多孔介质传热传质想法
多孔介质传热传质理论与应用

多孔介质传热传质理论与应用多孔介质传热传质理论是一种对多孔介质的物理性质的科学研究,因为历史上没有人直接从孔隙结构中去分析传热传质过程,所以这一理论很长时间没有发展。
多孔介质传热传质是物理概念,指在给定介质中发生的热量和物质的传输。
孔介质传热传质理论是以传热学、分子动力学、流体力学等跨学科为基础而建立起来的一种新兴理论,其目的是要研究多孔介质传热传质的形式,有效地利用多孔介质传热传质的原理,为解决各种由多种热力学系统的传热传质问题进行理论研究和实验研究。
多孔介质传热传质理论有很多应用,其中最主要的应用之一是工业热交换器的设计。
此外,多孔介质传热传质理论还可用于研究如煤层气、页岩气和混合热源在多孔介质中的热传导和热扩散特性,从而实现热源的有效调节和利用。
此外,多孔介质传热传质理论也可以用于估算地表层和深层地质中的热传导特性,以及研究对地表层的热设计。
多孔介质传热传质理论是多孔介质研究领域新兴的理论,在一定程度上改变了传热传质的研究方法,积极促进了各种介质传热、传质以及传热传质过程的研究,产生了深远的影响。
受多孔介质传热传质理论影响,研究者们开发出新型的工业热交换器,可以实现更高效、更智能的能量利用。
由于多孔介质传热传质理论完善了介质传热和传质的理论,使得热交换器变得更加精确、更加高效,并取得了更好的效果。
此外,多孔介质传热传质理论还为我们提供了新的机遇:可以更加有效地利用深层地质的热量,以及如混合热源的有效利用等。
多孔介质传热传质理论提供了一种智能化的解决方案,将多种热力学介质有效地传输到需要传输的目标,从而实现有效利用能源的目的。
综上所述,多孔介质传热传质理论是一种新兴的理论,对介质传热传质过程的研究产生了巨大的影响,并在工业热交换器的设计、混合热源的影响以及深层地质热量的利用等方面,带来了新的机遇和研究方向,预示着多孔介质传热传质理论在未来将会发挥更大的作用。
多孔介质传热学概论

H a r b i n I n s t i t u t e o f T e c h n o l o g y传热学课程报告报告题目:多孔介质传热学概论院系:班级:姓名:学号:二零一二年十月摘要:本文对多孔介质及其基本结构、传热传质的理论基础做了相关介绍,并对多孔材料的应用进行了说明和预期。
关键词:多孔介质;传热学;孔隙率;渗透率;导热系数1 多孔介质简介多孔介质是由固体骨架和流体组成的一类复合介质,其传热传质过程在自然界和人类生产、生活中广泛存在,它构成了地球生物圈的物质基础。
从学科发展的角度看,多孔介质传热传质学已经渗透到许多学科和新技术领域,包括能源、材料、化学工程、环境科学、生物技术、仿生学、医学和农业工程,是形成新的交叉和边缘学科的一个潜在生长点。
因此,多孔介质传热传质研究,是一项具有重大学术价值、对学科发展和技术创新具有深远影响的研究课题。
笼统地说,大部分材料都属于多孔介质,目前还没有对多孔介质各种特性的确定性作出准确的定义。
1983年J.Bear提出多孔介质具有以下特点:(1)部分空间充满多相物质,至少其中一相物质是非固态的,可以是液态或气态。
固相部分称为固相基质。
多孔介质内部除了固相基质外的空间称为空隙空间。
(2)固相基质分布于整个多孔介质,在每个代表性初级单元均应有固相基质。
(3)至少一些空隙空间应该是相联通的。
2 多孔介质的基本结构特征2.1多孔介质的孔隙率多孔介质的结构是非常复杂的,我们不可能精确地描述这些孔隙表面的几何形状,也很难确切地阐明孔隙空间所包含的流体及其与固体表面相互作用所出现的有关微观物理现象。
因此研究者往往引入“容积平均”的假设,并且将复杂多相的多孔体系看成一种在大尺度上均匀分布的虚拟连续介质,即不同流速层中流体分子间碰撞交换动量,宏观表现为流体是以粘滞形式出现的流动,从而可以利用表观当量参数的唯象方法进行研究,而不必去研究每一个孔隙中流体流动和换热的情况,使一个原本非常复杂的流动问题得以简化。
多孔介质内的相变传热传质过程研究的开题报告

多孔介质内的相变传热传质过程研究的开题报告【摘要】相变传热传质过程在工业生产和科学研究中具有广泛的应用,如能源转化、化工工艺、材料加工等领域。
而多孔介质作为一种典型的复杂介质,在这些领域中也有着重要的地位。
本文将探讨多孔介质内的相变传热传质过程,并制定相应的研究计划。
【关键词】相变传热传质,多孔介质,研究计划【正文】一、研究背景相变传热传质是指物质在相变过程中产生的传热传质现象。
相变过程一般分为凝固和融化两种情况,而这种过程通常会begindle 标为潜热。
多孔介质是指具有大量孔隙和微观孔洞的材料,如蒸汽发生器、泡沫材料、纤维材料等。
多孔介质的特殊结构使其具有良好的传热传质性能,在相变传热传质过程中也会发挥重要作用。
二、研究意义多孔介质内相变传热传质过程的研究对于工业生产和科学研究均具有重要意义。
在能源转化领域,如燃料电池、热泵等设备中,多孔质材料的相变传热传质性能直接影响了设备的运行效率和能源利用率。
在化工工艺和材料加工领域中,多孔质材料的相变传热传质性能受到直接制约,因此对其进行详细的研究有助于优化生产流程和提高产品质量。
此外,多孔介质内相变传热传质过程也有利于理解液体和气体的流动运动以及热交换机制,对于深入探讨物理学和化学学等领域有着重要意义。
三、研究计划(一)理论研究1. 分析多孔介质内相变传热传质的物理机制,阐述其基本原理和特点;2. 建立多孔介质中相变传热传质的数学模型,并进行验证和改进;3. 基于模型计算多孔介质内相变传热传质过程的传热传质效率和物质转移效果。
(二)实验研究1. 设计并制备多种不同孔隙率、孔隙大小和孔隙分布的多孔材料样品;2. 将多孔材料样品放置于相变介质中进行实验研究,记录其体视干湿度、温度、压力等变化规律;3. 通过实验,验证理论模型的可靠性并分析多孔介质结构对相变传热传质过程的影响。
(三)应用研究1. 评价多孔介质内相变传热传质过程对热泵、燃料电池等设备的效率影响;2. 探究多孔材料的制备方法和结构参数对相变传热传质性能的影响;3. 提出针对多孔介质内相变传热传质过程的优化措施,并进行实验验证。
多孔介质相变传热与流动及其若干应用研究

多孔介质相变传热与流动及其若干应用研究一、本文概述本文旨在全面深入地研究多孔介质中的相变传热与流动现象,并探讨其在多个应用领域中的实际价值。
多孔介质广泛存在于自然界和工程实践中,如土壤、岩石、生物组织以及许多工业材料。
在这些介质中,相变传热与流动过程对于理解许多自然现象以及优化工程设计具有重要意义。
本文将围绕多孔介质中的相变传热机制、流动特性以及若干应用案例展开详细的论述。
本文将系统地梳理多孔介质相变传热与流动的基本理论,包括多孔介质的基本性质、相变传热的基本原理以及流动的基本规律。
在此基础上,我们将建立相应的数学模型和数值方法,以定量描述多孔介质中的相变传热与流动过程。
本文将深入探讨多孔介质相变传热与流动的关键问题,如相界面演化、热质传递、流体流动以及多孔结构对传热流动的影响等。
我们将通过理论分析、数值模拟和实验研究等多种手段,揭示多孔介质相变传热与流动的内在规律和影响因素。
本文将关注多孔介质相变传热与流动在若干领域的应用研究,如能源工程、环境工程、生物医学工程等。
我们将结合具体案例,分析多孔介质相变传热与流动在这些领域的应用现状和发展趋势,为相关领域的工程实践提供理论支持和指导。
通过本文的研究,我们期望能够加深对多孔介质相变传热与流动现象的理解,推动相关领域的理论发展和技术进步,并为实际工程应用提供有益的参考。
二、多孔介质相变传热与流动的基本理论多孔介质,作为一种由固体骨架和分散在其间的孔隙或空隙组成的复杂结构,广泛存在于自然界和工程应用中。
多孔介质中的相变传热与流动现象,涉及到热质传递、流体动力学、热力学和相变动力学等多个领域,是热科学和流体力学研究的热点和难点。
在多孔介质中,相变传热主要指的是在固-液、液-气或固-气等相变过程中,热量通过多孔介质骨架和孔隙中的流体进行传递。
由于多孔介质的复杂结构,相变传热过程不仅受到热传导、热对流和热辐射的影响,还受到孔隙结构、流体流动、相变材料性质以及外部条件(如温度、压力等)的制约。
多孔介质喷雾干燥过程的热质传递

多孔介质喷雾干燥过程的热质传递
高建;廖传华;黄振仁
【期刊名称】《干燥技术与设备》
【年(卷),期】2003(000)001
【摘要】多孔介质是大量干燥过程的主体,由于实际多孔介质干燥过程的复杂性,建立通用的干燥过程传热传质模型十分困难。
本文通过分析喷雾干燥过程中高初始含湿多孔介质与干燥介质之间的传热传质机理以及各因素对传热传质的影响,根据马歇尔方程探讨了干燥介质与料雾之间的水蒸汽分压差在干燥过程中的变化情况,反映了多孔湿介质在喷雾干燥操作中的传热传质过程的几种特性,为确定实际生产中喷雾干燥器的操作奈件指明了新的出路。
【总页数】4页(P17-20)
【作者】高建;廖传华;黄振仁
【作者单位】南京工业大学机械与动力工程学院,江苏南京2l0009
【正文语种】中文
【中图分类】TQ028.67
【相关文献】
1.喷雾干燥过程的热质分析及工艺优化 [J], 戴命和
2.多孔介质快速干燥过程热质耦合方程的代数显式解析解 [J], 蔡睿贤;张娜
3.热质渗透壁面饱和多孔介质通道流动与热质传递的数值模拟 [J], 杨勃;李维仲
4.高初始含湿多孔介质喷雾干燥过程的热质耦合传递* [J], 廖传华;黄振仁
5.多孔介质快速干燥过程中热质耦合效应的研究 [J], 王馨;王海;施明恒;虞维平
因版权原因,仅展示原文概要,查看原文内容请购买。
多孔结构中流动与热质传递机理研究

多孔结构中流动与热质传递机理研究引言多孔结构在工程领域中具有广泛的应用,如燃料电池、石油储层、生物组织等。
多孔结构中的流动与热质传递机理对于这些应用的性能起到至关重要的作用。
本文将深入探讨多孔结构中流动与热质传递机理的研究进展。
多孔介质流动特性多孔介质中的流动是由孔隙结构和流体之间的相互作用所决定的。
具体来说,多孔结构中的孔隙形态、孔隙连通性、孔隙尺寸分布等参数对流动特性有着重要影响。
孔隙形态对流动特性的影响孔隙形态指的是多孔介质中孔隙的几何形状。
不同的孔隙形态对流动的阻尼效应不同,影响流体在多孔介质中的通透性。
例如,球形孔隙具有较小的阻力,流体易于通过;而长条状孔隙则具有较大的阻力,流体通过困难。
孔隙连通性对流动特性的影响孔隙连通性是指多孔结构中孔隙之间是否连通。
连接的孔隙能够提供流体的通道,增加流体在多孔介质中的渗透性。
相反,如果孔隙之间没有足够的连通性,流体将受到限制,减小渗透性。
孔隙尺寸分布对流动特性的影响不同尺寸的孔隙对流动的影响也有所不同。
较大的孔隙会增加多孔介质的渗透性,而较小的孔隙则会增加流体与固体表面的接触机会,促进传质过程。
多孔介质传热机理多孔介质中的传热机理主要包括传导、对流和辐射三种方式。
这些传热方式在多孔介质中的相互作用决定了传热效率。
传导传热传导是指热量通过固体颗粒之间的分子传递而实现的。
在多孔介质中,固体颗粒之间存在接触面积,通过接触面积之间的传导,热量能够在固体颗粒之间传递。
对流传热在多孔介质中,流体的对流传热效应很重要。
由于多孔结构中的孔隙,流体可以在孔隙中流动,从而与固体表面发生换热。
流体的流动可以增加传热面积,提高传热效率。
辐射传热辐射传热是指热能以电磁波的形式通过空间传递。
在多孔介质中,固体颗粒之间的间隙可以产生辐射传热,但由于多孔介质的高吸收率和散射率,辐射传热的贡献较小。
多孔介质中流动与传热的数值模拟方法为了更好地理解多孔介质中的流动与热质传递机理,研究者们提出了各种数值模拟方法。
多孔介质干燥过程传热传质的理论分析与实验研究的开题报告

多孔介质干燥过程传热传质的理论分析与实验研究的开题报告一、研究背景和意义多孔介质干燥是一个重要的传热传质问题,对于化工、农业、食品等领域均有广泛的应用。
在多孔介质干燥过程中,研究传热传质是关键的一步,能够在理论和实践上指导工程实践,提高设备的效率和产品的质量。
传统的多孔介质干燥研究主要关注干燥过程中水分传递的问题,较少关注干燥过程中热量传递的问题。
但实际上,干燥过程中热量传递同样重要,它直接影响干燥速度和干燥效果。
因此,对多孔介质干燥过程中传热传质的理论分析和实验研究具有重要的理论和应用价值。
二、研究内容和方法本研究旨在探究多孔介质干燥过程中传热传质的理论分析和实验研究。
具体内容包括以下几个方面:1.基于多孔介质的传热传质理论,建立多孔介质干燥传热传质数学模型,分析干燥过程中热量传递的机理和规律。
2.通过实验研究,探究干燥过程中的传热传质特性,包括热传导系数、传热面积、传质系数等参数的变化规律。
3.对数学模型进行仿真模拟,比对模拟结果和实验结果,验证数学模型的正确性和可行性。
4.据此,进一步探究多孔介质干燥过程中传热传质参数对干燥速率的影响规律,指导工程实践。
三、预期成果和意义本研究预期可以得出以下成果:1.建立基于多孔介质的传热传质理论模型,分析多孔介质干燥过程中热量传递的机理和规律。
2.通过实验研究,获得干燥过程中的传热传质特性参数数据,为数学模型的验证和参数优化提供依据。
3.对干燥速率影响因素进行优化,并成功应用于工程实践,提高干燥效率和产品质量。
本研究将为多孔介质干燥过程的传热传质问题提供新的解决思路,在实践中指导工程实践,具有重要的理论和应用价值。
多孔介质球体颗粒模型传热传质数值模拟及分析_刘宇卿

多孔介质球体颗粒模型传热传质数值模拟及分析刘宇卿韩战(中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室,100083)摘要:针对多孔介质传热传质的复杂性,本文利用非等径球颗粒模型构建了一类由颗粒胶结而形成的多孔介质,通过Fluent数值模拟对多孔介质热传导机理进行了研究,得出了多孔介质骨架颗粒的热传导规律,证明了利用局部非热平衡模型研究多孔介质传热的正确性,得到了孔隙介质颗粒体表面热流密度与内部流速、粒径尺寸有重要的内在联系。
其中对非等径球体颗粒堆积模型的研究证明了在同一多孔介质体内不同粒径尺寸的颗粒流固壁面热传导系数也存在不同。
在对渗流问题进行分析时,提出了等径球规则排列模型的不足,并分析了其中原因,然后利用非等径球模型再次对砂岩渗流问题进行了研究,得到了更好的结论。
关键词:多孔介质,球体颗粒模型,数值模拟,传热一、引言本文将通过构建的球体颗粒排列的多孔介质模型结合多孔介质传热传质理论来进行数值模拟工作。
考虑到砂岩中石英的导热系数相对较小,在传热机理分析时,我们采用传热系数相对大的铜作为骨架颗粒,将模拟结果进行提取、分析,并与经验公式进行比对,验证颗粒排列模型分析方法的可行性,并做出简要总结。
之后我们利用石英作为骨架颗粒构建砂岩模型,对不同渗流情况下砂岩模型的传热情况进行分析。
得到砂岩模型的导热系数、渗透情况等。
最后利用砂岩模型与工程实际进行比对,确定此模型的适用性。
二、研究方法及模型的建立2.1 模型建立在低流速情况下,与等径模型相同的是在流速方向上球体颗粒表面热流密度呈递减趋势,不同点是非等径球颗粒模型第二排球颗粒表面热流密度有些高于等径球颗粒模型第二排球颗粒表面热流密度。
原因是低流速情况下由于上排颗粒及周围液体固液面平均温差相对较小,且温穿透层更厚,所以有更多的热流密度通过固体间的接触传递往下排颗粒,加上大球之间又有小球存在,加大了往下层颗粒的导热量,但同时小球颗粒面也和周围液体存在热量的传递,所以综合看来,与等径球颗粒模型相比,对应点有些较高有些则较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
寿大华的扩散模型:
寿大华的渗透模型:
扩散与渗透都是传质,寿大华用的都是圆圈模型,我们可以用寿大华用的圆圈模型做传热,因为渗透是压力差,扩散是浓度差,传热是温度差,他们有相似的地方。
达西定律描述为:
公式(1)中,K为渗透率,U为流速,为流体粘度,为流动方向上的压力梯度。
菲克定律描述为:
公式(2)中,D为扩散系数,J为扩散通量,C为浓度,为浓度梯度。
很明显,在数学形式上,达西定律和菲克定律很类似,而且他们都是质量的传输。
傅立叶定律是研究热传导的一个基本定律,描述为:
公式(3)中,k为热导率,q为热流密度,T为温度,为温度梯度。