转子碰摩故障的声发射与振动特征分析

转子碰摩故障的声发射与振动特征分析
转子碰摩故障的声发射与振动特征分析

碰摩转子系统各种图

一、激励频率W=900Hz 但静子刚度不同时: 1、kc=7.5e6N/m: 2、kc=2.6e6N/m 时: 位移 x 位移 y kc=7.5e6N/m 的轴心轨迹图 x d x /d t kc=7.5e6N/m 的Poincare 截面图 t x kc=7.5e6N/m 的时域图 位移 x 位移 y kc=2.6e6N/m 的轴心轨迹 图 x d x /d t kc=2.6e6N/m 的Poincare 截面图 t x kc=2.6e6N/m 的时域图

3、kc=2.9e6N/m 时: 4、kc=3.1e6N/m 时: 位移 x 位移 y kc=2.9e6N/m 的轴心轨迹图 x d x /d t kc=2.9e6N/m 的Poincare 截面图 t x kc=2.9e6N/m 的时域图 位移 x 位移 y kc=3.1e6N/m 的轴心轨迹图 x d x /d t kc=3.1e6N/m 的Poincare 截面图 t x kc=3.1e6N/m 的时域图

二、静子刚度kc=3.5e6N/m 但激励频率不同时: 1、w=1000rad/s 时: 2、w=1800rad/s 时: 位移 x 位移 y w=1000rad/s 的轴心轨迹图 x d x /d t w=1000rad/s 的Poincare 截面图 t x w=1000rad/s 的时域图 位移 x 位移 y w=1800rad/s 的轴心轨迹图 x d x /d t w=1800rad/s 的Poincare 截面图 t x w=1800rad/s 的时域图

转子不平衡的故障机理与诊断

转子不平衡的故障机理与诊断(1) 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。据统计,旋转机械约有一半以上的故障与转子不平衡有关。因此,对不平衡故障的研究与诊断也最有实际意义。 一、不平衡的种类 造成转子不平衡的具体原因很多,按发生不平衡的过程可分为原始不平衡、渐发性不平衡和突发性不平衡等几种情况。 原始不平衡是由于转子制造误差、装配误差以及材质不均匀等原因造成的,如出厂时动平衡没有达到平衡精度要求,在投用之初,便会产生较大的振动。 渐发性不平衡是由于转子上不均匀结垢,介质中粉尘的不均匀沉积,介质中颗粒对叶片及叶轮的不均匀磨损以及工作介质对转子的磨蚀等因素造成的。其表现为振值随运行时间的延长而逐渐增大。 突发性不平衡是由于转子上零部件脱落或叶轮流道有异物附着、卡塞造成,机组振值突然显著增大后稳定在一定水平上。 不平衡按其机理又可分为静失衡、力偶失衡、准静失衡、动失衡等四类。 二、不平衡故障机理 设转子的质量为M,偏心质量为m,偏心距为e,如果转子的质心到两轴承连心线的垂直距离不为零,具有挠度为a,如图1-1所示。

图1-1 转子力学模型 由于有偏心质量m和偏心距e的存在,当转子转动时将产生离心力、离心力矩或两兼而有之。离心力的大小与偏心质量m、偏心距e及旋转角速度ω有关,即F=meω2。众所周知,交变的力(方向、大小均周期性变化)会引起振动,这就是不平衡引起振动的原因。转子转动一周,离心力方向改变一次,因此不平衡振动的频率与转速相一致,振动的幅频特性及相频特性。 三、不平衡故障的特征 实际工程中,由于轴的各个方向上刚度有差别,特别是由于支承刚度各向不同,因而转子对平衡质量的响应在x、y方向不仅振幅不同,而且相位差也不是90°,因此转子的轴心轨迹不是圆而是椭圆,如图1-2所示。 由上述分析知,转子不平衡故障的主要振动特征如下。 (1) 振动的时域波形近似为正弦波(图1-2)。 (2)频谱图中,谐波能量集中于基频。并且会出现较小的高次谐波,使整个 频谱呈所谓的“枞树形”,如图1-3所示。

转子故障振动机理分析

转子故障振动机理分析 转子故障引起振动有许多形式, 现对其中的几个典型振动故障产生的原因及其对应的振动机理进行如下分析: 1.转子不平衡故障及振动机理分析 转子不平衡包括转子系统的质量偏心及转子部件出现缺陷;转子质量偏心是由于转子的制造误差、装配误差、材料不均匀等原因造成的,称为初始不平衡。转子部件缺损是指转子在运行中由于腐蚀、磨损、介质结垢以及转子受疲劳力的作用,使转子的零部件(如叶轮、叶片等)局部损坏、脱落、碎片飞出等,造成的新的转子不平衡。转子质量偏心及转子部件缺损是两种不同的故障,但其不平衡振动机理却有共同之处。 振动机理分析:旋转过程中,转子产生不平衡离心力与力矩通过支承点作用在轴及轴承上,引起振动.设转子质量为M(包括偏心质量m),偏心距e,旋转角频率w=2 f(v f为 v 转动频率),在t瞬时位移在直角坐标系分量x,y,如图6-3所示,则可得转子中心运动微分方程为 图6-3 转子力学模型

则有 以上几式中的K可以近似简化为机器的安装总刚度,M为机器的总质量,为K和M构成的振动体的无阻尼固有频率。为无量纲阻尼因子,它的取值不同,会影响到系统 的响应,是激励频率与固有频率之比,也是无量纲因子。根据上式,按不同的频率比和阻尼系数的变化,作出幅频响应图及相频响应图,如下图所示: 图6-4 幅频响应图及相频响应图 转子不平衡所引起振动有下列特点:振动方向为径向,振动的特征频率等于转频;转子的轴承均发生较大的振动;在转子通过临界转速时振幅有特别显著的增大;在高速下随转轴转速上升振动很快增大;振动频率与转速相等且为正弦波;在没有带负荷时振动就达到最大值. 2.转子不对中故障振动机理分析 机组各转子之间由联轴器联接构成轴系,传递运动和转动。由于机器的安装误差、承载后的变形以及机器基础的沉降不均等,造成机器工作状态时各转子轴线之间产生轴线平

转动设备常见振动故障频谱特征案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

故障诊断

第一章绪论 1.1 研究背景及意义 旋转机械是以转子、齿轮、轴承等回转部件为主体的设备,在企业生产中处于核心 地位。当它们发生故障时,会带来一系列的经济损失。随着旋转机械运转速度的日益提高,机械设备集成化发展,系统的非线性将更加突出,可能直接(或间接)导致转子系 统发生不平衡、不对中、碰摩、松动等故障。其中,转静碰摩是其非常普遍的一种故障[1] ,其发生频率随转定子间的密封间隙的减少而增加。与其它故障相比,碰摩故障更容 易引起整机振动过大,引起耦合效应,导致系统结构破坏,生产效率低下,缩短其使用 寿命等一系列后果。因此,探究转子碰摩故障机理,研究其故障信号特征的提取,实现 智能诊断,获得可靠有效的诊断结果具有十分重要的现实指导意义。 碰摩故障是一种典型的多发性事件,是由其他故障或是由耦合故障所带来的“二次 效应”[2] 。碰摩故障一般伴随有不平衡、不对中故障,两种或两种以上故障相互影响形成耦合。尽管目前不少研究人员针对不平衡-碰摩、不对中-碰摩耦合故障进行了研究, 但由于耦合故障的振动响应呈现非线性特点,对信号的分解存在一定难度,不能很好地 提取出故障的特征。 含有碰摩故障的耦合振动信号具有冲击、不平稳的特性,这给耦合故障的检测和特 征提取带来一定难度。常用的信号处理方法,对单一故障的特征提取,具有很好地分析 效果,但在研究耦合故障时,难以得到有用的特征信息。因此,以碰摩和碰摩耦合故障 为研究对象,研究出能够处理非均布信号的方法,实现故障特征提取和诊断,具有十分 重要的现实意义。 1.2 国内外研究现状 1.2.1 转子碰摩故障机理的国内外研究现状 目前,人们针对碰摩故障的机理从非线性动力学模型、动力学响应等方面进行了研 究,发表了许多有价值的的论文。Agnieszka Muszynska [3] 就在其《Rotor Dynamics》— 书中,建立了边界约束条件较为完备的转子碰摩力模型,引入弹性恢复力来表示碰摩产 生的碰撞,详细描述了碰摩的分类情况,并分析了局部碰摩和整周碰摩的故障特征,但 没有考虑定子的弹性。Muszynska [4] 在建立的模型中引入了弹性恢复系数,为了降低动 力学分析的难度,假设定子在碰摩的过程中不发生弹性变形,计入碰摩过程中的能量损失,由此该模型只能用于研究单点和局部碰摩的情况。SawiCki [5] 建立的动力学模型中,郑州轻工业学院硕士学位论文 2 将定子简化为具有一定质量弹性的基础支承,假设转定子碰撞过程收到了弹性力和切向 摩擦力,计算弹性力的的摩擦系数与转定子之间的相对转速有关。沈小要[6] 建立了具有初始弯曲的不平衡Jeffcott转子碰摩力模型,在非线性油膜力的作用下,判断是否发生了 碰摩,并动态检测出碰摩开始时的转速。 在转子碰摩的动力学响应分析方面,Ehrich [7] 研究了局部碰摩的动力学响应,在过 渡区域中的超谐波阶段里,出现了混沌现象。胡鸾庆[8] 建立了偏心Jeffcott碰摩模型,考虑局部碰摩力变化,在不同平衡力、阻尼、转速的情况下,仿真分析局部碰摩的拟周期 结果和混沌、分叉现象,并提出了检测早期微弱碰摩信号的方法:Duffing方程外轨解的 最大轨道所对应的分叉阈值法。吴敬东[9] 研究了理想转子的单点碰摩情况,绘制Poincare 截面图,研究碰摩产生的周期分岔、拟周期和混沌运动形式。褚福磊和张正松[10] 分析了碰摩转子系统在油膜力的作用下,产生的倍周期分叉和拟周期运动,并将转速和不平衡 量作为控制参数研究运动的路径和形式。 1.2.2 转子碰摩耦合故障机理的国内外研究现状

透平膨胀机转子系统振动故障分析与处理

收稿日期:2011- 08-19作者简介:白晖宇,男,上海交通大学机械系统与振动国家重点实验室博士。 透平膨胀机转子系统振动故障分析与处理 白晖宇1 ,朱 瑞 2,3 ,孟 光4,李鸿光 5 (1、2、4、5.上海交通大学机械系统与振动国家重点实验室,上海市闵行区东川路800号200240; 3.上海电力学院能源与环境工程学院,上海市杨浦区平凉路2103号200090) 摘要:透平膨胀机是低温法空分设备及气体分离和液化装置中的重要部机之一,在实际生产中,膨胀机处于高速运转中,最常见也是最易发生的故障大多是由转子—轴承系统振动所引起。分析叶轮轴向窜动、转子不平衡振动、轴承自激振动、喘振和液击现象等振动故障的原因,提出改进措施,以保证空分设备稳定和安全运行。 关键词:空分设备;透平膨胀机;转子;振动中图分类号:TB653文献标识码:A Analysis and treatment of vibration trouble of turbine expander rotor system Bai Huiyu 1,Zhu Rui 2,3 ,Meng Guang 4,Li Hongguang 5 (1,2,4,5.Shanghai Jiaotong University Mechanical System and Vibration Key State Lab ,800#Dongchuan Road ,Minhang District ,Shanghai 200240,P.R.China ;3.Institute of Energy and Environment Engineering ,Shanghai University of Electric Power ,2103#Pingliang Road ,Yangpu District ,Shanghai 200090,P.R.China ) Abstract :The turbine expander is one of important devices of the low-temperature process air separation plant and the gas separation and liquefaction equipment.During actual production ,the expander runs at high speed ,and thus the most common and most liable trouble is usually resulted from vibration of rotor-bearing system.The causes for axial displacement of impeller ,unbalanced vibration of rotor ,self-excited vibration of bearing ,surge ,and liquid hammer are analyzed ,and for safe and steady run of air separation plant the improving measures are proposed. Keywords :Air separation plant ;Turbine expander ;Rotor ;Vibration 引言 透平膨胀机是低温法空分设备及气体分离和液 化装置的重要部机之一。膨胀机的变革、发展和进步必然会促使低温法空分设备、气体分离和液化装置等成套装置的变革、发展和进步。透平膨胀机利用工质流动时速度的变化来进行能量转化,因此也称为速度型膨胀机,有时也称为涡轮膨胀机。它具有高转速、低温、压差大等工作特点,优点是体积 小、重量轻、效率高、噪声小、节能省电、操作方 便、运转时间长、无油污染等,因而得到广泛应用。 [1-3] 增压透平膨胀机主要由膨胀机通流部分、增压 部分和机体三部分组成。膨胀机通流部分是获得低温的主要部件,包括蜗壳、喷嘴、膨胀轮和扩压器;增压部分是透平膨胀机功率的消耗元件;机体起着传递、支撑和隔热的作用。由膨胀轮、增压轮和主轴等旋转零件组成的部件称为转子。膨胀轮和

汽轮机转子振动分析与处理

汽轮机转子振动分析与处理 发表时间:2018-09-12T11:22:41.650Z 来源:《基层建设》2018年第21期作者:马玉清[导读] 摘要:在工业生产中,汽轮机作为重要的旋转设备,是必不可少的机械设备。 哈尔滨汽轮机厂有限责任公司黑龙江哈尔滨 150046 摘要:在工业生产中,汽轮机作为重要的旋转设备,是必不可少的机械设备。其中汽轮机转子是汽轮机的主要零部件,其安全性、可靠性、适用性以及可维修性特点受到人们的关注。在汽轮机转子运行过程中,发生的振动信号是判断汽轮机工作状态的重要指标,更是影响机械设备运行安全与操作人员人身安全的因素,因此对汽轮机转子运行故障分析及诊断的研究工作迫在眉睫。 关键词:汽轮机;转子;运行故障;分析与诊断汽轮机运行过程中,转子在高温工质中高速运转,不但要承受叶片、叶轮等带来的巨大离心力,同时受到蒸汽轴向推力、轴系振动力、扭转力矩等多重应力影响,在这样复杂的工况下,发生转子振动故障的概率相当高,因此加强汽轮机转子振动故障的分析及处理,对保障汽轮机安全稳定运转具有重要现实意义。 一、汽轮机转子运行故障类型 在汽轮机转子运行过程中,振动信号发生是转子发生故障的前提表现,对此应在汽轮机转子运行过程中,对其振动信号进行准确测量,为了更好地判断汽轮机转子运行故障类型,对其进行分类阐述。振动频率:基频振动、倍频振动、整分数基频振动、比例基频振动、超低基频振动以及超高基频振动;振幅方位:横向振动(水平振动和垂直振动)、轴向振动与扭转振动;振动原因:转子平衡度较差、轴系不对称和零件松动、摩擦(密封件摩擦、转子和定子之间产生的摩擦)、轴承损坏、轴承内部油膜涡动与油膜振动、动力和水力的影响、轴承刚度较差、电气等;振动部位:转子和轴系振动(轴颈、轴纹叶片)、轴承(油膜滑动和波动)、壳体振动与轴承座振动、基础振动(基座、工作台、支架)、其他结构振动(阀门、阀杆、管道等)。 二、出现故障的原因分析 1.设计制造因素 由于在汽轮机中,转子一直是处于高速运转的过程中,如果是在生产制造的过程中出现问题,就会使得转子在运行的过程中,其质心和几何中心没有重合在一起,并且由于转子在运行的过程中处于高速运转的过程中,这样就会产生一个离心力,离心力主要是通过旋转中心线的静止平面上进行投影,这是一个周期性的简谐外力,如果在这个时候进行强迫振动,这就会使得汽轮机转子的振动出现加剧现象。并且由于在运行的过程中,由于现代汽轮机的制造为了提高汽轮机工作的效率,因此汽轮机动静之间的间隙十分小,所以这就使得汽轮机在高温高速运行的过程中,很容易使得转子产生振动现象,并且由于汽缸在运行的过程中出现受热不均匀的现象,这样就会使得汽缸出现变形,加剧了转子振动,严重的时候就不断的产生循环,最终就导致故障的产生。 2.安装及检修因素 汽轮机转子通过联轴器相互连接起来,转子两头均有轴承提供支撑,共同构成转子轴系。若安装时两转轴中心未精确调整到同一直线上,则汽轮机运行时会因转子不对中而发生振动。转子之间如果通过刚性联轴器相连,在对轮结合面处会形成很大的张口,此时如果用连接螺栓将转子强行连到一起,会发生静止绕曲变形,在转子上生成附加连接约束力,导致转子振动。此外,滑销系统对汽轮机组膨胀具有重要的引导功能,若因各种因素导致滑销系统卡涩,就会影响机组的正常膨胀,严重时会使机组发生强烈振动,甚至出现无法启动的情况。 3.运行因素 (1)转子弯曲。汽轮机转子如果存在材质不均匀的情况,在高速运转受热后会发生弹性热弯曲,导致不可逆形变;汽轮机启动时,如果盘车或暖机不充分,上下缸温度差异大,转子横截面内温度场分布不均,也会因弹性热弯曲而出现不可逆形变。 (2)机组启动。汽轮机从启动到正常运转的这段时间内,各金属构件及管道导热均处于一个不稳定的状态,期间容易受到各种机械应力、热应力的作用而产生振动、形变以及复杂的热膨胀效应。此外,机组冷态启动与热态启动的操作步骤存在差异,若人为混淆可能导致机组强烈振动。例如,某厂一660MW汽轮机组在冷启动时,操作人员未待缸体充分膨胀便过早结束低速冲转,导致机组在通过临界转速时发生剧烈振动,最后突破阀值而发生跳机。 (3)润滑油温。油温与轴瓦间油膜的形成息息相关,而油膜对转子稳定性具有至关重要的影响。油温过高会导致润滑油粘度下降,不利于轴瓦内油膜的形成,进而引起转子系统干摩擦。温度过低会导致润滑油粘度超标,引起油压下降,进而引起转子振动的加剧。 三、解决故障的措施 1.提高安装精度 (1)轴系连接要尽量做到平直、同心。转子水平放置时,会由于自重作用而产生微弱的静挠曲,故转子安装完之后,应确保各转子轴线构成一平滑的曲线,否则会导致轴承本身负载的不一致,降低转子运行的平稳性。在实际安装过程中,应根据轴承的具体方位来确定曲线的实际方位,务必使整个转子呈一连续的光滑曲线。 (2)精确安装轴承。汽轮机组中使用了很多的可倾瓦轴承,这类轴承的特点是稳定性极强,并且可以有效地缓解油膜振动。在安装过程中,应确保轴承盖与轴瓦之间的紧力满足设计要求。 (3)提高轴承座安装精度。轴承座安装应当结合图纸要求及相关规范进行严格把关,根据实际需要,安装时可予以多次测量,求得加权平均值。同时应注意,轴承座几何中心应与轴颈承力中心保持重合。 (4)精确安装滑销系统。正常情况下,机组运行时会由于高温、高压作用而发生缸体膨胀,通过正确安装花销系统,合理调整系统的间隙,能够将缸体膨胀控制在一定范围之内,降低对机组造成的影响。 2.减少摩擦力的产生 汽轮机在运行的过程中,想要使得转子在运行的过程中减少摩擦力,因此这就需要我们要使用压力以及湿度符合相关要求的润滑油,并且在使用的过程中还需要降低润滑油的粘度。这主要是由于润滑油的粘度不断增加的话,那么就会使得油膜的承载力不断的增大,但是如果我们一直增加润滑油的粘度话,就会使得其均匀分布受到了破坏,这样反而就极大的增加了摩擦力。 3.对转子进行动平衡检查

汽轮机转子运行故障分析及诊断

汽轮机转子运行故障分析及诊断 发表时间:2017-05-12T09:03:43.900Z 来源:《防护工程》2017年第1期作者:李钢 [导读] 在目前工业生产中,汽轮机作为重要的旋转设备,是工业生产中必不可少的机械设备。 辽宁大唐国际阜新煤制天然气有限责任公司辽宁阜新 123000 摘要:在目前工业生产中,汽轮机作为重要的旋转设备,是工业生产中必不可少的机械设备。其中汽轮机转子是汽轮机的主要零部件,使得汽轮机转子安全性、可靠性、适用性以及可维修性特点受到人们的关注,促使关于汽轮机转子运行故障机理与诊断技术也在飞速发展。在汽轮机转子运行过程中,发生的振动信号是判断汽轮机工作状态的重要指标,更是影响机械设备运行安全与操作人员人身安全的因素,因此对汽轮机转子运行故障分析及诊断的研究工作迫在眉睫。 关键词:汽轮机转子;运行故障;诊断 1概述 汽轮机组的振动是机组运行必须要监测的一个非常重要的参数,因为当机组振动超过规定的范围时,将会引起设备的损坏,甚至造成严重后果:(1)使转动部件损坏。当机组振动过大时,会使叶片、围带、叶轮等各部件的应力增加,从而产生很大的交变应力,导致疲劳而损坏;(2)使机组动、静部分发生磨损;(3)使各链接部件松动;(4)直接造成运行事故。当机组振动过大,同时又发生在高压缸端侧时,有可能危及保安器误动作而发生停机事故。因此,机组运行中要严格检测其振动值。 近几年来,大庆油田宏伟热机组频繁出现振动大引起的停机事件,这就使得我们不得不引起对汽轮机组振动故障的重视。 2汽轮机转子运行故障类型 在汽轮机转子运行过程中,振动信号发生是转子发生故障的前提表现,对此应在汽轮机转子运行过程中,对其振动信号进行准确测量,为了更好地判断汽轮机转子运行故障类型,对其进行分类阐述。振动频率:基频振动、倍频振动、整分数基频振动、比例基频振动、超低基频振动以及超高基频振动;振幅方位:横向振动(水平振动和垂直振动)、轴向振动与扭转振动;振动原因:转子平衡度较差、轴系不对称和零件松动、摩擦(密封件摩擦、转子和定子之间产生的摩擦)、轴承损坏、轴承内部油膜涡动与油膜振动、动力和水力的影响、轴承刚度较差、电气等;振动部位:转子和轴系振动(轴颈、轴纹叶片)、轴承(油膜滑动和波动)、壳体振动与轴承座振动、基础振动(基座、工作台、支架)、其他结构振动(阀门、阀杆、管道等)。 3结合实际案例对汽轮机转子运行故障及诊断进行分析 某市炼油厂,利用延迟焦化装置中采用汽轮机,其具体的汽轮机厂商为杭州汽轮机厂,类型为凝气反动式汽轮机,现采用ENTEK振动检测系统对汽轮机运行状态进行诊断与监测。其详细的汽轮机转子运行故障诊流程为:对汽轮机转子振动信号信息进行检测和采集、分析与处理、传输、推理以及控制等。因为振动信号检测是判断汽轮机转子运行故障的主要依据,振动信号分析与处理工作是判断汽轮机转子故障的关键环节,传输与推理是整体运行故障判断的核心,控制是汽轮机转子运行故障诊断的最终目标。同时在汽轮机转子内部安装电涡流传感器,将线缆与控制箱相连,控制箱自带的振动监测模块可完成高速度数字振动信号的传输与处理工作,再使用以太网将信号处理结果上传至上位机中,从而完成汽轮机转子运行故障的诊断工作。 3.1对ENTEK振动检测系统的利用 在该炼油厂使用的ENTEK振动检测系统性能参数如下所示:型号:NK25/NK28/NK12.5;额定功率:1178KW、常规功率:1071KW;额定转速:12176RPM、常规转速:9132RPM-12785RPM;最大进汽压力:1.2MPa(a)、常规进汽压力:1MPa(a);常规排汽压力:0.012MPa(a);最大进汽温度300摄氏度、常规进汽温度230摄氏度。 在ENTEK振动检测系统中,对于汽轮机转子运行故障的诊断,产生的信号数据直接送至XM模块中,经过以太网的传输,将信号传输至emonitor系统软件内部,在该软件界面中,实现传感器与信号数据的相接,使其成为振幅型数据,从而可知由emonitor系统软件连接的采集器、监测模块以及保护监测表共同组成具有共享能力的数据库,其共享数据库内自主携带故障诊断工作,能够依据实际需求,对汽轮机转子的运行故障类别进行准确定位,对此,操作人员以手动输送的方式,完成故障诊断报告的生成工作。 在此系统故障诊断环节中,由汽轮机转子振动值超出限定值而产生的故障,则需对汽轮机进行停机检修,同时加大对转子运行状态的监测工作,并对转子的转速进行妥善控制。汽轮机转子在初始运行期间,振动值均以达到限定值范围,但是由于难以在生产中对汽轮机进行检修。因此,采用转子减速与状态控制的方式,实现对汽轮机转子运行故障的诊断工作。 3.2报警和故障诊断 在对汽轮机转子振动信号数据分析过程中,应利用事先采集的信号设置与之相对应的报警界定,进而才能在振动值高出正常限定值时,及时对汽轮机转子的运行故障类型进行识别和分类,其详细的振动值高超报警流程为:输定报警值界限——输入采集数据限号——汽轮机转子运行——发生警报。首先,对转子平衡度较差故障诊断:水平与垂直倍频不平衡值均大于等于1、单倍频振动效果较为明显;其次,转子摩擦故障诊断:4倍频占据1倍频20%以上、5倍频与0.5倍频占据1倍频10%以上、2倍频占据1倍频50%以上、3倍频占据1倍频20%以上以及1倍频在界定值以上;最后,油膜涡动与油膜振动故障诊断:0.5倍频、1倍频其幅值均在2.0以上。 3.3摩擦振动故障排查措施分析 通常情况下,汽轮机转子运行的环境比较复杂,它在运行过程中不仅会受到高速旋转和气流冲击作用力,同时高温、潮湿以及高压的工作环境会对转子造成一定的破坏,影响机组转子的安全稳定运行。因此,应当对转子日常的保养和检查工作给予高度的重视,一旦检查过程中发现故障,维修技术人员应当立即采取解决措施,对产生摩擦振动的部件进行必要维修,而如果机组部件维修价值不高应当进行更换,以消除摩擦振动对汽轮机运行造成的不利影响。 3.4汽轮机积盐原因及处理措施 对于正常运行的汽轮机,其饱和蒸汽实际含盐量会与过热蒸汽含盐量相同或饱和蒸汽含盐量略高。若汽轮机的过热蒸汽含盐量比过饱和蒸汽含盐量高时,则说明汽轮机内部积盐现象已很严重,此时应及时停机,全面清洗汽轮机。在清洗时我们常用到两种处理方法手工除垢与喷砂除垢。如果用这两种除垢法不能完全去除汽轮机内部污垢,可用柠檬酸溶液配合软水来进一步清洗汽轮机。

振动分析常见图谱

振动分析常见图谱 一、跟踪轴心轨迹 轴心轨迹是轴心相对于轴承座的运动轨迹,它反映了转子瞬时的涡动状况。 对轴心轨迹的观察有利于了解和掌握转子的运动状况。跟踪轴心轨迹是在一组瞬态信号中,相隔一定的时间间隔(实际上是相隔一定的转速)对转子的轴心轨迹进行观察的一种方法。这种方法是近年来随着在线监测技术的普及而逐步被认可的,它具有简单、直观,判断故障简便等优点。 图4-20是某压缩机高压缸轴承处轴心轨迹随转速升高的变化情况,在能过临界转速及升速结束之后,轨迹在轮廓上接近椭圆,说明这时基频为主要振动成分,如果振幅值不高,应该说机组是稳定的。如果达到正运行工况时机组振幅值仍比较高,应重点怀疑不平衡,转子弯曲一类的故障。 二、波德(Bode)图 波德图是描述某一频带下振幅和相位随过程的变化而变化的两组曲线。频带可以是1×、2×或其他谐波;这些谐波的幅、相位既可以用FFT法计算,也可以用滤波法得到。当过程的变化参数为转速时,例如启、停机期间,波德图实际上又是机组随激振频率(转速)不同而幅值和相位变化的幅频响应和相频响应曲线。 当过程参数为速度时,比较关心的是转子接近和通过临界转速时的幅值响应和相位响应情况,从中可以辨识系统的临界转速以及系统

的阻尼状况。 图4-21 某压缩机高压缸波德图 图4-21是某转子在升速过程中的波德图。从图中可以看出,系统在通过临界转速时幅值响应有明显的共振峰,而相位在临界前后转了近180。。 除了随转速变化的响应外,波德图实际上还可以做机组随其他参数变化时的响应曲线,比如时间,不过这时的横坐标应是时间,这对诊断转子缺损故障非常有效。也可以针对工况,当工况条件改变时做波德图,这时的幅频响应和相频响应如果不是两条直线,说明工况变化对振动的大小和相位有影响,利用这一特点可以甄别或确认其他症兆相近的故障。 三、极坐标图 极坐标图实质上就是振动向量图,和波德图一样,振动向量可以是1×、2 ×或其他谐波的振动分量。极坐标图有时也被称为振型圆和奈奎特图(Nyquist图),但严格说来,二者是有差别的,因为极坐标图是按实际响应的幅值相位来绘制的,而Nyquist图一般理解为是按机械导纳来绘制的。 极坐标图可以看成是波德图在极坐标上的综合曲线,它对于说明不平衡质量的部位,判断临界转速以及进行故障分析是十分有用的。和波德图相比,极坐标图在表现旋转机械的动态特征性方面更为清楚和方便,所以其应用也越来越广。

转子系统的故障机理及其诊断技术

转子系统的故障机理及其诊断技术 1 概述 旋转机械的种类繁多,有发电机、汽轮机、离心式压缩机、水泵、通风机以及电动机等等,这类机械的主要功能都是由旋转动作完成。旋转肌械故障是指机械的功能失常,即其动态性能恶化,不符合技术要求。例如机械运行失稳,机械发生异常振动和噪声,机械的工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机械发生故障的原因不同,所产生的信息也不一样,根据机械特有的信息,可以对机械故障进行诊断。但足机械发生故障的原因往往不是单?一的因素,特别是对于机械系统中的旋转机械故障,往往是多种故障耦合结果,所发对旋转机械进行故障诊断,必须进行全面的综合分析研究。 旋转机械的主要功能是由旋转动作写成的,转子是最主要的部件。旋转机械发生故障诊断的觅要特征是机器伴有异常的振动和噪声,其振动信号从幅值域、频率域和时间域实时地反映了机器故障信息。因此,了解与掌握转子系统在故障状态卜?的振动机理,对于监测机器的运行状态和提高故障诊断的准确度具有重要的理论意义和实际的工程价值。 2转子系统的故障机理2.1转子不平衡故障机理 转子不平衡包括转子的质量偏心及转子部件出现缺损。 转子质量偏心是由于转子的制造误差、装配谋差、材质不均匀等原因造成的,称此为初始不平衡。转子部件缺损是指转子在运行中由于腐蚀、磨损、介质结垢以及转子受疲劳力的作用,使转子的零部件(如叶轮、叶片等)局部损坏、脱落,碎块飞出等,造成的新的转子不平衡。 图2.1转子力学模型 设转子的质承为M,偏心质最为m,偏心距为e,如果转子的质心到两轴承连心线的垂直距离不为零,具有挠度为a,如图2.1所示。由于偏心质量m和偏心距e的存在,当转子转动时将产生离心力、离心力矩或两者兼而有之。离心力的大小与偏心质量m、偏心距e及旋转速度有关,即F = mecu2.众所周知,交变的力(方向、大小均周期性变化)会引起振动,这就是不平衡引起振动的原因。转子转动一周,离心力方向改变一次,因此不平衡振动的频率与转速相一致。 实际工程中,由于轴的各个方向上刚度有差别,特别是由于支承刚度各向不同,因而转子对不平衡的响应在x,y方向不仅振幅不同,而且相位也不是90度,因此转子的轴心轨迹不足圆而是椭圆,表2.1是转子发生不平衡时的故障特征。 表2.1转子不平衡的振动特征 ~待征频率振动稳定性振动方向相位特征轴心轨迹进给方向矢量区域

电机常见的振动故障原因(正式版)

文件编号:TP-AR-L5574 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 电机常见的振动故障原 因(正式版)

电机常见的振动故障原因(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一般来讲,电机振动是由于转动部分不平衡、机械故障或电磁方面的原因引起的。 一、转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 二、机械部分故障主要有以下几点: 1、联动部分轴系不对中,中心线不重合,定心

不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表现为齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 3、电机本身结构的缺陷和安装的问题。这种故障主要表现为轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。而轴与轴瓦间间隙过大或过小不仅可以造成振动还可

强声波激励下转子叶片的振动分析

强声波激励下转子叶片的振动分析 发表时间:2014-12-02T11:39:15.780Z 来源:《价值工程》2014年第10月中旬供稿作者:何建军 [导读] 声波激振是自然界一种普遍存在而且为大家所熟知的现象,在工程实际中也广泛存在。 何建军HE Jian-jun曰陈享姿CHEN Xiang-zi (长沙理工大学汽车与机械工程学院,长沙410004) (School of Automobile and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410004,China) 摘要:声场分析是一类比较复杂的场分析问题。本文基于有限元法,建立了高强声波辐射场中某型转子叶片振动分析的有限元模型,并分别采用球面声波辐射,柱面声波辐射,平面声波辐射和均布声压等作用形式比较了叶片上振动的应力和声压分布。计算了3 种叶片,数值计算的结果都与实验结果比较一致,定量揭示了高强声波对转子叶片的影响程度。 Abstract: Acoustic analysis is an important type of field analysis problem. Based on the finite element method (FEA), the finiteelement model of a certain rotor blade in radiation field excited by high strength acoustic wave was built in this paper. And then, the stressand sound pressure distribution in the four different types of radiation fields were computed and compared to each other. The results ofnumerical simulation are consistent with the results of experimental tests for three types of rotor blades, which reveal the influence degree ofrotor blade excited by high strength acoustic wave. 关键词院高强声波;转子叶片;声波辐射;应力和声压分布 Key words: high strength acoustic wave;rotor blade;acoustic radiation;stress and sound pressure distribution 中图分类号院O422.7 文献标识码院A 文章编号院1006-4311(2014)29-0014-02 引言 声波激振是自然界一种普遍存在而且为大家所熟知的现象,在工程实际中也广泛存在。因声共振引起的结构破坏,失效或者故障也屡有发生。声波与人们的生活密切相关,因此对声波的认识也是物理学研究的一个重要领域。但之前大家一直未注意到声波激振尤其是高强声波激振可能是造成结构破坏的一个原因,人们往往关心的是声波对人的影响以及声波的应用,另外一个方面高强声波的发生存在于比较特殊的场合和情形[1]。 人们关注声疲劳问题开始于20 世纪50 年代发生的由于高强度喷气噪声造成的飞机结构破坏[2]。尽管声疲劳破坏现象首先发生于飞机构件上,早期声疲劳问题的研究也主要围绕于此,但随着科学技术水平的不断发展,有关航空发动机构件声疲劳问题的研究也越来越受到广大学者和科研人员的广泛关注。 航空发动机是一个非常强大且复杂的噪声源,处于这种宽频带高能级声激励环境中的构件极易发生高周疲劳[3]。航空发动机中的声疲劳问题本质上是随机振动载荷导致结构高周疲劳失效的典型代表。国外对声波激振的研究工作开展得比较早,取得了大量的成果,但公开的资料很少。国内也有许多学者开展了这方面的工作。最近,林左鸣,李克安等学者对声激振对发动机转子叶片振动的影响机理和破坏贡献做了有益的理论探索,并且做了大量的实验,揭示了高强声波对转子叶片疲劳破坏存在一定的作用[4]。但是定量分析高强声波对转子叶片的作用大小以及数值仿真计算这方面的工作还比较少,这也是本文研究的出发点。本文采用有限元法,对高强声波辐射场中转子叶片的振动分析问题进行了大量的数值计算,得到了与实验结果一致的结论,验证了数值计算的有效性。 1 悬臂板的动力学方程 为了研究高强声波激励和机械激励下发动机转子叶片的振动特性和振动规律,需要建立叶片的振动方程。但发动机转子叶片曲面复杂,描述困难,因此一般难以给出发动机转子叶片的动力学解析方程。目前,转子叶片的分析计算常采用薄板近似模型进行,相关理论可参见曹志远等著的《板壳振动理论》一书等[5]。 分别采用悬臂板模型和有限元方法(视为准确值)计算得到的3 种叶片的基频如下: 其中叶片A 和B 是某型发动机叶片。 声波载荷的形式:作用在叶片上的实际声波应当为随机载荷,但为降低建模和计算的难度,在现有的文献和数值计算中,一般将声波处理为简谐声波,因此在本研究中也将作用在叶片或者板上的声波视为简谐载荷。即q=q0(x,y)sin pt (1)实际叶片的扭角随截面不断发生变化,且曲面更加复杂,因此实际叶片的振动方程的求解也一般采用有限元方法进行计算。 2 数值计算 在实际情况中,分析作用在叶片上的高强声波是一个复杂的声场问题,可能包括声波的辐射,散射,透射和折射等情形,这里简单起见,假定为一个有限封闭区域内的声波辐射问题。声波辐射分为球面声波辐射,柱面声波辐射,平面声波辐射等几种情形(具体的声压计算公式可参考杜功焕的《声学基础》[6]等书),基于这4 种辐射场,构建了转子叶片振动分析的有限元模型,对其进行计算。为确定声源模型的形式,假设声源为高强声波,为简谐声波,在叶背叶根附近。分析采用的转子叶片为航空发动机NASARotor67 转子叶片。 2.1 球面声波辐射下的转子叶片的应力和声压分布从图1 可以看出,转子叶片的最大应力为19.83MPa,该应力最大处位于叶背叶根附近。此外,整个转子叶片的声压分布在146dB-150.06dB 之间变化,整个叶片的声压分布平均接近148dB。

旋转机械(转子)故障诊断.

旋转机械(转子)故障诊断 摘要:旋转机械故障诊断技术在企业中的应用能够及早发现设备故障、防止生产线停工、避免重大事故。本文首先展示了国内外转子故障诊断技术现状,回顾过往不平衡模拟实验通过对振动特征的分析研究总结了不平衡的振动特征。而后再利用振动信号分析处理方法以及时一频分析技术,对转子系统的不平衡、不对中两个典型的故障诊断做了详细的介绍。由于技术发展,以后的转子故障诊断将朝着自动化、智能化方向发展。 关键词:旋转机械;不平衡;不对中;故障诊断 Vibration Faults in Rotor System Abstract: Application of the rotating machinery fault diagnosis technology in the enterprise can predicte equipment failure, prevent shutdown the production line , avoid major accidents. This paper shows the present situation of rotor fault diagnosis technology at home and abroad at first, retrospects the imbalance simulation experiment based on the analysis of the vibration characteristics of the study summarized the unbalanced vibration characteristics. Then,with the vibration signal analysis method and spectrum analysis technology, I will introduce imbalance and misalignment two typical fault diagnosis in detail. Due to the technical development, the rotor fault diagnosis will develop in automatic and intelligent direction. Keywords: Rotating Machinery; Imbalance;Misalignment ; Fault Diagnosis

相关文档
最新文档