÷315.0=0.2% 4、测N 1,N 2之间的距离l l =115.5±0.6(mm) l 的相对不确定度U E l =0.6÷115.5=0.5% 5、测小球半径r :设小球直径为d ,
r = d /2=0.5010±0.0003(mm),
r 的相对不确定度U Er =0.0003÷0.5010=0.6% 6
、测时间t ,计算速度v
Et v 0 =l /t =115.5×10-3÷40.91= 2.823×10-3 (ms -1) v 0的相对不确定度U v 0=U E l )+U E t)=0.6%+0.2%=0.8% U(v 0)= v 0×E(v 0)=2.823×10-3×0.8%=0.02×10-3(ms -1) v 0的结果表示:v 0=(2.82±0.02) ×10-3(ms -1) =2.82×10-3×(1±0.8%) (ms -1) v = v 0·(1+2.4r /R)·(1+3.3r /H)
=2.823×10-3×(1+2.4×0.5010÷25.25) ×(1+3.3×0.5010÷315.0) =2.823×10-3×1.048×1.005=2.973×10-3(ms -1)
令(1+2.4r /R)的相对不确定度为U Ew1= U Er + U ER =0.14% (1+3.3r /H)的相对不确定度为U Ew2= U Er + U EH =0.25% ∴ v 的相对不确定度为U E v = U Ew v 0+ U Ew1+ U Ew2 =0.8%+0.14%+0.25%=1%
)s Pa (282797.18.910
973.2105010.06]3970.0)105010.0(4[1018667.4g
rv
6)3/r 4m (73
33
363⋅=⨯⨯⨯⨯⨯÷⨯⨯⨯-⨯=⋅-=----πππρπηη计算
关于修正值雷诺数的说明:
由于小球半径<<玻璃筒半径,可认为小球是在均匀无限大的液体中运动,且小球质量很轻,下落时几乎不形成涡流,所以,该修正值可以忽略不计。

如要修正则: 雷诺数: Re=2rv0ρ/η=0.002139324
η0=η(1+3Rc/16-19Re2/1080)-1= 1.282282347 (pa ·S)
η的误差的计算:用g rv
6)
3/r 4m (3⋅-=
πρπη式计算误差 把M=m -4πr 3ρ/3看成一个直接测量量 令m ′=4πr 3ρ/3=0.5109×10-9(K g)
m ′的相对不确定度为U Em ′=3U Er + U E ρ=3×0.1%+0.05%=0.35% m ′的标准差为
U m ′= m ′×U Em ′= 0.5109×10-9×0.35%=1.8×10-9(K g) M= m -m ′=(4.18667×10-6-0.5109×10-9) =43.676×10-6(K g) M 的标准差
U(M)=U(m)+U(m ′)=(0.03+ 0.000004)×10-6(K g)
=0.03×10-6(K g)
M 的相对不确定度为U EM =U(M) /M=0.8%
η的相对不确定度为U E η=U EM +U Er +U E v =0.8%+0.1%+1%=1.9% η的标准差为U(η)=η×U E η=1.461×2%=0.024(Pa ·s)
结果表示:η=(1.28±0.03)(Pa ·s)=1.28×(1±1.9%)(Pa ·s) 实验感想:写出自己实验时所获得的启示或掌握的知识。

注意:写实验报告必须用专用的A4实验报告纸,不能用其他形式的作业本信纸方格纸等,并且一定要写上班别、学号、组别、实验题目、实验日期等内容。

并且要与预习报告装订在一起交。

相关文档
最新文档