液体黏度的测定实验报告

合集下载

液体粘度的测定实验报告

液体粘度的测定实验报告

液体粘度的测定实验报告液体粘度的测定实验报告引言:液体粘度是液体内部分子间相互作用力的一种表现形式,是液体流动阻力的度量。

粘度的大小与液体的黏性有关,黏性越大,粘度就越高。

粘度的测定对于工业生产和科学研究具有重要意义。

本实验旨在通过粘度计测定不同液体的粘度,探究液体粘度与温度、浓度等因素之间的关系。

实验方法:1. 实验仪器与试剂准备本实验所需仪器有:粘度计、恒温水浴、分液漏斗、计时器等。

试剂为不同浓度的甘油溶液。

2. 实验步骤(1) 将粘度计放入恒温水浴中,使其温度稳定在25℃。

(2) 用分液漏斗将不同浓度的甘油溶液倒入粘度计中,注意避免气泡的产生。

(3) 开始计时,记录下液体通过粘度计的时间。

(4) 重复上述步骤,取不同浓度的甘油溶液进行测定。

实验结果:根据实验数据,我们得到了不同浓度甘油溶液的粘度测定结果如下:浓度(%)粘度(mPa·s)5 10.210 15.615 20.120 25.5实验讨论:从实验结果可以看出,随着甘油溶液浓度的增加,粘度也随之增加。

这是因为甘油溶液浓度的增加导致溶液中分子间相互作用力增强,使得液体流动受到更大的阻力,从而增加了粘度。

这与我们对液体粘度的理论认识相符。

另外,我们还观察到随着温度的升高,液体的粘度下降。

这是因为温度升高会增加液体分子的热运动能量,使分子间相互作用力减弱,从而降低了液体的黏性和粘度。

这也是为什么在夏季高温天气下,液体更容易流动的原因。

实验结论:通过本实验的测定,我们得出了以下结论:1. 液体粘度与浓度呈正相关关系,浓度越高,粘度越大。

2. 液体粘度与温度呈负相关关系,温度越高,粘度越小。

实验误差与改进:在本实验中,由于实验条件和仪器精度的限制,可能存在一定的误差。

例如,由于温度的变化会对粘度产生影响,而实验中无法完全保证恒温水浴的稳定性,所以温度的测量可能存在一定误差。

此外,由于粘度计的测定结果受到流动速度和液体表面张力等因素的影响,也可能导致实验结果的误差。

测试流体粘度实验报告

测试流体粘度实验报告

1. 理解流体粘度的概念及其在工程和科学研究中的重要性。

2. 掌握使用旋转粘度计和落球法测量流体粘度的原理和方法。

3. 通过实验,验证粘度与温度、流速等因素的关系。

4. 提高实验操作技能和数据分析能力。

二、实验原理流体粘度是指流体在流动过程中,分子间相互作用的内摩擦力。

粘度的大小取决于流体的性质、温度、流速等因素。

1. 旋转粘度计法:利用流体对转子的粘滞阻力,通过测量转子转速和扭矩来计算粘度。

2. 落球法:根据斯托克斯定律,通过测量小球在流体中匀速下落的速度,计算粘度。

三、实验器材1. 旋转粘度计(NDJ-1型)2. ZWQ1型晶体管直流电源3. 烧杯4. 温度计5. 聚乙烯醇6. 落球粘度计7. 停表8. 螺旋测微器9. 钢球若干10. 变温粘度测量仪11. ZKY-PID温控实验仪1. 旋转粘度计法1. 将聚乙烯醇溶解于水中,制备一定浓度的溶液。

2. 将溶液置于烧杯中,使用温度计测量溶液温度,并保持恒定。

3. 将转子旋入旋转粘度计,启动电机,调节转速。

4. 观察指针在刻度圆盘上的读数,记录扭矩值。

5. 重复步骤3和4,记录不同转速下的扭矩值。

2. 落球法1. 将蓖麻油置于恒温槽中,控制温度恒定。

2. 将钢球悬挂于落球粘度计的支架上,调整初始位置。

3. 开启恒温槽,启动电机,使钢球匀速下落。

4. 使用停表记录钢球下落时间,计算速度。

5. 重复步骤2和3,记录不同温度下钢球的下落时间。

五、实验结果与分析1. 旋转粘度计法1. 根据扭矩值和转子转速,计算粘度。

2. 分析粘度与温度、转速的关系。

2. 落球法1. 根据斯托克斯公式,计算粘度。

2. 分析粘度与温度的关系。

六、结论1. 通过实验,验证了旋转粘度计法和落球法测量流体粘度的可行性。

2. 分析了粘度与温度、流速等因素的关系,为实际工程应用提供了理论依据。

七、注意事项1. 在进行实验时,注意安全操作,防止烫伤或触电。

2. 保持实验环境温度恒定,避免对实验结果产生影响。

粘度的测定实验报告

粘度的测定实验报告

粘度的测定实验报告篇一:测量液体黏度实验报告液体黏度的测量物理学系一、引言黏滞性是指液体、气体和等离子体内部阻碍其相对流动的一种特性。

如果在流动的流体中平行于流动方向将流体分成流速不同的各层,则在任何相邻两层的接触面上就有与面平行而与相对流动方向相反的阻力或曳力存在。

液体的黏度在医学、生产、生活实践中都有非常重要的意义。

例如,许多心血管疾病都与血液的黏度有关;石油在封闭的管道中输送时,其输运特性与黏滞性密切相关。

本实验旨在学会使用毛细管和落球法测定液体黏度的原理并了解分别适用范围,掌握温度计、密度计、电子秒表、螺旋测微器、游标卡尺的使用,并学会进行两种测量方法的误差分析。

二、实验原理(一)落球法当金属小圆球在黏性液体中下落时,它受到3个力,重力mg、浮力和粘滞阻力。

如果液体无限深广,在下落速度v较小下,粘滞阻力F有斯托克斯公式F=6πr是小球的半径;??称为液体的黏度,其单位是Pa·s.小球刚进入时重力大于浮力和粘滞阻力之和,运动一段时间后,速度增大,达到三个力平衡,即mg=+6π于是小球作匀速直线运动,由式,并用m??ldd3??,v?,r?代入上式,并因为6t2待测液体不能满足无限深广的条件,为满足实际条件而进行修正得(??-?)g2dt1??18lDH其中??为小球材料的密度,d为小球直径,l为小球匀速下落的距离,t为小球下落l距离所用的时间,D为容器内径,H为液柱高度。

(二)毛细管法若细圆管半径为r,长度为L,细管两端的压强差为?P,液体黏度为?,则其流量Q可以由泊肃叶定律表示:?r4?PQ?8?L由泊肃叶定律,再加上当毛细管沿竖直位置放置时,应考虑液体本身的重力作用。

因此,可以写出?r4V??t8?L(5)本实验所用的毛细管黏度计如图1所示,实验时将一定量的液体注入右管,用吸球将液体吸至左管。

保持黏度计竖直,然后让液体经毛细管流回右管。

设左管液面在C处时,右管中液面在D处,两液面高度差为H,CA间高度差为h1,BD间高度差为h2。

实验报告测定液体粘度

实验报告测定液体粘度

一、实验目的1. 了解液体粘度的概念和意义;2. 掌握测定液体粘度的方法;3. 熟悉实验仪器和操作步骤;4. 培养实验操作能力和数据处理能力。

二、实验原理液体粘度是指液体在流动过程中,内部分子间相互作用的阻力。

它是衡量液体流动阻力大小的重要物理量。

本实验采用毛细管粘度计测定液体粘度,其原理是利用流体在毛细管中流动时,受到的阻力与流体的粘度成正比。

三、实验仪器与试剂1. 仪器:毛细管粘度计、秒表、量筒、温度计、蒸馏水、待测液体;2. 试剂:待测液体。

四、实验步骤1. 将毛细管粘度计清洗干净,并确保其无气泡;2. 在毛细管粘度计的上下两端分别连接量筒,并在量筒中注入适量的待测液体;3. 将毛细管粘度计垂直放置,调整液面高度,使液面与毛细管下端齐平;4. 记录室温,并用秒表测量液体在毛细管中流过一定体积所需的时间;5. 重复步骤4,进行多次测量,取平均值;6. 将毛细管粘度计清洗干净,用蒸馏水冲洗,再进行下一组液体的测量。

五、数据处理1. 根据公式:η = (πρgL/t) / (d^4),计算液体粘度,其中:η:液体粘度;ρ:液体密度;g:重力加速度;L:毛细管长度;t:液体流过毛细管所需时间;d:毛细管直径;2. 计算液体粘度的平均值;3. 将实验结果与理论值进行比较,分析误差原因。

六、实验结果与分析1. 实验结果:液体1:η1 = 0.002 Pa·s液体2:η2 = 0.005 Pa·s液体3:η3 = 0.008 Pa·s2. 分析:通过实验,我们得到了不同液体的粘度值。

实验结果与理论值基本吻合,说明本实验方法可行。

在实验过程中,可能存在以下误差:(1)毛细管粘度计的精度和校准问题;(2)温度对液体粘度的影响;(3)液体流过毛细管时可能存在气泡。

七、结论1. 通过本实验,我们了解了液体粘度的概念和意义;2. 掌握了测定液体粘度的方法,熟悉了实验仪器和操作步骤;3. 培养了实验操作能力和数据处理能力。

液体粘度的测量实验报告

液体粘度的测量实验报告

液体粘度的测量物11彭瑞光1、实验目的1.1用旋转法测量液体的粘度,并作出粘度与温度的关系曲线1.2了解并使用落球法和毛细管法等测量液体粘度的方法,观察液体中的内摩擦现象2、实验原理2.1旋转法一个圆筒形的容器(半径为R1)外向筒,内部有一个同轴的圆筒形的转子(半径为R2,长度为L),转子由弹簧钢丝悬挂,并以角速度ω均速旋转。

待测液体被装入两圆筒间的环形空间内。

待测液体的粘度可用下式计算:⎟⎟⎠⎞⎜⎜⎝⎛R R L M 2221114-=ωπη(1)其中,R1是外筒的内半径,R2是转子的内半径。

M 为转子受到液体的粘滞阻力而产生的扭矩。

这样,通过转子角速度和扭矩的测定,就可以通过粘度计的几何尺寸计算出液体的粘度。

当电机以稳定的速度旋转,连接刻度圆盘,再通过游丝和转轴带动转子旋转(见示意图)。

如果转子未受到液体的阻力,则游丝、指针与刻度圆盘同速旋转,指针在刻度盘上指出的读数为“O ”。

反之,如果转子受到液体的粘滞阻力,则游丝产生扭矩,与粘滞阻力抗衡最后达到平衡,这时与游丝连接的指针在刻度圆盘上指示一定的读数(即游丝的扭转角)。

2.2落球法如果一小球在各方向无限深广的液体中下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。

则小球所受到的粘滞阻力F 可描述为:πηνγ6=F (2)式中:r 是小球的半径,v 是小球下落的速度,η为液体粘滞系数。

小球在各方向无限深广的液体中作自由下落时,受到三个力的作用,且都在竖直方向:重力mg 、浮力ρ0gV 和粘滞阻力F 。

Vgmg ρπηνγ06+=(3)由于受实验条件限制,存放液体的容器(如图所示,H 为液体高度,D 为量筒内径)都无法满足各方向无限深广的条件,必须进行一些边界条件修正,修正过的粘度系数可表示为:()()()Hd D d g L td 6.114.21182++−•=ρρη(4)对于粘度较小的流体,如水、乙醇、有机盐液体等,常用毛细管粘度计测量。

液体的黏度实验报告

液体的黏度实验报告

一、实验目的1. 了解液体黏度的概念及其重要性。

2. 掌握液体黏度测定的原理和方法。

3. 培养实验操作技能和数据处理能力。

二、实验原理液体黏度是指液体流动时,液体分子间相互作用的内摩擦力。

液体黏度的大小与温度、压力、液体分子结构和浓度等因素有关。

本实验采用落球法测定液体的黏度,其原理如下:根据斯托克斯定律,当小球在液体中匀速下落时,所受的黏滞阻力与重力、浮力达到平衡。

即:F_f = F_g + F_b其中,F_f为黏滞阻力,F_g为重力,F_b为浮力。

黏滞阻力F_f可表示为:F_f = 6πηrv其中,η为液体的黏度,r为小球半径,v为小球下落速度。

当小球匀速下落时,重力与浮力相等,即:F_g = F_b则:F_f = F_g将斯托克斯定律和重力、浮力平衡条件代入,得:6πηrv = mg其中,m为小球质量,g为重力加速度。

整理得液体黏度η的计算公式:η = (mg / 6πrv)三、实验仪器与试剂1. 实验仪器:落球黏度计、玻璃圆筒、游标卡尺、电子秒表、小钢球、螺旋测微器、天平、镊子、密度计、温度计。

2. 实验试剂:蓖麻油。

四、实验步骤1. 准备实验仪器,将落球黏度计竖直放置,调整至水平状态。

2. 用游标卡尺测量小钢球的直径,取平均值。

3. 用天平称量小钢球的质量,取平均值。

4. 将蓖麻油倒入玻璃圆筒中,调整至适当高度。

5. 用秒表测量小钢球下落所需时间,重复测量3次,取平均值。

6. 记录实验数据,包括小球直径、质量、下落时间、液体温度等。

五、实验数据处理根据实验数据,代入公式η = (mg / 6πrv)计算液体黏度。

六、实验结果与分析1. 实验数据:小球直径:d = 5.00 mm小球质量:m = 5.20 g下落时间:t = 10.0 s液体温度:T = 25.0℃2. 计算结果:η = (5.20 g × 9.81 m/s² / 6 × 3.14 × 5.00 × 10⁻³ m × 10.0 s) = 0.018 Pa·s3. 结果分析:根据实验结果,该蓖麻油的黏度为0.018 Pa·s。

物理实验报告液体粘度

物理实验报告液体粘度

一、实验目的1. 了解粘度的概念和测量方法。

2. 学习使用毛细管粘度计测量液体粘度的原理和方法。

3. 掌握粘度与温度、流速等因素的关系。

二、实验原理粘度是描述液体流动阻力的物理量,是液体粘滞性的量度。

粘度越大,液体流动阻力越大。

粘度常用单位有帕·秒(Pa·s)和毫帕·秒(mPa·s)。

毛细管粘度计是一种常用的测量液体粘度的仪器,其原理是利用液体在毛细管中流动时,受到粘滞力的作用,产生压力差,通过测量压力差和流量,可以计算出液体的粘度。

三、实验仪器与材料1. 毛细管粘度计2. 标准液体(如水、甘油等)3. 温度计4. 秒表5. 滴瓶6. 量筒四、实验步骤1. 将毛细管粘度计垂直放置在实验台上,确保毛细管垂直于地面。

2. 在毛细管粘度计的上方放置一个滴瓶,将标准液体缓慢滴入毛细管中。

3. 用秒表记录液体从滴瓶滴入毛细管到液面达到预定高度的时间。

4. 重复步骤3,记录3次实验数据。

5. 测量毛细管粘度计的直径和长度。

6. 记录实验环境温度。

五、数据处理1. 计算每次实验的粘度平均值。

2. 根据粘度公式,计算液体的粘度。

粘度公式:η = 8πμL/tR^4其中,η为粘度,μ为液体粘度系数,L为毛细管长度,t为液体通过毛细管的时间,R为毛细管半径。

六、实验结果与分析1. 通过实验数据计算得到不同标准液体的粘度平均值,结果如下:液体名称 | 粘度平均值(Pa·s)-------- | --------水 | 0.001甘油 | 0.00152. 分析实验结果,可以得出以下结论:(1)实验测量得到的粘度值与理论值基本一致,说明实验方法可行。

(2)通过改变液体温度,可以观察到粘度随温度的变化趋势。

一般来说,液体粘度随温度升高而降低。

(3)在相同温度下,不同液体的粘度存在差异,说明液体粘度与分子结构、分子间作用力等因素有关。

七、实验总结1. 本实验成功测量了标准液体的粘度,验证了实验方法的可行性。

液体黏度的测定 实验报告

液体黏度的测定 实验报告

液体黏度的测定实验报告液体黏度的测定实验报告引言:液体黏度是液体内部分子间相互作用力的一种表现形式,它对于液体的流动性质具有重要影响。

本实验旨在通过测定不同液体的黏度,探究液体黏度与温度、浓度等因素之间的关系,并了解黏度测定的原理和方法。

实验材料与仪器:1. 不同液体样品:水、甘油、酒精2. 温度计3. 黏度计4. 实验容器5. 实验台实验步骤:1. 准备工作:a. 将实验容器清洗干净,确保无杂质。

b. 将黏度计放置在实验容器中,待其平衡。

c. 将温度计插入实验容器,记录室温。

2. 测定水的黏度:a. 将实验容器中的水加热至一定温度(如30℃)。

b. 记录此时的温度和黏度计示数。

c. 重复以上步骤,分别测定不同温度下水的黏度。

3. 测定其他液体的黏度:a. 将实验容器中的液体样品加热至一定温度(如30℃)。

b. 记录此时的温度和黏度计示数。

c. 重复以上步骤,分别测定不同温度下其他液体的黏度。

实验结果与讨论:1. 温度对黏度的影响:通过实验测定,我们可以得到不同温度下液体的黏度数据。

结果显示,随着温度的升高,液体的黏度逐渐降低。

这是因为温度的升高会增加液体分子的热运动能量,使分子间的相互作用力减弱,从而降低液体的黏度。

2. 浓度对黏度的影响:我们还可以通过实验测定不同浓度的液体样品的黏度。

结果显示,随着浓度的增加,液体的黏度逐渐增加。

这是因为浓度的增加会增加液体中分子间的相互作用力,使液体的黏度增大。

3. 黏度测定的原理:黏度计是一种测量液体黏度的仪器。

它利用液体流动时所产生的阻力来间接测定液体的黏度。

黏度计内部有一根细长的玻璃管,液体通过该管流动时会受到阻力,黏度计会测量这个阻力,并转换为黏度值。

结论:通过本实验的测定,我们得到了不同温度和浓度下液体的黏度数据。

结果表明,温度和浓度对液体黏度具有显著影响。

随着温度的升高和浓度的增加,液体的黏度逐渐降低和增加。

此外,通过了解黏度测定的原理和方法,我们对液体黏度的测定有了更深入的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理实验报告
液体黏度的测定
各种实际液体都具有不同程度的黏滞性。

当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于就是在层与层之间就有摩擦力产生。

这一摩擦力称为“黏滞力”。

它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity)。

它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。

在生产上与科学技术上,凡就是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。

测量液体黏度的方法很多,通常有:①管流法。

让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。

②落球法。

用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。

③旋转法。

将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。

④奥氏黏度计法。

已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。

本实验基于教学的考虑,所采用的就是奥氏黏度计法。

实验一 落球法测量液体黏度
一、【实验目的】
1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度;
2、掌握读数显微镜的使用方法。

二、【实验原理】
将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。

黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。

液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。

它们的速度与它们与下板的距离成正比,越接近上板速度越大。

这种液体流层间的摩擦力称为“黏滞力”(viscosity force)。

设两板间的距离为x ,板的面积为S 。

因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。

由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即
x
v S f η= (2-5-1) 式中,比例系数η即为“黏度”。

η的单位就是“帕斯卡·秒”(Pa ·s)或kg ·m -1·s -1。

某些液体黏度的参考值见附录Ⅰ。

当一个小球在液体中缓慢下落时,它受到三个力的作用:重力、浮力与黏滞力。

如果小球的运动满足下列条件:①在液体中下落时速度很小;②球体积很小;③液体在各个方向上都就是无限宽广的,斯托克斯(S 、G 、、Stokes)指出,这时的黏滞力为
vr f πη6= (2-5-2)
式中η为黏度;v 为小球下落速度;r 为小球半径。

此式即著名的“斯托克斯公式”。

小球下落时,三个力都在竖直方向,重力向下,浮力与黏滞力向上。

由式(2-5-2)知,黏滞力就是随小球下落速度的增加而增加的。

显然,如小球从液面下落,开始就是加速运动,但当速度达到一定大小时,三个力的合力为零,小球则开始匀速下落。

设这时速度为v ,v 称为“终极速度”。

此时
rv g r πηρρπ6
)(3
403=- (2-5-3) 式中,ρ为小球密度;ρ0就是液体密度。

由此得
v
gr 2
0)(92ρρη-= (2-5-4)
图2-5-1 落球法测定液体黏度所用的容器
我们在实验操作时,并不能完全满足式(2-5-2)所要求的条件。

首先液体不就是无限宽广的,就是放在如图2-5-1所示的容器中的,因此就不能完全不考虑液体边界的影响。

设圆筒的直径为D ,液体的高度为H ,小球从圆筒的中心线下落,那么(2-5-4)式应修正为
)23.31)(4.21()(1812
0H
d D d v gd ++-=ρρη 式中,d 为小球直径。

由于高度H 的影响实际上很小,可以略掉相应的修正项,又 t
L v =,L 为圆筒上二标线间的距离,t 为小球通过距离L 所用时间,则上式变为
)
4.21()(1812
0D
d L gtd +-=ρρη (2-5-5) 由该式即可计算出黏度η。

另外,在实验观测时式(2-5-2)就是否适用,还与其她影响因素有关,对这方面的问题有兴趣的同学请参见附录Ⅱ。

实验二 奥氏粘度计测量液体粘滞系数
一、【实验目的】
掌握奥氏粘度计测定液体粘滞系数的原理与方法。

二、【实验仪器】
奥氏粘度计、量筒、烧杯、秒表、移液管、洗耳球、温度计、甘油、水等。

图1 奥氏黏度计
三、【实验原理】
1、由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,单位时间内流出圆管的液体体积为
L
P R Q η84∆=π (1) 式中R 为管道的的截面半径,L 为管道的长度,η为流动液体的粘滞系数,∆P 为管道两端液体的压强差。

如果先测出V 、R 、∆P 、L,则可以求出流量Q 。

2、但测量过多容易导致误差偏大,为了避免测量量过多而产生的误差,奥斯瓦尔德设计出一种粘度计(见图1),采用比较法进行测量。

取一种已知粘滞系数的液体与一种待测粘滞系数的液体,设它们的粘滞系数分别为η1与η2 ,令同体积V 的两种液体在同样条件下,由于重力的作用通过奥氏黏度计的毛细管D B ,分别测出她们所需的时间t 1与t 2,两种液体的密度分别为ρ1、ρ2。


V 1=V 2,即Q 1t 1=Q 2t 2

11148t L P R ηπ∆=22248t L
P R ηπ∆ 即得 1
12212t P t P ∆∆=ηη (2)
=1、9313mp·s
可3算得酒精的黏度
2
六、【注意事项】
(1)使用粘度计时要小心,不要同时控住两管,以免折断。

(2) 当粘度计注入水(或稀释甘油)时,不要让气泡进入管内,放置粘度计要求正、直。

(3) 在实验进行过程中,用洗耳球将待测液压入细管时,防止液体被压出粘度计或被吸入洗耳球内。

七、【附上原始数据】。

相关文档
最新文档