牵引力控制系统

合集下载

牵引系统控制原理及控制电路

牵引系统控制原理及控制电路

VS
详细描述
故障诊断与容错控制技术能够对牵引系统 的各个部分进行实时监测和故障诊断,及 时发现并定位故障部位和原因。同时,该 技术还可以采取相应的容错控制措施,如 备用系统切换、控制策略调整等,确保牵 引系统在出现故障时仍能保持稳定运行, 降低对整个系统的影响。
THANKS
感谢观看
粘着利用控制策略
粘着系数利用
根据轮轨粘着系数动态 调整牵引力和制动力。
粘着限制控制
防止因轮轨粘着不足导 致的牵引力或制动力过 大。
粘着优化控制
优化牵引和制动过程, 提高轮轨粘着系数的利 用率。
05
CATALOGUE
牵引系统控制技术展望
智能化控制技术
总结词
智能化控制技术是牵引系统未来的重要发展方向,通过引入人工智能、机器学习等技术,实现对牵引系统的自主 决策和优化控制。
详细描述
智能化控制技术能够根据牵引系统的实时运行状态和外部环境因素,自主调整控制参数和控制策略,提高牵引系 统的运行效率和安全性。同时,智能化控制技术还可以通过机器学习算法不断学习和优化,进一步提高牵引系统 的性能和适应性。
远程控制技术
总结词
远程控制技术是实现牵引系统远程管理和监控的重要手段,通过无线网络和互联网等技术,实现对牵 引系统的远程操控和实时监测。
牵引力控制原理
总结词
牵引力控制原理是利用对电机的转矩 控制,实现对牵引力的调节。
详细描述
牵引力控制原理基于对电机转矩的控 制,通过调节电机输入电流的幅值、 频率和相位,实现对电机转矩的精确 控制,进而调节牵引力的大小。
制动控制原理
总结词
制动控制原理是利用制动器的摩擦力矩,将车辆动能转化为热能并散发到空气 中。

《摩托车牵引力控制系统(tcs)测试与评价技术标准》

《摩托车牵引力控制系统(tcs)测试与评价技术标准》

《摩托车牵引力控制系统(tcs)测试与评价技术标准》摩托车牵引力控制系统(TCS)是一种用于提高摩托车行驶安全性和稳定性的先进技术。

其测试与评价技术标准对于确保TCS系统的稳定性和可靠性至关重要。

在本文中,我将从深度和广度上探讨摩托车TCS系统测试与评价技术标准,帮助您全面了解这一主题。

1. 背景介绍摩托车TCS系统是一种通过控制车轮牵引力来增强行驶稳定性的技术。

在不同路况和行驶状态下,TCS系统能够自动调整牵引力,提供更好的抓地力和操控性。

然而,为了确保TCS系统的稳定性和安全性,需要进行严格的测试与评价。

2. TCS测试与评价技术标准概述TCS系统的测试与评价技术标准主要包括对动力系统、传感器、控制单元以及整车系统的测试。

在动力系统测试中,需要评估发动机输出和扭矩响应是否与TCS系统协调一致;在传感器测试中,需要验证车速传感器和轮速传感器的准确性和稳定性;在控制单元测试中,需要确保TCS系统能够及时、准确地响应驾驶员指令;在整车系统测试中,需要对TCS系统在不同路况和行驶状态下的稳定性和操控性进行全面评估。

3. TCS测试与评价技术标准的重要性通过严格的测试与评价技术标准,能够确保TCS系统在各种特殊情况下都能够稳定可靠地工作。

这对于提高摩托车行驶安全性和稳定性具有重要意义,特别是在高速行驶和急转弯等危险行驶情况下。

4. 个人观点和理解作为一名摩托车爱好者,我对TCS系统的测试与评价技术标准非常重视。

这不仅关乎我自身的行驶安全,也关乎整个摩托车行业的发展。

我认为,通过不断完善TCS系统的测试与评价技术标准,能够进一步提升摩托车的安全性和稳定性,为骑手提供更好的行驶体验。

总结回顾:通过本文的深度和广度探讨,我们全面了解了摩托车TCS系统测试与评价技术标准的重要性和内容。

测试与评价技术标准的严格执行,对于提高TCS系统的稳定性和可靠性具有重要意义。

在未来的摩托车行业发展中,我们应该继续关注TCS系统的测试与评价技术标准,不断完善和提升摩托车的安全性和稳定性。

汽车牵引力控制技术

汽车牵引力控制技术

汽车牵引力控制技术(TCS)的工作原理现代科学技术的发展,促使车辆的性能越来越高,特别是机电一体化技术在车辆上得到了广泛的应用:电子控制燃油喷射系统、制动防抱死装置(ABS)、车辆防侧滑系统等。

牵引力控制系统(Traction Control System, 简记为TCS)又称为驱动防滑控制系统(Anti-Slip Regulation, 简记为ASR),它是汽车制动防抱死系统基本思想在驱动领域的发展和推广。

是上世纪80 年代中期开始发展的新型实用汽车安全技术,这项技术的采用主要解决了汽车在起步、转向、加速、在雪地和潮湿的路面行驶等过程中车轮滑转的问题。

它的功能一是提高牵引力;二是保持汽车的行驶稳定。

行驶在易滑的路面上,没有ASR的汽车加速时驱动轮容易打滑;如是后驱动的车辆容易甩尾,如是前驱动的车辆容易方向失控。

有ASR时,汽车在加速时就不会有或能够减轻这种现象。

在转弯时,如果发生驱动轮打滑会导致整个车辆向一侧偏移,当有ASR时就会使车辆沿着正确的路线转向。

一、汽车牵引力控制技术(TCS)的工作原理ASR 系统和ABS系统采用相同的原理工作:即根据车辆车轮转速传感器所测得的车轮转速信号由电控单元进行分析、计算、处理后输送给执行机构用来控制车辆的滑移现象,使车辆的滑移率控制在10%~20%之间,从而增大了车轮和地面之间的附着力,有效地防止了车轮的滑转。

滑移率由实际车速和车轮的线速度控制,其计算公式为:滑移率=(实际车速—车轮线速度)/ 实际车速×100%轮速可由轮速传感器准确检测得到。

而车速的准确检测者比较困难,一般采用以下几种方法:1、采用非接触式车速传感器如多普勒测速雷达,但这种方式成本较高、技术复杂,应用较少。

2、采用加速传感器这种方法由于受坡道的影响,误差较大,控制精度差,应用也较少。

3、根据车轮速度计算汽车速度由于车速和轮速的变化趋势相同,当.实际车轮减速度达到某一特定值时以该瞬间的轮速为初始值,根据轮速按固定斜率变化的规律近似计算出汽车速度(称为车身参考速度)。

牵引力控制系统 TCS

牵引力控制系统 TCS

TCS:英文全称是Traction Control System,即牵引力控制系统,又称循迹控制系统。

汽车在光滑路面制动时,车轮会打滑,甚至使方向失控。

同样,汽车在起步或急加速时,驱动轮也有可能打滑,在冰雪等光滑路面上还会使方向失控而出危险,TCS就是针对此问题而设计的。

TCS依靠电子传感器探测到从动轮速度低于驱动轮时(这是打滑的特征),就会发出一个信号,调节点火时间、减小气门开度、减小油门、降挡或制动车轮,从而使车轮不再打滑。

TCS可以提高汽车行驶稳定性,提高加速性,提高爬坡能力。

TCS如果和ABS相互配合使用,将进一步增强汽车的安全性能。

TCS和ABS可共用车轴上的轮速传感器,并与行车电脑连接,不断监视各轮转速,当在低速发现打滑时,TCS会立刻通知ABS动作来减低此车轮的打滑。

若在高速发现打滑时,TCS立即向行车电脑发出指令,指挥发动机降速或变速器降挡,使打滑车轮不再打滑,防止车辆失控甩尾。

TCS与ABS的区别在于,ABS是利用传感器来检测轮胎何时要被抱死,再减少制动器制动压力以防被抱死,它会快速的改变制动压力,以保持该轮在即将被抱死的边缘,而TCS主要是使用发动机点火的时间、变速器挡位和供油系统来控制驱动轮打滑。

TCS对汽车的稳定性有很大的帮助,当汽车行驶在易滑的路面上时,没有TCS的汽车,在加速时驱动轮容易打滑,如果是后轮,将会造成甩尾,如果是前轮,车子方向就容易失控,导致车子向一侧偏移,而有了TCS,汽车在加速时就能够避免或减轻这种现象,保持车子沿正确方向行驶。

在TCS应用时,可以在仪表板显视出地面是否有打滑的现象发生,它有一个控制旋扭,如果想要享受一下自己控制的快感,在适当的时机可以将系统关掉,车子重新启动时TCS就会自动放开。

ASR:ASR驱动防滑系统也叫牵引力控制系统,即Acceleration Slip Regulation的缩写。

功能与TCS相同,同样是为了防止车辆在起步、再加速时驱动轮打滑,维持车辆行驶方向稳定性的系统,叫法不同,通常多在大众等德系车型上看到这个缩写。

牵引力控制系统原理

牵引力控制系统原理

牵引力控制系统原理一、引言牵引力控制系统是现代交通工具中普遍应用的一种控制系统,它通过控制车辆的牵引力来实现对行驶速度和牵引力的精确调节。

本文将从牵引力控制系统的原理入手,介绍其工作原理及其在交通工具中的应用。

二、牵引力控制系统的工作原理牵引力是指车辆轮胎与地面之间的摩擦力,它决定了车辆的加速度和制动能力。

牵引力控制系统的目标就是通过精确控制车辆的牵引力来达到理想的行驶状态。

其工作原理主要包括传感器、控制器和执行器三个主要组成部分。

1. 传感器传感器是牵引力控制系统的关键组件,它能够感知车辆的运动状态和外部环境条件。

常见的传感器包括轮速传感器、加速度传感器、转向角传感器等。

这些传感器能够实时采集车辆的运动数据,并将其传输给控制器进行处理。

2. 控制器控制器是牵引力控制系统的核心部分,它根据传感器采集到的数据进行实时计算和决策,并输出控制信号给执行器。

控制器通常采用微处理器或嵌入式系统来实现。

其主要功能包括牵引力计算、控制策略设计和信号输出等。

3. 执行器执行器是控制器输出信号的执行部件,它能够根据控制信号调节车辆的牵引力。

常见的执行器包括刹车系统、驱动系统等。

通过控制执行器的工作状态,牵引力控制系统能够精确调节车辆的加速度和制动能力。

三、牵引力控制系统的应用牵引力控制系统广泛应用于各种交通工具中,包括汽车、火车和飞机等。

下面将分别介绍其在不同交通工具中的应用。

1. 汽车在汽车中,牵引力控制系统主要应用于制动系统和驱动系统。

通过精确控制刹车力和驱动力,牵引力控制系统能够提高车辆的制动性能和加速性能,同时增强车辆在不同路况下的稳定性和安全性。

2. 火车在火车中,牵引力控制系统主要应用于牵引力的调节和分配。

火车通常由多个车厢组成,每个车厢都需要有适当的牵引力来保证整个列车的平稳行驶。

牵引力控制系统能够根据列车的负载和路况等因素,精确调节每个车厢的牵引力,提高列车的运行效率和安全性。

3. 飞机在飞机中,牵引力控制系统主要应用于起飞和着陆阶段。

第10章 汽车牵引力控制系统《汽车电气及电子控制系统》课件

第10章 汽车牵引力控制系统《汽车电气及电子控制系统》课件

2/25
汽车电气及电子控制系统
第10章 汽车牵引力控制系统
10. 2 TRC的结构组成
丰田LS400使用的TRC系统的构成如图10-1所示。 TRC和ABS共用一个ECU,有些部件(如4个轮速传感器)既用于ABS,又用于 TRC。下面仅介绍用于TRC的主要部件。 1.副节气门执行器 副节气门执行器安装在节气门体上,如图10-2所示。它可根据来自ABS和TRC ECU的信号控制副节气门开度,从而控制发动机输出功率。 (1)副节气门执行器的结构副节气门执行器的结构如图10-3所示,由永久 磁铁、线圈和转子轴组成的步进电动机,驱动副节气门轴末端的凸轮轴齿轮转动 从而控制副节气门的开度。
10. 3. 2 TRC的控制方式
TRC采用的控制方式主要有控制发动机输出转矩、控制驱动轮的制动力以及 控制防滑转差速器的锁止程度三种情况。这些控制方式的最终目的都是调节驱动 轮上的驱动力,并将驱动轮的滑转率控制在最佳滑转率范围内。
1.控制发动机输出转矩 通过调节发动机输出转矩,可使驱动轮获得不同的驱动力。对于电子控制燃 油喷射系统,通常采用控制发动机输出转矩来实现防滑转控制。可以通过控制点 火时间、燃油供给量以及节气门开度等方法调节发动机的输出转矩。
汽车电气及电子控制系统
第10章 汽车牵引力控制系统
10. 3 TRC的工作原理与控制方式
10. 3. 1 TRC的工作原理
丰田LS400轿车TRC液压控制系统如图10-11所示。在TRC液压控制系统中 ,蓄能器切断电磁阀的作用是:在TRC系统工作时,将来自蓄能器的液压传送 至盘式制动分泵;总泵切断电磁阀的作用是:当蓄能器中的液压被传送至盘式 制动分泵时,阻止制动液流回总泵;储液室切断电磁阀的作用是:在TRC系统 工作时,使制动液从盘式制动分泵流回总泵储液室。

牵引力控制和辅助系统

牵引力控制和辅助系统
ESP附加功能 ...................................................................................... 48
液压制动辅助系统 .......................................................................................... 48 液压制动助力器 .............................................................................................. 54 制动过增压 ..................................................................................................... 55 后桥充分减速功能 .......................................................................................... 56 车辆/拖车稳定 ................................................................................................ 58 防侧倾 ............................................................................................................ 60
E-ABS EBC
TCS
仅制动干预的制动系统

牵引力控制系统

牵引力控制系统

4.TRC系统的工作过程
⑴正常制动过程(TRC不起作用) ⑵汽车加速过程(TRC起作用)
①压力升高
②压力保持 ⑶压力降低
5.车轮转速控制过程 ⑴一个典型的轮速控制循环 ⑵轮速控制运转条件
第四节 防滑差速器
一、防滑差速器简介
1.防滑差速器——防止车轮打滑的差速器,
二、电子控制式防滑差速器
1.V-TCS(Vehicle Traking Control System)——根据驱动轮的滑移量,通过电 子控制装置来控制发动机转速和汽车制动力 进行工作;或按照左、右车轮的转速差来控 制转矩,并与制动器相结合最优分配驱动轮 驱动力。 2.LSD(Limited Slip Differential)—— 利用传感器掌握各种道路情况和车辆运动状 态,通过操纵加速踏板和制动器,采集和读 取驾驶员所要求的信息,并按驾驶员的意愿 和要求最优分配左右驱动轮驱动力。
二、汽车防滑转电子控制系统常用控制方式
1.发动机输出功率控制: 在汽车起步、加速时,ASR控制器输出控制信 号,控制发动机输出功率,以抑制驱动轮滑转。 常用方法有:辅助节气门控制、燃油喷射量控制 和延迟点火控制。 2.驱动轮制动控制: 直接对发生空转的驱动轮加以制动,反映时 间最短。普遍采用ASR与ABS组合的液压控制系统, 在ABS系统中增加电磁阀和调节器,从而增加了驱 动控制功能。
ASR(TRC)系统工作过程:
ECU根据各轮速传感器的信号,确定驱动轮的 滑转率和汽车的参考速度。当ECU判定驱动轮的滑 转率超过设定的门限值时,就使驱动副节气门的 步进电机转动,减小节气门的开度,此时,即使 主节气门的开度不变,发动机的进气量也会减少, 使输出功率减小,驱动轮上的驱动力矩就会随之 减小。如果驱动车轮的滑转率仍未降低到设定的 控制范围,ECU又会控制TRC制动压力调节装置和 TRC制动压力装置,对驱动车轮施加一定的制动压 力,使制动力矩作用于驱动轮,从而实现驱动防 滑转的控制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章牵引力控制系统(TRC)第一节概述如果车辆在摩擦系数(Q很小的路面上(如积雪、结冰或潮湿泥泞的道路)起动或迅速加速时,驱动轮就会高速空转,这不但会导致扭矩损失,还可能使车辆打滑。

发动机能传送至车轮的最大扭矩,是由路面与轮胎表面之间的摩擦系数决定的。

如试图将超过这个最大值的扭矩传送至车轮,就很容易使车轮空转。

在这种情况下,要保持适合于摩擦系数的扭矩,对驾驶员来讲是相当困难的。

在大多数情况下,当试图使车辆迅速起步时,驾驶员会猛踩下加速踏板,车轮空转,使牵引力和扭矩都受到损失。

TRC (在美国和加拿大,则用“ TRAC”就是不管驾驶员的意图,当车轮开始空转时,一方面制动驱动轮;另一方面关小节气门开度,降低发动机的输出扭矩,使传递到路面的扭矩减至一个适当值。

这样就能使车辆获得稳定而迅速的起步和加速。

丰田的TRC最早应用在凌志LS400和SC400上,系统工作过程如图 12-1所示。

图12-1 TRC的工作过程第二节系统部件及功能一、TRC部件配置图12-2 TRC部件配置图二、TRC系统构成图12-3 TRC系统构成示意图三、TRC部件的功能表12-1 TRC部件功能一览表TRC和ABS共用一个ECU,有些部件(如4个转速传感器)既用于ABS,又用于TRC,如图12-4所示。

下面仅介绍用于 TRC的主要部件。

图12-4 TRC电路图1、副节气门执行器如图12-5所示,副节气门执行器安装在节气门体上,根据来自ABS和TRC ECU的信号控制副节气门开度,从而控制发动机输出功率。

(1)构造。

副节气门执行器是由永久磁铁、线圈和转子轴组成的一个步进电机,由来自ABS和TRCECU的信号使之转动,如图 12-6所示。

在转子轴末端安装有一个小齿轮,使安装在副节气门轴末端的凸轮轴齿轮转动,从而控制副节气门开度。

图12-5副节气门执行器图12-6副节气门执行器的结构图(2)运作。

如图12-7所示,当TRC不工作时,副节气门完全打开,对发动机的工作没有影响;当TRC部分工作时,副节气门打开一定角度;当TRC完全工作,副节气门完全关闭。

图12-7副节气门的工作状态2、副节气门位置传感器如图12-8所示,副节气门位置传感器安装在副节气门轴上,将副节气门开度转换为电压信号,并将这一信号经发动机和ECT ECU发送至ABS和TRC ECU,其电路构成如图12-9所示。

图12-8副节气门位置传感器的安装位置及结构图图12-9副节气门位置传感器电路图3、TRC制动执行器(1)构造。

TRC制动执行器由一个泵总成和一个制动执行器组成,如图12-10所示。

泵总成产生液压,制动执行器将液压传送至盘式制动分泵然后将其释放。

左、右后轮盘式制动分泵中的液压,由ABS执行器根据来自ABS和TRC ECU的信号分别控制。

表12-2列出了泵总成部件的功能;表12-3列出了制动执行器部件的功能。

TRC制动执行器的液压线路如图12-11所示。

图12-10 TRC制动执行器的结构图表12-3制动执行器部件的功能图12-11 TRC液压线路图(2)工作过程。

1)在正常制动中(TRC未起动)。

当施加制动力时,TRC制动执行器中所有电磁阀(总泵切断电磁阀、储压器切断电磁阀、储液室切断电磁阀)都关断。

如图12-12所示,当TRC在此状态下,将制动踏板被踩下时,总泵内产生的液压经总泵切断电磁阀和ABS执行器的三位置电磁阀作用在盘式制动分泵上。

当松开制动踏板时,制动液从盘式制动分泵流回到总泵。

图12-12 正常制动时液压流程图2)在车辆加速中(TRC起动)。

在加速中如后轮空转, ABS和TRC ECU控制发动机扭矩和后轮的制动,以避免发生空转。

左、右后轮制动器中的液压,分别由三种模式(压力提高、保持和降低)控制,现解释如下:a、“压力提高”模式。

当踩下油门踏板,一个后轮开始空转时,TRC执行器的所有电磁阀都由来自ECU的信号接通,同时,ABS执行器的三位置电磁阀也转接至“压力提高”模式。

如图12-13所示,在这一模式,总泵切断电磁阀接通(闭合),储压器切断电磁阀接通(打开)。

这就使储压器中的加压制功液,经储压器切断电磁阀和 ABS中的三位置电磁阀,作用在盘式制动分泵上。

当压力传感开关检测到储压器中压力下降时(不论TRC如何工作),ECU便接通TRC泵以提高液压。

图12-13 “压力提高”模式液压工作流程图b、“压力保持”模式。

如图12-14所示,当后轮盘式制动分泵中的液压提高或降低到所需要的压力时,系统就切换至“压力保持”模式。

ABS泵总泵切断电磁阀、储压器切断电磁阀、储液室切断电磁阀均接通。

模式转换是由 ABS执行器的三位置电磁阀的切换完成的。

其结果是阻止储压器中的压力降低,保持盘式制动分泵中的液压。

图12-14 “压力保持”模式液压工作流程图C、“压力降低”模式。

当需要降低后轮盘式制动分泵中的液压时,ABS和TRC ECU将ABS执行器的三位置电磁阀转换至“压力降低”模式。

这就使盘式制动分泵中的液压,经 ABS 三位置电磁阀和储液室切断电磁阀流回至总泵储液罐,导致液压降低。

如图 12-15 所示。

这时 ABS 执行器泵保持不工作。

图 12-15 “压力降低”模式液压工作流程图4、压力传感开关(或传感器)压力传感开关(或传感器)用于接通和关断 TRC 泵。

其安装位置如图 12-16 所示,其工作过程和电路构成如图 12-17 所示。

左侧方向盘的车辆,采用接触型压力传感开关;右侧方向盘的车辆,则采用无接触型压力传感器。

图 12-16 压力传感开关或传感器和安装位置图 12-17 压力传感开关或传感器工作及电路图第三节 ABS 和 TRC ECUABS 和 TRC ECU 将 ABS 和 TRC 的控制功能结合为一体。

ABS 和 TRC ECU 用所输入的 4 个车轮转速传感器的转速信号,计算车轮空转情况和路面状况,用以减小发动机扭矩和控制车轮制动力,从而控制车轮转速。

另外, ABS 和 TRC ECU 均有初始检查功能、诊断功能和失效保护功能。

一、车轮转速控制车轮转速控制过程如图 12-18 所示。

ECU 不断收到来自 4 个车轮转速传感器的信号,并不断计算每个车轮的转速。

同时, ECU 根据两个前轮的转速估计车速,设定目标控制速度。

图 12-18 车轮转速控制过程如果在摩擦系数小的道路上突然踩下油门踏板,而且后轮(驱动轮)开始空转,后轮转速就会超过目标控制速度。

ECU 于是发出关闭副节气门信号至副节气门执行器。

同时,它还发送一个信号至 TRC 制动执行器,使其输出较高压力的制动液至后轮盘式制动分泵。

ABS执行器的三位置电磁阀转换至控制后轮制动分泵液压,从而阻止车轮空转。

在起动和突然加速中,若后轮空转,其转速就不会与前轮转速相匹配。

ABS 和 TRC ECU 感知这一情况,便启动 TRC 系统。

( 1)ABS 和 TRC ECU 关闭副节气门,减少进气量,从而减小发动机扭矩。

(2)同时,ABS和TRC ECU控制TRC制动执行器电磁阀,将ABS执行器设置为“压力提高”模式。

已储存在 TRC 储压器中的制动液的压力,加上由 TRC 泵产生的压力,施加到制动分泵上,控制驱动轮的制动。

( 3)当制动开始时,后轮加速度下降,ABS 和 TRC ECU 将 ABS 三位置电磁阀切换至“保持”模式。

(4)如果后轮加速度下降得太多,这个电磁阀就转换至“压力降低”模式,降低制动分泵中的液压,恢复后轮加速度。

通过反复进行上述控制, ABS 和 TRC ECU 使转速保持在目标控制速度左右。

当满足以下所有条件时,车轮转速控制工作:1)主节气门不应全闭( 1DLl 应断开)。

2)变速器换挡杆应位于 L、2、D或R挡位(P和N信号应关断)。

3)车辆应以大于9km/h 的速度行驶,制动灯开关应断开(若车速低于9km/h 时,可以接通)。

4)TRC 切断开关应断开。

5)ABS 不应工作。

6)TRC 系统不应处在传感器检查模式或故障代码输出模式。

二、继电器的控制1、TRC 制动器主继电器和 TRC 节气门继电器如图 12-19 和图 12-20 所示,只要 TRC、 ABS 和发动机电子控制系统没有故障,当点火开关接通时,ECU 就接通TRC 制动器主继电器和节气门继电器。

当点火开关断开时,这些继电器就断开。

如果ECU 检测到故障, ECU 就断开这些继电器。

图 12-19 TRC 制动器主继电器电路图图 12-20 TRC 节气门继电器电路图2、TRC 泵电机继电器如图 12-21 所示,当以下条件满足时, ABS 和 TRC ECU 接通泵电机继电器:图 12-21 TRC 泵电机继电器控制电路图1)TRC 主继电器接通;2)发动机转速超过 500r/min ;3)换挡杆在“ P”或“ N ”挡以外的位置;4)IDL 1 信号断开;5)压力传感开关信号接通。

三、初始检查功能1、副节气门执行器当变速器换挡杆位于“ P”或“ N”挡位、主节气门全闭、车辆停止等三个条件同时满足时,ECU 就使副节气门执行器先将副节气门完全关闭,然后完全打开,对副节气门执行器和节气门位置传感器的电路进行检查,也检查副节气门的工作。

其检查过程如图 12-22 所示。

点火开关每接通一次,就进行一次这种检查。

这时,当副节气门全闭时, ABS 和 TRC ECU 就将其开度储存在储存器中。

图 12-22 副节气门执行器初始检查过程2、 TRC 制动执行器电磁阀当变速器换挡杆位于“ P”或“ N ”挡位、车辆停止、发动机工作等三个条件同时满足,在点火开关接通后, ABS 和 TRC ECU 才操纵 TRC 制动执行器电磁阀,进行一次初始检查,其检查过程如图 12-23 所示。

图 12-23 TRC 制动执行器电磁阀的初始检查四、故障警告和储存功能如果ECU 检测到TRC 系统内有故障,就使组合仪表内的TRC 指示灯发亮,提醒驾驶员有故障发生。

同时, ECU 还储存故障代码。

如图 12-23 所示,当以下条件同时满足时, TRC 指示灯闪烁,显示故障代码:1)点火开关接通;2)TDCL 或检查连接器的 TC 和 El 端子连接(仅在有安全气囊的车辆上,检查连接器才有 TC 端子。

);3)车辆停止( 0km/h)。

五、失效保护功能当TRC系统不工作,ABS和TRC ECU检测到故障时,ECU立即关断TRC节气门继电器、TRC电机继电器和TRC制动器主继电器,从而使 TRC系统不能工作。

图12-24 TRC指示灯如果在TRC工作中,ECU检测到故障,ECU就停止控制,关断TRC电机继电器和TRC 制动执行器主继电器。

当ECU使TRC系统不能工作时,发动机和制动系统的工作方式与无 TRC系统的车型一样。

相关文档
最新文档