《资本资产定价模型》PPT课件
合集下载
资本资产定价模型PPT课件

资产定价的随机过程
随机过程的基本概念
随机过程是描述一系列随机事件的数学模型,其中每个事件的发生都具有不确定性。在资产定价的上下文中,随 机过程通常用于描述资产价格的变动。
资本资产定价模型的随机过程
资本资产定价模型假设资产价格的变动遵循随机过程,并且这种变动与资产的预期回报和风险有关。通过建立适 当的随机过程模型,可以进一步研究资产价格的动态行为和风险特征。
发展历程
起源
资本资产定价模型起源于20世纪60年代,由经济学家威廉·夏普、 约翰·林特纳和简·莫辛共同发展。
发展
在随后的几十年中,CAPM经历了多次修订和完善,以适应金融市 场的变化。
应用
资本资产定价模型被广泛应用于投资组合管理、风险评估和资本预算 等领域。
发展历程
起源
资本资产定价模型起源于20世纪60年代,由经济学家威廉·夏普、 约翰·林特纳和简·莫辛共同发展。
发展
在随后的几十年中,CAPM经历了多次修订和完善,以适应金融市 场的变化。
应用
资本资产定价模型被广泛应用于投资组合管本资产定价模型用于确定投资 组合的风险和预期回报,帮助投 资者在风险和回报之间做出权衡。
风险评估
通过CAPM,投资者可以评估特 定资产或投资组合的风险,并与 其他资产或基准进行比较。
主要发现
是一种用于评估风险和预期回报之间关系的金融模型,主要用于投资组合管理 和风险评估。
CAPM的核心思想
资本的预期收益率由两部分组成,一部分是无风险利率,另一部分是风险溢价, 即风险超过无风险资产的部分。
目的和目标
目的
通过理解CAPM,投资者可以更准确 地评估投资的风险和预期回报,从而 做出更明智的投资决策。
资本资产定价模型概述(ppt42张)

6、可以在无风险折现率R的水平下无限制地借 入或贷出资金; 7、所有投资者对证券收益率概率分布的看法一 致,因此市场上的效率边界只有一条; 8、所有投资者具有相同的投资期限,而且只有 一期; 9、所有的证券投资可以无限制的细分,在任何 一个投资组合里可以含有非整数股份;
10、税收和交易费用可以忽略不计; 11、市场信息通畅且无成本; 12、不考虑通货膨胀,且折现率不变; 13、投资者具有相同预期,即他们对预期收益率、 标准差和证券之间的协方差具有相同的预期值。 上述假设表明:第一,投资者是理性的,而且严格 按照马科威茨模型的规则进行多样化的投资,并将 从有效边界的某处选择投资组合;第二,资本市场 是完全有效的市场,没有任何磨擦阻碍投资。
又由(7.3)
dv 1 dE ( r E ( r )E ( r c) M j)
于是
d d d v c c d Er ( c) d vd Er ( c)
2 2 [ ( 1 v ) ( 1 2)c v o v ( r , r ) v ]/ j j m M c Er ( M) Er ( j)
假定2:针对一个时期,所有投资者的预期 都是一致的。
这个假设是说,所有投资者在一个共同的时期内 计划他们的投资,他们对证券收益率的概率分布 的考虑是一致的,这样,他们将有着一致的证券预 期收益率﹑证券预期收益率方差和证券间的协方 差。同时,在证券组合中,选择了同样的证券和同 样的证券数目。 这个假设与下面的关于信息在整个资本市场中畅 行无阻的假设是一致的。
故
2 c o v ( r , r ) d j M M c d Er ( c)v Er ( M) Er ( j) ) c( 1
管理学投资学PPT第章资本资产定价模型

问题:
❖若某一个股票未包含在最优资产组合中,
会怎样?
2024/6/29
21
图 9.1 The Efficient Frontier and the
Capital Market Line
2024/6/29
22
9.1.2 消极策略的有效性
理由:
❖市场的有效性
❖投资于市场投资组合指数这样一个消极策略是有
26
▪ β系数。美国经济学家威廉·夏普提出的风险衡量
指标。
▪
用它反映资产组合波动性与市场波动性关系(
在一般情况下,将某个具有一定权威性的股指(
市场组合)作为测量股票β值的基准)。
▪ 如果β值为1.1,表明该股票波动性要比市场大盘
高10 %,说明该股票的风险大于整个市场的风险
,当然它的收益也应该大于市场收益,因此是进
则其收益 - 风险比率为:
wGE [ E (rGE ) rf ] E (rGE ) r f
wGE Cov(rGE , rM ) Cov(rGE , rM )
2024/6/29
25
9.1.4 单个证券的期望收益
市场组合M与CML相切,其收益风险比率为:
E (rM ) rf
2
M
(风险的市场价格)
率应该增加的数量。
▪ 在金融世界里,任何资产组合都不可能超越CML
。由于单个资产一般来说,并不是最优的资产组
合,因此,单个资产也位于该直线的下方。
2024/6/29
14
证券市场线
▪ 资本市场线描述了有效组合的预期收益率和标准
差之间的均衡关系―有效资产组合定价模型。
▪ 问题:
▪ (1) 单个风险资产的预期收益率和标准差之间
❖若某一个股票未包含在最优资产组合中,
会怎样?
2024/6/29
21
图 9.1 The Efficient Frontier and the
Capital Market Line
2024/6/29
22
9.1.2 消极策略的有效性
理由:
❖市场的有效性
❖投资于市场投资组合指数这样一个消极策略是有
26
▪ β系数。美国经济学家威廉·夏普提出的风险衡量
指标。
▪
用它反映资产组合波动性与市场波动性关系(
在一般情况下,将某个具有一定权威性的股指(
市场组合)作为测量股票β值的基准)。
▪ 如果β值为1.1,表明该股票波动性要比市场大盘
高10 %,说明该股票的风险大于整个市场的风险
,当然它的收益也应该大于市场收益,因此是进
则其收益 - 风险比率为:
wGE [ E (rGE ) rf ] E (rGE ) r f
wGE Cov(rGE , rM ) Cov(rGE , rM )
2024/6/29
25
9.1.4 单个证券的期望收益
市场组合M与CML相切,其收益风险比率为:
E (rM ) rf
2
M
(风险的市场价格)
率应该增加的数量。
▪ 在金融世界里,任何资产组合都不可能超越CML
。由于单个资产一般来说,并不是最优的资产组
合,因此,单个资产也位于该直线的下方。
2024/6/29
14
证券市场线
▪ 资本市场线描述了有效组合的预期收益率和标准
差之间的均衡关系―有效资产组合定价模型。
▪ 问题:
▪ (1) 单个风险资产的预期收益率和标准差之间
投资学第章资本资产定价模型剖析ppt课件

比较CAPM:E(ri ) rf i[E(rM ) rf ]
与指数模型的期望形式:
E(ri ) rf i i[E(rM ) rf ] 可知二者差别在于,CAPM认为所有的i都为0。 市场模型:rf E(ri ) i[rf E(rM )] ei
如果CAPM有效,则市场模型等同于指数模型。
E(Ri ) kE(Ci ) ( L1 L2 L3 )
其中,E(Ci )为期望流动性代价; k为所有资产的调整后的平均持有期
为平均市场流动性的市场风险溢价净值 为系统性市场风险敏感度, L1、 L 2、 L3为流动性 E(RM CM ),CM 表示市场平均流动性溢价。
37
流动性的三要素
25
9.3 CAPM符合实际吗?
CAPM的实用性取决于证券分析。 9.3.1 CAPM能否检验 ▪ 规范方法与实证方法 ▪ 实证检验的两类 错误(数据、统计方法) 9.3.2 实证检验质疑CAPM
26
9.3 CAPM符合实际吗?
9.3.3CAPM的经济性与有效性 ▪ CAPM在公平定价领域的广泛应用 ▪ CAPM被普遍接受的原因 9.3.4 投资行业与CAPM的有效性 投资公司更趋向于支持CAPM
39
27
9.4 计量经济学和期望收益-贝塔关系
▪ 计量经济方法可能是引起CAPM被错误拒 绝的原因
▪ 相关改进
➢ 用广义最小二乘法处理残差相关性 ➢ 时变方差模型ARCH
28
9.5 CAPM的拓展形式
两种思路: ▪ 假定的放宽 ▪ 投资者心理特征的应用
29
9.5.1 零模型
有效前沿的三大性质:
▪ 两种有效前沿上的资产组合组成的任意资产组合仍在有 效前沿上
23
9.2.2 指数模型和已实现收益
与指数模型的期望形式:
E(ri ) rf i i[E(rM ) rf ] 可知二者差别在于,CAPM认为所有的i都为0。 市场模型:rf E(ri ) i[rf E(rM )] ei
如果CAPM有效,则市场模型等同于指数模型。
E(Ri ) kE(Ci ) ( L1 L2 L3 )
其中,E(Ci )为期望流动性代价; k为所有资产的调整后的平均持有期
为平均市场流动性的市场风险溢价净值 为系统性市场风险敏感度, L1、 L 2、 L3为流动性 E(RM CM ),CM 表示市场平均流动性溢价。
37
流动性的三要素
25
9.3 CAPM符合实际吗?
CAPM的实用性取决于证券分析。 9.3.1 CAPM能否检验 ▪ 规范方法与实证方法 ▪ 实证检验的两类 错误(数据、统计方法) 9.3.2 实证检验质疑CAPM
26
9.3 CAPM符合实际吗?
9.3.3CAPM的经济性与有效性 ▪ CAPM在公平定价领域的广泛应用 ▪ CAPM被普遍接受的原因 9.3.4 投资行业与CAPM的有效性 投资公司更趋向于支持CAPM
39
27
9.4 计量经济学和期望收益-贝塔关系
▪ 计量经济方法可能是引起CAPM被错误拒 绝的原因
▪ 相关改进
➢ 用广义最小二乘法处理残差相关性 ➢ 时变方差模型ARCH
28
9.5 CAPM的拓展形式
两种思路: ▪ 假定的放宽 ▪ 投资者心理特征的应用
29
9.5.1 零模型
有效前沿的三大性质:
▪ 两种有效前沿上的资产组合组成的任意资产组合仍在有 效前沿上
23
9.2.2 指数模型和已实现收益
资本资产定价模型0iznl.pptx

资本资产定价模型(capital asset pricing model,CAPM)是由美国斯 坦福大学教授威廉·夏普以及后 来的哈佛大学教授约翰·林德奈 尔等人在马科维茨的证券组合理 论基础上提出的一种证券投资理 论.
哈里·马科维茨
CAPM
• 第一节、金融风险的定义及其衡量 • 第二节、投资组合与风险分散 • 第三节、有效集与最优投资组合 • 第四节、无风险借贷与资本市场线 • 第五节、资本资产定价模型
CAPM模型的评价
• 资本资产定价模型在马科维茨的证券组合理论的基础上, 对金融资产和投资组合的风险衡量进行了更深入的研究, 并提出了单个金融资产预期收益率与其系统性风险的均衡 关系,从而导出了各种资产根据其系统性风险定价的资本 资产定价模型。应该说,夏普的研究是具有建设性的,他 把马科维茨的研究向前推进了一大步。
M
线变成了AM射线。
A
N
CML B
P
• M点是包括了所有证券的市场投资组合
•
AM是资本市场线:
RP
Rf
Rm R f
m
p
– 资本市场线描述的是市场投资组合与无风险资产所构
成的投资组合的收益率与风险之间的关系。
第五节、资本资产定价模型
• 威廉夏普对资本市场线进行了扩展,发现 个别证券或者证券组合的收益率和风险可
• 允许无风险借贷条件下的投资组合
– 投资者可在无风险资产和风险资产之间进行组合投资
– 无风险资产:Rf x1 1 =0
– 风险资产或者风险资产组合:R
– 则投资组合:RP
2 P
x2 2
2 P
x12
2 1
x22
2 2
2x1 x2 12 1 2
哈里·马科维茨
CAPM
• 第一节、金融风险的定义及其衡量 • 第二节、投资组合与风险分散 • 第三节、有效集与最优投资组合 • 第四节、无风险借贷与资本市场线 • 第五节、资本资产定价模型
CAPM模型的评价
• 资本资产定价模型在马科维茨的证券组合理论的基础上, 对金融资产和投资组合的风险衡量进行了更深入的研究, 并提出了单个金融资产预期收益率与其系统性风险的均衡 关系,从而导出了各种资产根据其系统性风险定价的资本 资产定价模型。应该说,夏普的研究是具有建设性的,他 把马科维茨的研究向前推进了一大步。
M
线变成了AM射线。
A
N
CML B
P
• M点是包括了所有证券的市场投资组合
•
AM是资本市场线:
RP
Rf
Rm R f
m
p
– 资本市场线描述的是市场投资组合与无风险资产所构
成的投资组合的收益率与风险之间的关系。
第五节、资本资产定价模型
• 威廉夏普对资本市场线进行了扩展,发现 个别证券或者证券组合的收益率和风险可
• 允许无风险借贷条件下的投资组合
– 投资者可在无风险资产和风险资产之间进行组合投资
– 无风险资产:Rf x1 1 =0
– 风险资产或者风险资产组合:R
– 则投资组合:RP
2 P
x2 2
2 P
x12
2 1
x22
2 2
2x1 x2 12 1 2
资本资产定价模型 (PPT 55张)

i
上式结论也适用于由无风险资产和风险资产组合构 成的投资组合的情形。在图(7-9)中,这种投资组 合的预期收益率和标准差一定落在AB线段上。
11
投资于无风险资产A和风险资产组合B的可行集 ——许多线段AB构成的区域
R
p
﹡D
R r i f R r p f P
Ri
B
★
i
A(rf ) ★
5
二、资本市场线 CML
(一)允许无风险贷出下的可行集与有效集 1.无风险贷款或无风险资产的定义 无风险贷款相当于投资于无风险资产,其收益是确定的, 其风险(标准差)应为零。 无风险资产收益率与风险资产收益率之间的协方差也等于 零。 现实生活中,到期日和投资期相等的国债是无风险资产。
为方便起见,常将1年期的国库券或货币市 场基金当作无风险资产。
17
(二)无风险借款对有效集的影响
1、允许无风险借款下的投资组合
在推导马科维茨有效集的过程中,我们假定投资者可 以购买风险资产的金额仅限于他期初的财富。然而,在 现实生活中,投资者可以借入资金并用于购买风险资产。 由于借款必须支付利息,而利率是已知的,在该借款 本息偿还上不存在不确定性。因此我们把这种借款称为 无风险借款。
iff i
x ,其中 [ 0 , ] p i i p i
x x 1 ,其中 x x [ 0 , 1 ] f i f, i
③
②
8
该组合的预期收益率和标准差的关系为:
p R ( 1 ) r p f
i
p R i i
y f ( x ) b k x
2
一、CAPM模型的基本假设
1.存在着大量投资者,每个投资者的财富相对于所有投 资者的财富总和来说是微不足道的。
资本资产定价模型(CAPM模型)ppt课件

75%投资于福特汽车公司股票。假定两支股票的值
分别为1.2和1.6,投资组合的风险溢价为多少?
解: P 0.251.2 0.751.6 1.5
E(rP ) rf 1.5[E(rM ) rf ] 1.58% 12%
ppt课件
18
证券特征线(Characteristic Line)
证券特征线方程:E(ri ) rf i (E(rm ) rf )
ppt课件
10
资本市场线与证券市场线的内在关系
描述对象不同
CML描述有效组合的收益与风险之间的关系
SML描述的是单个证券或某个证券组合的收益与风险 之间的关系,既包括有效组合有包括非有效组合
风险指标不同
CML中采用标准差作为风险度量指标,是有效组合收 益率的标准差
SML中采用β系数作为风险度量指标,是单个证券或 某个证券组合的β系数
ppt课件
26
我们可以对 rp j 给出另一种解释。由于拥有股票j的风险
为 jm ,即 j乘上市场风险 m是j所带来的风险,而每
单位风险的价格为:
P rm rf m
所以,承担风险资产j的所需求的风险溢价应为:
j
mP
j
m
rm rf
m
j
rm rf
rpj
ppt课件
27
证券市场均衡条件 如证券市场如有N只股票,对于i,j 1,2, , N,在证券
E(zi ) r (z) cov(zi , z)
(1)
ppt课件
24
均方差资产定价原理
其中, (z) 是对投资中总的风险的度量,也就是对不 确定环境中某种状态的概率。 另一方面,由2可知,在市场均衡的条件下,资产 组合的收益E(Z)减去无风险利率r后所得的差,也 必须与证券收益的方差成比例,即有:
分别为1.2和1.6,投资组合的风险溢价为多少?
解: P 0.251.2 0.751.6 1.5
E(rP ) rf 1.5[E(rM ) rf ] 1.58% 12%
ppt课件
18
证券特征线(Characteristic Line)
证券特征线方程:E(ri ) rf i (E(rm ) rf )
ppt课件
10
资本市场线与证券市场线的内在关系
描述对象不同
CML描述有效组合的收益与风险之间的关系
SML描述的是单个证券或某个证券组合的收益与风险 之间的关系,既包括有效组合有包括非有效组合
风险指标不同
CML中采用标准差作为风险度量指标,是有效组合收 益率的标准差
SML中采用β系数作为风险度量指标,是单个证券或 某个证券组合的β系数
ppt课件
26
我们可以对 rp j 给出另一种解释。由于拥有股票j的风险
为 jm ,即 j乘上市场风险 m是j所带来的风险,而每
单位风险的价格为:
P rm rf m
所以,承担风险资产j的所需求的风险溢价应为:
j
mP
j
m
rm rf
m
j
rm rf
rpj
ppt课件
27
证券市场均衡条件 如证券市场如有N只股票,对于i,j 1,2, , N,在证券
E(zi ) r (z) cov(zi , z)
(1)
ppt课件
24
均方差资产定价原理
其中, (z) 是对投资中总的风险的度量,也就是对不 确定环境中某种状态的概率。 另一方面,由2可知,在市场均衡的条件下,资产 组合的收益E(Z)减去无风险利率r后所得的差,也 必须与证券收益的方差成比例,即有:
资本资产定价模型CAPM.pptx

0.0205
14.3%
债券基金
回报率 离标差准平差方
17%
1.00%
7%
0.00%
-3%
1.00%
7.00%
0.0067
8.2%
14.3% 0.0205
9
第10页/共73页
协方差
衡量资产同步变动的程度
考虑如下的乘积:
[r股票(s)-E(r股票)][r债券(s)-E(r债券)]
协方差的定义
Cov(r股票,r债券) = S P(s)[r股票(s)-E(r股票)][r债券(s)-E(r债
26
第27页/共73页
10.4 两个资产的有效集
股票在组合的比率
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50.00% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
风险
8.2% 7.0% 5.9% 4.8% 3.7% 2.6% 1.4% 0.4% 0.9% 2.0% 3.08% 4.2% 5.3% 6.4% 7.6% 8.7% 9.8% 10.9% 12.1% 13.2% 14.3%
0.00%
-3%
1.00%
7.00%
0.0067
8.2%
2.05% 1 (3.24% 0.01% 2.89%) 3
8
第9页/共73页
10.2 期望收益、方差与标准方差
状态
萧条 正常 繁荣
期望收益 方差 标准差
股票基金
回报率 离标差准平差方
-7%
3.24%
12%
0.01%
28%
2.89%
11.00%
24
第25页/共73页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均 收益率
12.3% 17.4
6.2 5.8 3.8 3.1
标准差
20.2% 32.9
8.5 9.2 3.1 4.3
分布
– 90%
0%
+ 90%
参阅P172 Source: © Stocks, Bonds, Bills, and Inflation 2006 Yearbook™, Ibbotson Associates, Inc., Chicago (annually updates work by
7-12 持有期收益率
美国有关股票、债券和国库券收益率的最著名 研究由Roger Ibbotson and Rex Sinquefield主持 完成。
他们提供如下5种美国历史上重要的金融工具的 历年收益率:
大公司普通股
小公司普通股
长期公司债
参阅P169~170
长期政府债
美国国库券
7-13 7.3 收益统计
标准差 = .03873
7-21 7.6 更多关于平均收益率
算术平均率 :按期数计算平均收益率 几何收益率:按复利计算的平均收益率 几何平均收益率通常小于算术平均收益率,每
期收益率不变时两者相等。 谁更可靠?
算术平均收益率从长期来看是高估的; 几何平均收益率从短期来看又过于悲观。
掌握投资收益的计算 掌握投资收益标准差的计算 理解不同投资的历史上的收益与风险情况 理解正态分布的重要性 理解几何平均数与算术平均数
7-6 7.1 收益值
时
0
间
初始投资
股利
期末市 场价值
1
收益百分比 资本利得与股利收入
7-7 收益率
股票收益 = 红利 +资本利得
7-8 收益:例子
假设你在一年前以25元每股购买了100股沃尔玛 股票,过去一年中你收到了20元的股利,年末 沃尔玛股票的市场价值是30元每股,你会如何 处理?
小公司股票
16%
14%
12%
大公司股票
10%
8%
6%
长期债券
4%
短期债券
2%
0%
5%
10%
15%
20%
25%
30%
35%
标准差
7-18 7.5 风险统计
目前仍然没有一个被普遍认可的有关风险的定义。 通常人们用方差与标准差来测量风险
标准差是度量样本离散程度的标准统计指标, 常用来表示正态分布的离散程度,也是我们最 常用的度量收益变动性或风险的方法。
1
$520 $2,500
7-10 7.2 持有期收益率
持有期收益率,即当投资者持有资产n年, i 年收益率为 ri,则:
持有期收益率 (1r1)(1r2) (1rn)1
7-11 持有期收益率: 例子
假设你的投资在四年时间内的收益情况如下:
年度 收益率
1 10% 2 -5% 3 20% 持有性收收益率4 15% (1r1)(1r2)(1r3)(1r4)1 (1.10)(.95)(1.20)(1.15)1 .442144.21%
7-0
资本资产定价模Co型rpo(rCatAe PFiMna)nce
Ross • Westerfield • Jaffe
6
8th Edition
8th Edition
7-1 本章要点
掌握投资收益的计算 掌握投资收益标准差的计算 理解不同投资的历史上的收益与风险情况 理解正态分布的重要性 理解几何平均数与算术平均数
资本市场历史收益可用下列方法进行统计: 平均收益
R(R1RT) T
参阅P171
收益的标准差 (SD)
S D VA (R R 1 R )2 (R 2 R )2 (R T R )2 T 1
参阅P173
7-14
1926-2004美国各类资产年总收益率
项目 大公司股票 小公司股票 长期公司债 长期证府债 美国国库券 通货膨胀率
Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.
7-15
7.4 平均股票收益与无风险收益
风险溢价是指由于承担风险而增加的(相对于 无风险收益)超额收益。
普通股相对于无风险收益存在着长期超额收益。 1926~2005年大公司股票的平均超额收益率为: 8.5% = 12.3% – 3.8% 1926~2005年小公司股票的平均超额收益率为: 13.6% = 17.4% – 3.8% 1926~2005年长期公司债超额收益率为: 2.4% = 6.2% – 3.8%
7-19
7-20 例子 : 收益与方差
年度
真实收益 平均收益
率
率
1
.15
.1
.105
4
.12
.105
合计
离差
.045 -.015 -.045 .015 .00
离散平方
.002025 .000225 .002025 .000225 .0045
方差 = .0045 / (4-1) = .0015
7-16 风险溢价
假设现在一年期的国库券收益率为5%。 那么 市场上小公司股票的预期收益是多少?回顾一 下,1926~2005年小公司股票的超额收益为 13.6%。
因为无风险收益为 5%,那么我们预期的收益 率为: 18.6% = 13.6% + 5%
7-17 风险与收益对称
年度平均收益率
18%
7-4 本章概览
7.8 期望收益、方差与协方差 7.9 组合的风险与收益 7.10 两种资产组合的有效集 7.11 多种资产组合的有效集 7.12 多元化: 一个例子 7.13 无风险借贷 7.14 市场均衡 7.15 期望收益与风险之间的关系 (CAPM)
7-5 第一部分:风险与收益的历史启示
期初你投资了25元 × 100股 = 2,500元。年末股 票市场价值为3,000元,股利为20元,你的收益 为520元 = 20 + (3,000 – 2,500).
年收益率为:
20.8% =
$520 $2,500
7-9 收益:例子
收益值:520元
20元 3,000元
时
0
间
-2,500元
收益率: 20.8% =
掌握期望收益的计算 掌握协方差,相关系数与贝塔值的计算
7-2 本章要点
理解多元化的影响 理解系统风险的原理 理解证券市场线 理解风险与收益的对称 掌握CAPM的运用
7-3 本章概览
7.1 收益 7.2 持有期收益率 7.3 收益统计 7.4 股票的平均收益和无风险收益 7.5 风险统计 7.6 更多关于平均收益率 7.7 单个证券